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ABSTRACT
NETWORK-ON-CHIP BASED H.264 VIDEO DECODER

ON A FIELD PROGRAMMABLE GATE ARRAY

Ian J. Barge, B.S

Marquette University, 2017

This thesis develops the first fully network-on-chip (NoC) based h.264 video decoder
implemented in real hardware on a field programmable gate array (FPGA). This thesis starts with
an overview of the h.264 video coding standard and an introduction to the NoC communication
paradigm. Following this, a series of processing elements (PEs) are developed which implement
the component algorithms making up the h.264 video decoder. These PEs, described primarily in
VHDL with some Verilog and C, are then mapped to an NoC which is generated using the
CONNECT NoC generation tool. To demonstrate the scalability of the proposed NoC based
design, a second NoC based video decoder is implemented on a smaller FPGA using the same
PEs on a more compact NoC topology. The performance of both decoders, as well as their
component PEs, is evaluated on real hardware. An analysis of the performance results is
conducted and recommendations for future work are made based on the results of this analysis.

Aside from the development of the proposed decoder, a major contribution of this thesis
is the release of all source materials for this design as open source hardware and software. The
release of these materials will allow other researchers to more easily replicate this work, as well as
create derivative works in the areas of NoC based designs for FPGA, video coding and decoding,
and related areas.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

This thesis develops an h.264 video decoder on a field programmable gate array (FPGA).

This design uses a network-on-chip (NoC) as the communication infrastructure. The

implementation of this video decoder begins with the implementation of each of the algorithms

which make up the h.264 standard. Each of these algorithms is implemented either directly on the

FPGA fabric using VHDL or on a NIOS II soft core processor. When applicable, the functionality

of each of these algorithms is verified using hardware description language (HDL) simulation.

Each algorithm is then mapped to the NoC with the goals of providing communication

parallelism and minimizing communication delay between algorithms with frequent

communication.

1.2 Objectives

The primary objectives of this thesis include 1) to demonstrate a working h.264 video

decoder based on a NoC communication infrastructure on an FPGA for the first time and 2) to

study the performance and resource utilization of this design. In addition, another objective of

this work is to analyze the scalability of the proposed design. Finally, to enable future work in

NoC based video decoders, the source materials for this thesis will be made publicly available.

1.3 Previous Work

Previous work includes full and partial h.264 decoder implementations on FPGAs which

do not use NoCs as the communication infrastructure as well as studies which develop NoC

based h.264 decoders in simulation but do not test them on real hardware. These two areas of

related works are discussed in the following subsections.

1.3.1 H.264 Decoder Designs for FPGAs

Examples of full implementations of non-NoC based h.264 decoders on FPGAs include

[5, 6, 7]. Partial implementations of h.264 decoders for FPGAs include [8, 9, 10, 11]. The study in

[8] presented implementations of inverse quantization inverse transform (IQIT), intra prediction,

inter prediction, and deblocking modules. In addition, that study presented a method for
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debugging these modules on the FPGA using an available hardwired processor. However, they

did not report implementation of the entropy decoder. The solution in [9] provided optimization

techniques for the entropy decoder and intra prediction modules. The study in [10] reported a

pipelined design of the intra prediction module while the study in [11] reported design solution

for a CALVC decoder, which is a component of the entropy decoder module.

1.3.2 NoC based H.264 Decoder Simulations

Several simulations of NoC based h.264 decoders have been reported in [1, 12, 13, 14]. The

work in [1] studied area occupied by various NoC components on FPGAs. It also reports

simulation results using MLDesigner on the bandwidth required between different modules of

the decoder. The study in [1] reported simulations on a 3x4 mesh topology. Similarly, the study in

[12] presented simulation results, for a network topology consisting of 2 star networks connected

by a 3x3 grid. Both of these studies conducted a similar analysis to find the traffic between

different modules of the decoder. The study in [13] uses linear programming to map h.264

modules onto mesh and fat-tree NoC architectures in a way that maximizes throughput and

reduces power relative to a random mapping. A comparison between a generic NoC architecture

based decoder and an NoC architecture tailored to the h.264 decoder is reported in [14]. They

reported significant improvements in area, power and performance in the custom NoC versus the

general NoC. The study in [15] reported synthesis results for an NoC based h.264 decoder

targeting a Virtex 4 FPGA implementation. The paper briefly mentions the decoder running on an

FPGA but it does not include test results about it. The work in [16] further discusses the h.264

implementation on an FPGA but reports results only as HDL level simulations.

The study in [17] proposes a unified software and hardware architecture for video

decoding where the communication infrastructure is implemented with an array of modified NoC

routers. The processing elements are light weight processor tiles that enable software and

hardware implementations to coexist, while a programmable interconnect enables dynamic

interconnection of the tiles. While they reported an FPGA prototype, the source codes are not

publicly available. An important note on this design is that while an NoC is used for some

communication, a shared program and data bus is used by each tile as well, making the

communication infrastructure a hybrid of NoC and bus techniques.
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1.4 Contributions

This thesis develops the first fully NoC based h.264 video decoder which is verified on

real hardware. Additionally, this thesis studies the performance and resource utilization of this

NoC based decoder. Finally, all of the source materials for this thesis are made open source and

publicly available to enable future research in related areas.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 gives an introduction to

the h.264 decoding standard. Chapter 3 gives a background on the NoC communication

infrastructure. Chapter 4 gives a high level overview of the NoC based h.264 decoder

implemented in this thesis while Chapter 5 discusses the components of this architecture in more

detail. A modified version of the proposed h.264 decoder is presented in Chapter 6 to

demonstrate its scalability. Results from the performance testing and profiling are presented in

Chapter 7. Finally, recommendations for future work are discussed in Chapter 8.
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CHAPTER 2

DESCRIPTION OF H.264 ALGORITHM

To provide some context for the decoding algorithm a brief overview of the encoding

processes is given in this section. An h.264 encoder consists of a variety of algorithms which

process an input video stream before sending it to an entropy coding stage which performs the

actual compression. The goal of these algorithms is to reduce the entropy (see Eq. 2.1) of the

video stream as much as possible before the video stream reaches the entropy coder. An h.264

encoder uses prediction based techniques and transform based techniques to reduce the entropy

of the transmitted video. A simplified encoding and decoding process is shown in Fig. 2.2.

