717 research outputs found

    Binary interaction algorithms for the simulation of flocking and swarming dynamics

    Full text link
    Microscopic models of flocking and swarming takes in account large numbers of interacting individ- uals. Numerical resolution of large flocks implies huge computational costs. Typically for NN interacting individuals we have a cost of O(N2)O(N^2). We tackle the problem numerically by considering approximated binary interaction dynamics described by kinetic equations and simulating such equations by suitable stochastic methods. This approach permits to compute approximate solutions as functions of a small scaling parameter ε\varepsilon at a reduced complexity of O(N) operations. Several numerical results show the efficiency of the algorithms proposed

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Refining self-propelled particle models for collective behaviour

    Get PDF
    Swarming, schooling, flocking and herding are all names given to the wide variety of collective behaviours exhibited by groups of animals, bacteria and even individual cells. More generally, the term swarming describes the behaviour of an aggregate of agents (not necessarily biological) of similar size and shape which exhibit some emergent property such as directed migration or group cohesion. In this paper we review various individual-based models of collective behaviour and discuss their merits and drawbacks. We further analyse some one-dimensional models in the context of locust swarming. In specific models, in both one and two dimensions, we demonstrate how varying the parameters relating to how much attention individuals pay to their neighbours can dramatically change the behaviour of the group. We also introduce leader individuals to these models with the ability to guide the swarm to a greater or lesser degree as we vary the parameters of the model. We consider evolutionary scenarios for models with leaders in which individuals are allowed to evolve the degree of influence neighbouring individuals have on their subsequent motion

    Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations

    Get PDF
    In this paper we study the diffusion approximation of a swarming model given by a system of interacting Langevin equations with nonlinear friction. The diffusion approximation requires the calculation of the drift and diffusion coefficients that are given as averages of solutions to appropriate Poisson equations. We present a new numerical method for computing these coefficients that is based on the calculation of the eigenvalues and eigenfunctions of a Schr\"odinger operator. These theoretical results are supported by numerical simulations showcasing the efficiency of the method

    Kinetic description of optimal control problems and applications to opinion consensus

    Get PDF
    In this paper an optimal control problem for a large system of interacting agents is considered using a kinetic perspective. As a prototype model we analyze a microscopic model of opinion formation under constraints. For this problem a Boltzmann-type equation based on a model predictive control formulation is introduced and discussed. In particular, the receding horizon strategy permits to embed the minimization of suitable cost functional into binary particle interactions. The corresponding Fokker-Planck asymptotic limit is also derived and explicit expressions of stationary solutions are given. Several numerical results showing the robustness of the present approach are finally reported.Comment: 25 pages, 18 figure
    • …
    corecore