192 research outputs found

    Fast algorithms and hardware architectures for H.264/AVC

    Get PDF
    制度:新 ; 文部省報告番号:甲2460号 ; 学位の種類:博士(工学) ; 授与年月日:2007/6/25 ; 早大学位記番号:新456

    Dynamically Reconfigurable Architectures and Systems for Time-varying Image Constraints (DRASTIC) for Image and Video Compression

    Get PDF
    In the current information booming era, image and video consumption is ubiquitous. The associated image and video coding operations require significant computing resources for both small-scale computing systems as well as over larger network systems. For different scenarios, power, bitrate and image quality can impose significant time-varying constraints. For example, mobile devices (e.g., phones, tablets, laptops, UAVs) come with significant constraints on energy and power. Similarly, computer networks provide time-varying bandwidth that can depend on signal strength (e.g., wireless networks) or network traffic conditions. Alternatively, the users can impose different constraints on image quality based on their interests. Traditional image and video coding systems have focused on rate-distortion optimization. More recently, distortion measures (e.g., PSNR) are being replaced by more sophisticated image quality metrics. However, these systems are based on fixed hardware configurations that provide limited options over power consumption. The use of dynamic partial reconfiguration with Field Programmable Gate Arrays (FPGAs) provides an opportunity to effectively control dynamic power consumption by jointly considering software-hardware configurations. This dissertation extends traditional rate-distortion optimization to rate-quality-power/energy optimization and demonstrates a wide variety of applications in both image and video compression. In each application, a family of Pareto-optimal configurations are developed that allow fine control in the rate-quality-power/energy optimization space. The term Dynamically Reconfiguration Architecture Systems for Time-varying Image Constraints (DRASTIC) is used to describe the derived systems. DRASTIC covers both software-only as well as software-hardware configurations to achieve fine optimization over a set of general modes that include: (i) maximum image quality, (ii) minimum dynamic power/energy, (iii) minimum bitrate, and (iv) typical mode over a set of opposing constraints to guarantee satisfactory performance. In joint software-hardware configurations, DRASTIC provides an effective approach for dynamic power optimization. For software configurations, DRASTIC provides an effective method for energy consumption optimization by controlling processing times. The dissertation provides several applications. First, stochastic methods are given for computing quantization tables that are optimal in the rate-quality space and demonstrated on standard JPEG compression. Second, a DRASTIC implementation of the DCT is used to demonstrate the effectiveness of the approach on motion JPEG. Third, a reconfigurable deblocking filter system is investigated for use in the current H.264/AVC systems. Fourth, the dissertation develops DRASTIC for all 35 intra-prediction modes as well as intra-encoding for the emerging High Efficiency Video Coding standard (HEVC)

    Performance analysis of H.264 encoder for high-definition video transmission over ultra-wideband communication link.

    Get PDF
    With the technological advancement, entertainment has become revolutionized and the High-definition (HD) video has become a common feature of our modern amusement devices. Moreover, the demand for wireless transmission of HD video is rising increasingly for its ubiquitous nature, easy installation and relocation. The high bandwidth requirement is the main concern for wireless transmission of high quality video streams. Research has been going on by the consumer electronics industry to provide different solutions of this issue, for the last few years. In this research work, HD video transmission feasibility using the Ultra-wideband (UWB) communication channel is analyzed. The UWB channel is selected for its short-range, high-speed data transmission capability at low-cost, and low-power consumption. The maximum transmitting range of this technology is about 10 m at 100 Mbps data rate. Simulation is conducted by controlling key parameters, such as, in-loop deblocking filter, group of pictures, and quantization parameter of an H.264/AVC encoder. Here, standard HD video streams with different motion characteristics are used, and the impact of these parameters change on the reconstructed video quality and the broadcasting data rate are analyzed. Finally, a generalized parameters settings, and a video content dependent settings for an H.264/AVC encoder are proposed for different bandwidth requirements, as well as acceptable video quality. Performance evaluation of these parameters settings is performed, and the results are quite satisfactory as long as the symbol energy to noise power density ratio, Es/No, is above 15. With the proposed parameters settings, maximum 20 Mbps data rate is achieved with 33.5 dB Y-PSNR