Figure 2.1: Top level diagram of h.264 decoder. Based on diagram from [1].
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The prediction based techniques for reducing entropy use either spatial or temporal

redundancy in the input video stream to predict the pixel values for a section of the frame being

encoded. Since the decoder has identical prediction algorithms, the encoder only needs to

transmit the error of the prediction instead of the actual pixel values. However, before

transmission further processing is done on these error values. This additional processing comes in

the form of the transformation and quantization stage of the encoding process. A transformation

similar to the discrete cosine transform, referred to in this thesis as the transform, is used to

transform the error values, or residuals, for a section of the frame into the frequency domain.

After transformation into the frequency domain, a quantization matrix is applied to the residuals

which preserves more of the low frequencies than the high frequencies. After prediction,

transformation, and quantization, the residuals and the information required to perform the

prediction algorithms are compressed using an entropy coder and stored or transmitted. On the

decoder side, the entropy coded data is decoded, the prediction algorithms are employed, and the

inverse quantized inverse transformed (IQIT) residuals are added to the prediction results to

reconstruct the original video.

A high level description of the h.264 decoding algorithm is presented in the block

diagram from Fig. 2.1. In this diagram the prediction algorithms are shown as intra prediction, a

spatial prediction algorithm, and inter prediction, a motion based prediction algorithm.

Additionally, an h.264 video decoder must have a frame buffer for storing the current frame as

well as a frame buffer for storing the previous frame or frames. Finally, a deblocking filter is

necessary for removing artifacts from the decoded frame.

H(x) = −
n

∑
i=1

P(xi)log2P(xi) (2.1)

2.1 Input Format

The coded video input is made up of network abstraction layer (NAL) units, which can

either be in a packet or a stream of bytes [2]. The NAL units can be further divided into video

coding layer (VCL) and non-VCL units. VCL NAL units contain the information required to

reconstruct the pictures. Non-VCL NAL units contain parameter sets and other additional data. A

depiction of the VCL portion of the NAL input stream is shown in Fig. 2.3. Access units contain

the information for a picture. Each coded video sequence is independently decodable and the
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Figure 2.2: Simplified depiction of h.264 encoding and decoding.

NAL stream contains one or more coded video sequences making the entire video. The parameter

sets can be either part of the NAL stream or communicated through an additional channel.

Figure 2.3: Organization of NAL stream. Based on description from [2].
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2.2 Color Format

H.264 uses the luminance chroma blue-difference chroma red-difference color space

referred to as LCbCr and also as YCbCr. Within the context of this thesis, YUV is also synonymous

with LCbCr. This color space is used to separate the light intensity of a pixel from its color. This is

done to allow sub-sampling of the color components of the image since details are more apparent

in light intensity than light color [2]. Each frame in h.264 uses one chroma sample per channel for

every luma sample. In total, there are half as many chroma samples as there are luma samples.

2.3 Entropy Decoder

There are three entropy decoders used in an h.264 video decoder [18]. These entropy

decoders are: Exponential-Golomb, context adaptive variable length coding (CAVLC) and context

based adaptive binary arithmetic coding (CABAC). Exponential-Golomb is used for everything

except the transform domain coefficients where either CAVLC or CABAC are used [18]. An

overview of each of these decoders is given below.

2.3.1 Exponential-Golomb

Exponential-Golomb or Exp-Golomb is a variable length coding scheme. The format for

Exp-Golomb is shown in Fig. 2.4. In this diagram the bits d[i] represent a codeword which can be

mapped a positive integer. Once codeword is found it can be decoded using Eq. 2.2. The diagram

and equation given below are based on descriptions in [3], where more details are provided on the

decoding process. Additionally, it is important to note that this coding only works for

non-negative numbers [19]. Integers are mapped to unsigned numbers either directly (in the case

that all of the integers are non-negative), by alternately assigning positive and negative numbers

to successive code words or through a predefined mapping specified in the standard [19].

Figure 2.4: Format of encoded Exp-Golomb data based on description from [3].



8

ddecoded = 2n + dencoded − 1 (2.2)

2.3.2 Context Adaptive Variable Length Coding

Context adaptive variable length coding (CAVLC) is one of the methods used to encode

transform domain coefficient values in h.264. The process for decoding CAVLC is described in

section 9.2 of [4] as well as in [3]. The main inputs to the CAVLC encoder, and therefore the

outputs of the CAVLC decoder, are the residuals (error values) of the prediction algorithms used

in h.264. These residuals are in the transform domain and are reordered using a zig-zag scan as

illustrated in Fig. 2.5. This zig-zag order allows efficient encoding because CAVLC takes

advantage of the large number of zeros towards the end of this array during encoding. Additional

inputs are the maximum number of non-zero coefficients and the index of the current 4x4 block

being decoded for the luma or either chroma channel [4].

Figure 2.5: Zig-Zag scan order shown on a 4x4 block [4].

2.3.3 Context Based Adaptive Binary Arithmetic Coding

Context based adaptive binary arithmetic coding (CABAC) is an entropy coding

technique based on binary arithmetic coding. This method is about 5-15% more efficient than

CAVLC, but is not required for the baseline profile [2]. Because this decoder is not required, this

thesis does not include CABAC in the entropy decoder implementation.
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2.4 Inverse Quantization and Inverse Transform

Data from the entropy coding stage is in the frequency domain and needs to be

transformed back into the spatial domain using the inverse transform described in [20].

Additionally, the quantization step which occurs in the encoder must be reversed here as well,

which happens before transformation back into the spatial domain. The inputs to this process are

the coefficients from the entropy decoding stage and the outputs are the luma or chroma residuals

to correct the prediction results in either the inter or intra prediction blocks [2]. The transform is

applied to 4x4 blocks, and in some cases may be preceded by an additional 2x2 transform, which

is the Hadamard transform (see Eq. 2.5) [4], which is done for smooth areas in the video stream

[2]. The inverse transform equation is given by Eq. 2.3 [20] and the inverse quantization equation

is given by Eq. 2.4 [4]. In Eq. 2.4 Qp is the quantization parameter, which is provided by the

input stream, and LevelScale4x4 is a look-up table defined in the standard [4]. Additionally, cij

and dij are samples from the quantized and inverse quantized residuals respectively.

xr =





1 1 1 1/2

1 1/2 −1 −1

1 −1/2 −1 1

1 −1 1 −1/2


Xr + 25



1

1

1

1




� 6 (2.3)

dij =


(cij ∗ LevelScale4x4(Qp mod 6, i, j) + 23−Qp/6)� (4−Qp/6) Qp < 24

(cij ∗ LevelScale4x4(Qp mod 6, i, j))� (4−Qp/6) otherwise
(2.4)

f =



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


∗



c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33


∗



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


(2.5)

The resulting output samples are referred to as residuals and are added to the prediction

result for either intra or inter predictions depending on the type of frame.

2.5 Intra Prediction

An intra picture is a picture which does not use motion based prediction. This allows it to

be decoded without previous frames from the input stream [2]. Intra prediction is used to decode
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these types of pictures. A 4x4 luma macroblock which is part of an intra frame can either be

directly encoded or encoded using 1 of 9 modes which copies sample values from neighboring

macroblocks in 1 of 8 directions or, for the ninth option, determines the DC values from the

neighboring samples and copies this value into the entire macroblock [2]. An important aspect of

this prediction mode is that the encoder selects which of these prediction modes has the lowest

error, resulting in improved compression. For 16x16 luma macroblocks, there are 4 intra

prediction modes, vertical, horizontal, DC and plane. 8x8 luma intra prediction is also supported

in some profiles of the decoder, but is not used in this thesis. Chroma intra prediction is also

supported for 4x4 chroma blocks. Because of the similarities between luma and chroma intra

prediction the luma algorithms are reused to also preform chroma intra prediction in this design.

The intra prediction equation for 4x4 diagonal down left is shown in Eq. 2.6 as an example.

Additional modes can be found in the h.264 standard [4].

pred[x, y] =


(p[6,−1] + 3 ∗ p[7,−1] + 2)� 2 x = y = 3

(p[x + y,−1] + 2 ∗ p[x + y + 1,−1] + p[x + y + 2,−1] + 2)� 2 otherwise
(2.6)

Figure 2.6: Depiction of 4x4 intra prediction. Grey samples are from neighboring macroblocks.
White blocks are from current macroblock. The arrows show the direction of the 8 non-DC
prediction modes.

2.6 Inter Prediction

This type of prediction uses a reference picture which has already been decoded and a

motion vector to predict the output picture [2]. Inter prediction can be broken down into three
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steps. First, motion vector prediction determines the required motion vectors for the next two

steps. Second, luma motion compensation applies the motion vector to the luma component of

the reference frame or frames. Similarly chroma motion compensation applies the motion vector

to the chroma components of the reference frame or frames, but uses a different algorithm for

doing so.

2.6.1 Motion Vector Prediction

The motion vectors used to determine the inter prediction result for a particular

macroblock are correlated with neighboring macroblocks. The h.264 coding standard uses this as

another opportunity to reduce the total entropy of the transmitted video by using the neighboring

motion vectors to predict the motion vector of the current macroblock. In the case of P-Slices,

which are inter predicted slices which are not bi-directional, the predicted motion vector could be

either one of the motion vectors from a neighboring macroblock or sub-macroblock, or the median

of the 3 neighbors used in the prediction method [4].

2.6.2 Luma Motion Compensation

P-type macroblocks can be sized by powers of 2 between 16x16 and 4x4 and may be

non-square. B-Type macroblocks (inter predicted macroblocks which are bi-directional) can be

sized 16x16 to 8x8 and can also be non-square. Motion vectors are quarter-sample accurate. A

variety of interpolation filters are used to achieve this accuracy. Up to two 6-tap FIR filters are

used for interpolation when half pixel accuracy is needed, and averaging is done between the

integer and half numbered samples to determine quarter sample values [2]. Fig. 2.7 shows the

input samples and interpolator results for luma sub-pixel motion compensation. Equations 2.7 -

2.12 show the equations used for sub-pixel luma motion compensation as well as how to calculate

selected example outputs. In these equations x represents a vector of six luma samples, x0...x5.

Similarly, X represents a 6x6 block of luma samples where each row is referenced as Xi.

clip(x) =


255 x > 255

0 x < 0

x otherwise

(2.7)

f ilter(x) = (x0 − 5x1 + 20x2 + 20x3 − 5x4 + x5 + 16)/25 (2.8)
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Figure 2.7: Inputs (gray blocks) and outputs (white blocks) for luma sub-pixel motion
compensation portion of inter prediction [4]. Here each row or column of gray samples
corresponds to a potential input to Eq. 2.8. The white samples are the outputs of various
applications of this equation as well as Eq. 2.9.

average(x) = (x0 + x1 + 1)/2 (2.9)

j(X) = clip


f ilter





f ilter(X0)

f ilter(X1)

f ilter(X2)

f ilter(X3)

f ilter(X4)

f ilter(X5)






(2.10)

b(X) = clip( f ilter(X2)) (2.11)

f (X) = clip(average(b, j)) (2.12)
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2.6.3 Chroma Motion Compensation

Chroma motion compensation uses the same motion vectors used by luma motion

compensation at the same location. However, the interpolation method used by chroma motion

compensation is considerably different from luma motion compensation. Interpolation for chroma

motion compensation is performed using a 2 dimensional linear interpolator, see Eq.2.13.