    Decoder Hardware Architecture for HEVC

    Get PDF
    This chapter provides an overview of the design challenges faced in the implementation of hardware HEVC decoders. These challenges can be attributed to the larger and diverse coding block sizes and transform sizes, the larger interpolation filter for motion compensation, the increased number of steps in intra prediction and the introduction of a new in-loop filter. Several solutions to address these implementation challenges are discussed. As a reference, results for an HEVC decoder test chip are also presented.Texas Instruments Incorporate

    Network-on-Chip Based H.264 Video Decoder on a Field Programmable Gate Array

    Get PDF
    This thesis develops the first fully network-on-chip (NoC) based h.264 video decoder implemented in real hardware on a field programmable gate array (FPGA). This thesis starts with an overview of the h.264 video coding standard and an introduction to the NoC communication paradigm. Following this, a series of processing elements (PEs) are developed which implement the component algorithms making up the h.264 video decoder. These PEs, described primarily in VHDL with some Verilog and C, are then mapped to an NoC which is generated using the CONNECT NoC generation tool. To demonstrate the scalability of the proposed NoC based design, a second NoC based video decoder is implemented on a smaller FPGA using the same PEs on a more compact NoC topology. The performance of both decoders, as well as their component PEs, is evaluated on real hardware. An analysis of the performance results is conducted and recommendations for future work are made based on the results of this analysis. Aside from the development of the proposed decoder, a major contribution of this thesis is the release of all source materials for this design as open source hardware and software. The release of these materials will allow other researchers to more easily replicate this work, as well as create derivative works in the areas of NoC based designs for FPGA, video coding and decoding, and related areas

    Video Compression from the Hardware Perspective

    Get PDF

    Dynamic Switching of GOP Configurations in High Efficiency Video Coding (HEVC) using Relational Databases for Multi-objective Optimization

    Get PDF
    Our current technological era is flooded with smart devices that provide significant computational resources that require optimal video communications solutions. Optimal and dynamic management of video bitrate, quality and energy needs to take into account their inter-dependencies. With emerging network generations providing higher bandwidth rates, there is also a growing need to communicate video with the best quality subject to the availability of resources such as computational power and available bandwidth. Similarly, for accommodating multiple users, there is a need to minimize bitrate requirements while sustaining video quality for reasonable encoding times. This thesis focuses on providing an efficient mechanism for deriving optimal solutions for High Efficiency Video Coding (HEVC) based on dynamic switching of GOP configurations. The approach provides a basic system for multi-objective optimization approach with constraints on power, video quality and bitrate. This is accomplished by utilizing a recently introduced framework known as Dynamically Reconfigurable Architectures for Time-varying Image Constraints (DRASTIC) in HEVC/H.265 encoder with six different GOP configurations to support optimization modes for minimum rate, maximum quality and minimum computational time (minimum energy in constant power configuration) mode of operation. Pareto-optimal GOP configurations are used in implementing the DRASTIC modes. Additionally, this thesis also presents a relational database formulation for supporting multiple devices that are characterized by different screen resolutions and computational resources. This approach is applicable to internet-based video streaming to different devices where the videos have been pre-compressed. Here, the video configuration modes are determined based on the application of database queries applied to relational databases. The database queries are used to retrieve a Pareto-optimal configuration based on real-time user requirements, device, and network constraints

    SIMD acceleration for HEVC decoding

    Get PDF
    Single instruction multiple data (SIMD) instructions have been commonly used to accelerate video codecs. The recently introduced High Efficiency Video Coding (HEVC) codec like its predecessors is based on the hybrid video codec principle and, therefore, is also well suited to be accelerated with SIMD. In this paper we present the SIMD optimization for the entire HEVC decoder for all major SIMD instruction set architectures. Evaluation has been performed on 14 mobile and PC platforms covering most major architectures released in recent years. With SIMD, up to 5× speedup can be achieved over the entire HEVC decoder, resulting in up to 133 and 37.8 frames/s on average on a single core for Main profile 1080p and Main10 profile 2160p sequences, respectively.EC/FP7/288653/EU/Low-Power Parallel Computing on GPUs/LPGP
    corecore