Additionally, only 4 reference samples are needed for each predicted sample versus 36 reference

samples required for each predicted sample in luma motion compensation, the location of the

input samples A, B, C, and D are shown in Fig. 2.8.

Figure 2.8: Inputs and outputs for Chroma sub-pixel motion compensation portion of inter
prediction. Based on diagram from [4].

p = ((8− xFrac)(8− yFrac)A + xFrac(8− yFrac)B + (8− xFrac)yFracC + xFracyFracD + 32)� 6

(2.13)
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2.7 Deblocking Filter

Since h.264 has a block oriented structure, artifacts are common at the boundaries of these

blocks [2]. The h.264 decoding algorithm uses a special digital filter at these block edges to

remove artifacts between blocks while preserving any true edges which occur at the boundaries of

block to avoid blurry images. To achieve this, threshold functions α and β are used to determine if

the boundary of a block is a true edge or an artifact. The threshold functions α and β take the same

quantization parameter referenced in the IQIT step of the algorithm. The deblocking filter uses the

4 samples nearest the boundary from both macroblocks on the boundary and changes up to 3 of

these samples. The pseudocode description for the normal mode of the deblocking filter process is

shown in Fig. 2.9.

Algorithm: Normal Deblocking
1: d0← |p0− q0| < α(QP)
2: d1← |p1− p0| < β(QP)
3: d2← |q1 − q0| < β(QP)
4: d3← |p2 − p0| < β(QP)
5: d4← |q2− q0| < β(QP)
6: if d0 and d1 and d2 then
7: FILTER(p0, q0)
8: end if
9: if d3 or d4 then

10: FILTER(p1, q1)
11: end if

Figure 2.9: Pseudocode of normal deblocking rules.
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CHAPTER 3

INTRODUCTION TO NETWORK-ON-CHIP

3.1 Overview of Network-on-Chip

Network-on-Chip (NoC) is an emerging on-chip communication technology for

integrated System-on-Chip (SoC) designs. This communication technique allows multiple

modules on the same integrated circuit (IC) to communicate concurrently using packets. These

packets are routed from the sender to the receiver through a series of routers and channels

organized according to a chosen topology. The packet switched behavior of an NoC allows a

much higher level of parallelism in communication relative to a more conventional bus based

communication scheme [21]. Additionally, NoCs have much better scalability when compared to

both Bus and point to point communication schemes. Finally, the physical properties of buses

often make them difficult to operate at high frequencies [21].

Modern SoCs consist of several modules on the same IC. These modules need to

communicate and access shared resources in order to implement the desired behavior in a specific

application. Several communication techniques exist to solve this problem with NoC being the

most recent. In an NoC based system each module on an IC is connected to a port on a router.

Connecting a module to a port also associates that module with an address. This address is then

used by other components in the network to communicate with this module. A module which is

mapped to a port in an NoC based system is also referred to as a node or as a processing element

(PE).

Communication in an NoC based system occurs using packets. A packet consists of one

or more flits. A flit is the unit of data in an NoC. The size of a flit is often related to the physical

width of the channels, which are the links between two routers. However, this is not necessarily

the case as a flit is defined in terms of flow control [22]. Each flit in a packet is passed off from one

router to the next as it progresses towards its destination node. As a flit leaves one router it

releases the resources it previously held allowing them to be used for another flit. These resources

include flit buffer locations and the channel the flit was previously routed through. Because these

resources are free they can be used to route other flits, even flits from other packets, through the

network. An example of this and how this allows for high levels of parallelism in NoC based



16

system is shown in Fig. 3.1. In this figure, A, B, and C are flits, the unit of data in an NoC, which

are simultaneously injected into the network.

Figure 3.1: Example of communication parallelism in NoC.

3.2 Network-on-Chip Design Parameters

NoCs have a variety of design parameters which impact the performance, resource

utilization, and operation of the NoC. These parameters include the NoC topology, which can be a

regular mesh, or grid shape, a tree shape, or a variety of other topologies including topologies

specific to a given application. Examples of various NoC topologies are shown in Fig. 3.2.

Another important parameter in an NoC is the width, in bits, of the flit. This parameter impacts

both the area utilization and performance since a wider flit will give better network bandwidth

but also require more circuitry and larger buffers in the routers and channels.

Figure 3.2: Examples of NoC topologies. 3x3 Mesh (Left), 3x4 Torus, 8 point Star (Right)

3.3 Comparison to Other Communication Schemes

There are two other communication schemes worth comparing against NoCs. These

communication schemes are buses and point to point links. Bus based designs suffer from two

major limitations. First, buses scale poorly in performance since only one component can be
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writing to the bus at a time [21]. On a system with a large number of components this becomes a

problem because the overall performance degrades as a result of many components waiting for

bus access. Additionally, as buses grow so does the critical path in the bus. This means that buses

connecting many components not only suffer from the waiting problem, but may also need to be

run at lower clock frequencies. A network-on-chip solves both of these problems. First, NoCs

scale very well in performance since a unit of communication, in this case a flit, only needs to

control the router and channel it is currently on. This means that there is much less waiting in an

NoC based design than in a bus based design since simultaneous communications will often not

require the same resources in NoCs. Additionally, as an NoC grows in size, the critical path

remains constant, assuming sufficient resources. In other words, a 4x4 or 5x5 NoC should be

capable of running at the same speed as a 3x3 NoC as long as the CAD tools are able to do their

job properly.

Point to point communication is very fast for small designs. In some sense, each of the

nodes within this design uses point to point communication between sub-modules because any

more substantial communication infrastructure would not be worth the performance or area cost.

However, for large designs, point to point communication becomes a problem very quickly. This

is because point to point designs scale very poorly in area, and eventually in performance as

critical path length increases. NoCs scale much better in area since adding an additional node

only requires a linear growth in communication infrastructure, for most common topologies,

rather than the exponential growth required by point to point communication.

3.4 Network-on-Chip Tool For FPGAs

This thesis uses the CONNECT Network on Chip generator [23]. This tool allows users to

specify a variety of NoC parameters such as flit width, topology, number of virtual channels, flow

control method, flit buffer depth and a few others. The routing algorithm in CONNECT is based

on look up tables [24] which route each packet in a fixed manner. The CONNECT NoC tool

generates and provides Verilog code implementing the specified NoC. This thesis uses a 3x3 mesh

NoC with 64 bit wide flits, 8 flit deep buffers, 2 virtual channels and peak flow control. A

modified version of the architecture presented in Chapter 6 uses a 2x2 mesh network with

multiple ports per router.
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CHAPTER 4

NETWORK-ON-CHIP BASED H.264 DECODER ARCHITECTURE

4.1 Introduction

This chapter describes the NoC based h.264 decoder architecture developed in this thesis.

The design process starts with partitioning the h.264 decoding algorithm into a set of modules

which will later be mapped to nodes in the network. This chapter also gives a behavioral

overview of these nodes and gives the rationale for the chosen mapping.

4.2 Partitioning the H.264 Algorithm into Processing Elements

The h.264 decoding algorithms discussed in Chapter 2 are partitioned into eight nodes or

processing elements (PEs). One PE is used for NAL parsing and entropy decoding. Additionally, a

separate PE is dedicated to each of the following seven functions: IQIT, intra prediction, sub-pixel

luma motion compensation, sub-pixel chroma motion compensation, reference and working

frame buffer control and integer motion compensation, deblocking filter, and display driver.

These PEs closely follow the algorithms introduced in Chapter 2 with some exceptions. A more

detailed discussion of each PE and how they interact with each other is included below.

4.2.1 NAL Parsing and Entropy Decoding

The task of this PE is to parse the input NAL stream and perform necessary entropy

decoding functions on the data. These 2 functions are grouped together since the entropy decoder

is only required by the NAL parser. This PE interacts with two other PEs during normal

operation. This PE sends transform domain residuals to the IQIT node, which then processes

them and forwards the results to the buffer node. The parser node also sends information directly

to the buffer node. This information includes prediction modes, parameters for those prediction

modes, and the coordinates of the macroblock which those predictions should be performed on.

Additionally, the parser node also sends commands to start a new frame and to start the video

sequence.

4.2.2 IQIT

The IQIT node receives transform domain residuals from the parser. The IQIT node then

performs inverse quantization and inverse transform procedures on this data. After the IQIT
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process has been completed, the residuals are sent to the buffer node and added to the prediction

results. The IQIT node does not preform the Hadamard transform used for smooth areas. Instead,

this is done by the parser node before transmission to the IQIT node.

4.2.3 Intra Prediction

The intra prediction node processes one block of up to 16x16 pixels at a time. The

reference pixels for this prediction are provided by the buffer node, while the parameters for this

prediction are provided by the parser node, but are routed through the buffer node before arriving

at intra prediction. Because of this, the intra prediction node only communicates directly with the

buffer, so a placement goal when performing the mapping is to place these nodes near each other.

4.2.4 Deblocking Filter

The deblocking filter node is used immediately before displaying the completed frame.

This node accepts pixels near a macroblock boundary from the buffer node, performs the

deblocking procedure on them, and sends the results back to the buffer node.

4.2.5 Luma Motion Compensation

The luma motion compensation algorithm is divided between two processing elements.

Integer luma motion compensation occurs on the same PE as the reference buffer since this

portion of inter prediction is bound exclusively by frame buffer access time. Sub-pixel motion is a

separate PE because it is computationally intensive and has good potential for parallelization.

Sub-pixel motion compensation uses up to two successive six tap FIR filters to interpolate pixel

values. Additionally, a third two point FIR filter may be used when quarter pixel accuracy is

required. The luma motion compensation node performs interpolation for eight luma samples at a

time. By interpolating eight samples at a time the luma motion compensation node is able to

match filter output to the throughput of the network. Although some profiles of the h.264

standard use multiple reference frames for inter prediction, the design implemented in this thesis

uses only a single reference frame.

4.2.6 Chroma Motion Compensation

Chroma motion compensation implements the sub-pixel motion compensation algorithm

for chroma samples. Similarly to the luma motion compensation node, this node performs
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interpolation for eight samples at a time. In this case the eight samples are made up of 2x2 blocks,

one for each chroma channel. Implementing the chroma and luma motion compensation

algorithms on different nodes allows both of these algorithms to run in parallel, taking advantage

of the parallel communication made available by the NoC.

4.2.7 Buffer Control

The buffer node controls access to both current frame buffer and reference frame buffer.

This node receives parameters from the parser node which trigger intra prediction, inter

prediction, deblocking and display events. This node also receives residuals from the IQIT node

which are added to the working frame buffer at the specified location. When a packet containing a

command to perform a prediction action is received, the buffer node packages up any relevant

information for that prediction and sends it to the respective node or nodes. Similarly, if residuals

are received from the IQIT node, the residuals are added to the working frame buffer at the

specified location. Because the parser is capable of overwhelming the rest of the network during

certain algorithms, the buffer node also controls the rate the parser node sends commands using

one flit acknowledgment packets.

4.2.8 Display Driver

The display driver receives eight bit LCbCr pixels and converts these values into six bit

RGB values. These six bit RGB files are stored in RAM local to the display node and used to drive

an open source hardware VGA driver originally intended for use with the Raspberry Pi [25]. Six

bit RGB values are chosen since this matches the VGA drivers precision, eight bit LCbCr values

can be used to determine full eight bit RGB values.

4.3 H.264 Algorithms on NoC Based Decoder

The following subsections provide a high level description of how each of the algorithms

involved in the decoding process is executed across the whole system.

4.3.1 Intra Prediction Process

The intra prediction process begins on the parser node when an intra-predicted

macroblock is parsed. At this point, the parser sends all the relevant information regarding this

macroblock to the buffer. This information contains a pre-formatted intra prediction request flit,
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along with the buffer coordinates of the macroblock where intra prediction will be performed.

After forwarding this information to the buffer the parser node is free to continue with the parsing

processes. When the buffer node receives the intra prediction information packet from the parser,

it collects the required reference samples to perform intra prediction and forwards these samples

along with the included pre-formatted intra prediction request to the intra prediction node. At

this point the buffer node idles until the intra prediction node sends a response. While it would be

possible to avoid idle time by having the buffer progress to the next command at this point, care

must be taken to ensure the current intra prediction result is received before dispatching any

future intra prediction requests since intra prediction has a data dependency on the data in the

working frame buffer. Ultimately, the intra prediction response time is low enough that removing

this idle time is unlikely to improve performance noticeably. Once an intra prediction response

packet is received by the buffer the samples are parsed and added to the buffer at the previously

specified location. After this an acknowledgment packet is sent to the parser to indicate that the

buffer is ready to receive more commands.

4.3.2 Inter Prediction Process

At a high level of abstraction the inter prediction process is in many ways similar to the

intra prediction process, despite the fact that the algorithms themselves are quite different. First,

the parser provides 16 motion vectors per inter prediction command packet. Each of these motion

vectors corresponds to a 4x4 block within a 16x16 macroblock. Additionally, each motion vector

acts on both the luma and each chroma channel. Since each 4x4 luma block and each pair of

corresponding 2x2 chroma blocks are 1 packet, each incoming inter prediction command results in

32 packets exiting the buffer node. This means there is significant opportunity to take advantage

of the NoC’s parallelism during inter prediction.

4.3.3 IQIT Process

The IQIT process starts when the parser node parses a 4x4 residual block in the transform

domain. This block is then sent to the IQIT node along with coordinates specifying the macroblock

these residuals should be added to. At the IQIT, the 4x4 block is inverse zig-zag scanned, inverse

quantized and inverse transformed then repackaged and sent to the buffer node along with the

coordinates originally specified by the Parser. Once the buffer receives the residuals, they are

added to the correct location and an acknowledgment is sent to the parser node.
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4.3.4 Deblocking Process

Deblocking is triggered by a new frame command sent from the parser to the buffer node.

During deblocking, the buffer sends samples from each of the macroblock edges to the deblocking

filter which processes them and returns the result. Considerable parallelism could be achieved

here by using multiple deblocking filter nodes, but this has not been investigated in this thesis.

4.4 Network-on-Chip Parameters

The NoC used in this thesis is a 3x3 mesh topology with 64 bit flits. This topology was

chosen because the number of provided ports closely matches the number of nodes in the system.

The flit width of 64 bits was chosen because it allows most of the packets in the system to be

relatively short, without using too much of the FPGA resources.

4.4.1 Virtual Channel Selection

The way each node interfaces with the NoC port it is attached to allows it to receive

packets on any virtual channel (VC). However, each node only sends packets on one of the VCs.

All nodes except the parser node send on VC zero, while the parser node sends on VC one.

4.5 Mapping H.264 Nodes to Network-on-Chip

The mapping used in the proposed h.264 decoder design was done manually using

information known about the behavior of each node. The mapping seeks to place frequently

communicating nodes near each other. Additionally, the mapping aims to minimize the potential

for congestion in the network. Thus, the parser is placed close to the IQIT and frame control

nodes. Additionally, the buffer node should be close to intra, inter and deblocking. Nodes which

have a connection to resources off chip are also placed on the outside edges of the network to

allow for better physical placement of the circuit. These nodes are the VGA controller, the parser

node and the buffer node, which have access to the VGA DAC, Memory Module 0 and Memory

Module 1 respectively. The mapping used in this thesis is shown in Fig. 4.1.
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Figure 4.1: Mapping of h.264 decoder to an NoC.
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CHAPTER 5

H.264 ALGORITHM NODES FOR NOC BASED DECODER

5.1 Introduction

This chapter describes the design and implementation of each of the PEs or nodes used in

the proposed h.264 decoder. Two main categories of nodes are used in this system. The NIOS II

based nodes are discussed first. These nodes consist of a NIOS II soft core processor accompanied

by some custom hardware written in VHDL. The other type of node is a hardware only node

which uses a state machine to interact with the NoC and control the computational component of

the node. The hardware only nodes are written in VHDL, with one node, the display node,

utilizing an open source Verilog component for color space conversion [26].

5.2 NIOS II Based Nodes

Both the parser node and the buffer node are implemented on essentially identical NoC

nodes, shown in Fig. 5.1, built around the NIOS II core running different software. These nodes

have one NIOS II core as the main computational component. In addition to the NIOS II core, they

each also have a DDR2 DIMM which serves as main memory, and some custom hardware

described in VHDL. The custom hardware as well as the software running on each of the NIOS II

cores are described below. In the actual VHDL implementation the flit formatter, as well as the

Send and Receive State Machines are a single module. However, their behavior is largely

independent, so they are presented separately below.

Figure 5.1: Nios II Node used for both the parser node and the buffer node.
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Table 5.1: Modes supported by the flit formatter.

format code description
0 Pack lowest 8 bits of tx0 through tx7
1 Pack lowest 16 bits of tx0 through tx3
2 Concatenate tx0 with tx1
3 tx0 (zero fill)
4 tx0 (sign fill)
5 Intra prediction set command (alias for mode 0)
6 Intra prediction start command (alias for mode 0)
7 Pack lowest 8 bits of tx0 through tx5 and lowest 16 bits of tx6
8 IQIT header
9 IQIT body (alias for mode 0)

5.2.1 Flit Formatter

The goal of the flit formatter is to accelerate the process of packing data into flits before

transmission to another node. Since this is a very common process, particularly on the buffer

node, it is worth the relatively small amount of resources required. The flit formatter is depicted

in Fig. 5.2. This component has eight 32 bit wide inputs for data, a mode selection input and a 64

bit wide output. The flit format node supports ten modes as described in Table 5.1.

Figure 5.2: Flit formatter component used in NIOS II Nodes

5.2.2 Send State Machine

The send state machine is used to send flits from the NIOS II node to the rest of the

network. The state machine is responsible for ensuring the NoC is ready to accept a flit as well as



26

ensuring exactly one flit is sent. This is done using a simple four state handshaking procedure.

Verification of this procedure was done in the simulation. Simulation results, showing how the

handshaking procedure properly controls the ”send flit” control signal, are shown in Fig. 5.3.

Each of the formats supported by the flit formatter are shown in this simulation as well.

... 0102030405060708 0001000200030004 0000000100000002 0000000000000001

... 00 01 02 03 04

... 00000001

... 00000002

... 00000003

... 00000004

... 00000005

... 00000006

... 00000007

... 00000008

/noc_control_plus_tb/clk

/noc_control_plus_tb/send_data ... 0102030405060708 0001000200030004 0000000100000002 0000000000000001

/noc_control_plus_tb/send_flit

/noc_control_plus_tb/send_cmd_cpu

/noc_control_plus_tb/send_ack

/noc_control_plus_tb/format_select ... 00 01 02 03 04

/noc_control_plus_tb/tx_0 ... 00000001

/noc_control_plus_tb/tx_1 ... 00000002

/noc_control_plus_tb/tx_2 ... 00000003

/noc_control_plus_tb/tx_3 ... 00000004

/noc_control_plus_tb/tx_4 ... 00000005

/noc_control_plus_tb/tx_5 ... 00000006

/noc_control_plus_tb/tx_6 ... 00000007

/noc_control_plus_tb/tx_7 ... 00000008

... 0102030405060708 0102030405060007 0001020300280607 0102030405060708

... 05 06 07 08 09

00000001

00000002

00000003

00000004

00000005

00000006

00000007

00000008

/noc_control_plus_tb/clk

/noc_control_plus_tb/send_data ... 0102030405060708 0102030405060007 0001020300280607 0102030405060708

/noc_control_plus_tb/send_flit

/noc_control_plus_tb/send_cmd_cpu

/noc_control_plus_tb/send_ack

/noc_control_plus_tb/format_select ... 05 06 07 08 09

/noc_control_plus_tb/tx_0 00000001

/noc_control_plus_tb/tx_1 00000002

/noc_control_plus_tb/tx_2 00000003

/noc_control_plus_tb/tx_3 00000004

/noc_control_plus_tb/tx_4 00000005

/noc_control_plus_tb/tx_5 00000006

/noc_control_plus_tb/tx_6 00000007

/noc_control_plus_tb/tx_7 00000008

Figure 5.3: Simulation results showing the flit formatting and CPU-FPGA hand shaking.

5.2.3 Receive State Machine

The receive state machine is used to coordinate the processor and the NoC interface while

reading flits from the network. The state machine diagram for this component is shown in Fig 5.4.

Once a flit is read in by the processor it is written to a statically allocated array of packet structures

based on the packet’s id number. This id number must be located in the least significant byte of

the first flit of a packet. Using a statically allocated packet buffer which is indexed by an id allows

the buffer node to only copy the data once prior to parsing. Efficiently handling memory access is
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especially important to the performance of the buffer node since the buffer node receives a very

large number of packets.

Figure 5.4: Nios II Node NoC receive state machine.

5.2.4 Parser Node

The parser node software is derived from a conventional open source h.264 decoder [27].

The decoder was modified to remove all of the code to perform the prediction algorithms, IQIT,

and all writes to the reference or working frame buffers. In any instance where this modified
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software would have initiated one of these actions it instead sends the required information to the

relevant node which then performs the action and may hand off additional work to another node.

None of the data produced by any of these algorithms is required by the parser node, so the only

packets sent to the parser are acknowledgments from the buffer node after the each command is

processed. NAL Units, which form the input of the parser node, are read in using Altera’s HostFS

file system [28].

5.2.5 Buffer Node

At the top level, the buffer node is a state machine running on a Nios II core which

provides several ways to access and modify the reference and working frame buffers. A special id

number, 255, is set aside for use with the buffer. Any packet with this id which arrives at the

buffer node is parsed as a buffer command. All of the commands sent from the parser directly to

the buffer are shown in Figs. 5.5- 5.8. The command used by the IQIT Node is shown in Fig. 5.13.

The behavior initiated by each of these commands in covered in the rest of this section.

Figure 5.5: Start inter prediction command.

Figure 5.6: Start intra prediction command.

Figure 5.7: Allocate frame command.
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Figure 5.8: New frame command.

Buffer Response to Start Inter Command

Upon receiving a command to start an inter prediction block the buffer node first parses

the motion vectors out of the command packet. For each of these 16 motion vectors the buffer

node finds the integer and fractional components of the vector. The buffer node performs the

integer portion of motion compensation while writing the reference samples to the input of the flit

formatter by using the integer components of the motion vector as a pair of offsets into memory.

These integer compensated samples are then sent to the luma and chroma sub-pixel interpolation

nodes where they are processed simultaneously. Once the results are received, the samples are

written to the working frame buffer and the buffer node sends an acknowledgment to the parser

node.

Buffer Response to Start Intra Command

Upon receiving a command to perform intra prediction, the buffer writes the neighbor

samples from the working frame buffer at the specified coordinates to the intra prediction node.

Then, in the case of luma intra prediction, the buffer forwards the intra request flit unaltered to the

intra prediction node and waits for the prediction result. In the case of chroma intra prediction,

the buffer must make small changes to the intra request flit before forwarding it to the intra

prediction node.

Buffer Response to New Frame Command

A new frame command triggers several actions in the buffer control node. First,

deblocking is performed on the current frame. After deblocking, the entire frame is written to the

display node. Finally, the reference frame pointer is updated to point at the current frame buffer.

Similarly, the current frame buffer pointer is updated to point at the old reference frame buffer.

Buffer Response to Allocate Frame Command

Upon receiving an allocate frame command, the buffer allocates memory for both the

reference and working frame buffers based on the specified size. After allocating a frame, the

buffer sends an acknowledgment back to the parser. This command plays an important role in the
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parser node. Since this command is only sent once by the parser, it is used to let the parser get one

acknowledgment ahead of the buffer. In other words, the parser does not wait for the

acknowledgment after sending an allocate frame command, but instead waits for an

acknowledgment before sending each other command. This allows the parser and buffer to do

meaningful work concurrently, improving performance.

Buffer Response to IQIT Packet

From the perspective of the buffer, each IQIT packet looks like a command from the

parser. However, instead of triggering additional algorithms to run elsewhere in the network,

IQIT packets are simply added to the working frame buffer at the specified coordinates.

5.3 Network Interface Component

Figure 5.9: High Level design of the NoC interface component used by each of the nodes in the
network.

The NoC interface component, Fig. 5.9, is responsible for interacting with the port each

node is assigned to and providing a set of control and status signals to the node. This component

also fulfills the buffering requirement described in the CONNECT NoC [23] README file.

Specifically, the NoC interface provides a FIFO buffer with the same depth as the router buffers

for each of the virtual channels in the network. In the NoC used in this thesis, this means two

buffers which can hold eight flits each. The NoC interface component provides a set of signals to

the attached node specifying if the port is ready to accept a flit, if there are any flits currently in

either buffer, as well as if the currently read flit is a tail flit. Additionally, this component allows

the NoC to read and dequeue flits from either VC’s buffer individually, as well as initiate a send to

a specified address.



31

5.4 Generic State Machine for Hardware Nodes

While each of the hardware nodes uses a slightly different state machine for interacting

with the NoC interface, they all follow the general pattern shown in Fig. 5.10. The state of this

machine initializes to idle. A transition out of idle occurs whenever either of the virtual channels

contains an unread flit. During the select VC state the virtual channel containing the flit is saved

to a register, and one clock cycle later the receive process begins. For nodes which only accept a

small number of packets, the receive counter may be omitted, and the receive loop unrolled, to

save clock cycles. Receive loop refers to the section of the state machine containing the states ”rx”,

”dequeue” and ”wait rx”. Both the rx and dequeue states must transition to the next state after

one clock cycle. The wait rx state transitions to rx after more flits have arrived. As opposed to the

idle state, which transitions when data is in either buffer, the wait rx state only transitions when

flits arrive in the previously selected VC buffer. After a tail flit is received, the state machine

transitions to the second counter reset state. This state, as well as the generate response state is

often omitted. The second counter reset is omitted when the send packet is short and has a fixed

length. An example of this is the chroma motion compensation node which always sends a two

flit response. The generate response state is omitted when the entire response can be calculated

prior to beginning the transmission process. The chroma motion compensation node is another

example of a node with this behavior, as is the deblocking filter node. An example of a node

which requires a generate response state is the luma motion compensation node which requires

this state to calculate the second half of the predicted block. When a generate response state is

used, it transitions to wait tx after one clock cycle. Wait tx transitions to tx when the NoC interface

specifies that the network is ready to receive a packet. Depending on if the state machine has a

generate response state the tx state transitions back to either generate response or wait tx after one

clock cycle, or into idle if the entire packet has been sent. The determination of when the node is

done sending a packet varies between nodes.
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Figure 5.10: General structure of the state machines used in the hardware-only nodes.

5.5 Inverse Quantization Inverse Transform Node

The IQIT node is shown in Fig. 5.11. The purpose of this node is to perform the inverse

quantization and inverse transform procedures. Inputs can come from any node, however only

the parser node ever sends any data to this node in the current design. The results produced by

this node are sent to the buffer node, where they are added to the location specified by the parser

node prior to transmission.
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Figure 5.11: High level design of inverse quantization inverse transform node.

5.5.1 Parsing and Input Packet Format

The IQIT node accepts packets in the format shown in Fig. 5.12. The first flit contains a

set of parameters required either by the IQIT node itself, or parameters which the IQIT node is

required to forward to the buffer node in its response packet. The next two flits are the zig-zag

ordered transform domain residuals with the last residual in the most significant position of the

first of these flits. The header fields required to be passed on to the buffer node are LCbCr select, y

coordinate, x coordinate and id. The other fields are used by the IQIT node itself.

Figure 5.12: Request packet format for the inverse quantization inverse transform node.

5.5.2 Zig-Zag

The input residuals coming from the parser are in an order resulting from ”Zig-Zag”

scanning which is done for better entropy compression. The purpose of this module is to reorder

these residuals into the regular flattened 2-d order required by the proceeding modules.

5.5.3 Inverse Quantization

This component implements the inverse quantization procedure defined in the standard

[4]. The main inputs to this module are the quantized, transform domain, residuals in a flattened

2-d array of length 16 as well as the quantization parameter. An additional input to this module is
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a signal indicating if the inverse quantizer should bypass the DC value. This is used when the

parser has already processed the DC value using the Hadamard transform.

5.5.4 Inverse Transform

The inputs to this module are the inverse quantized residuals in the transform domain,

and the outputs are the final inverse quantized, inverse transform domain residuals in the spatial

domain. The inverse transform is the same as defined earlier in Chapter 2. This transform is

applied to all 16 inputs simultaneously.

5.5.5 Packet Generation and Output Packet Format

The output packet of the IQIT Node consists of three flits as shown in Fig. 5.13. The first

flit contains information to select the color channel, and the location of the residuals in the buffer,

as well as information to identify the packet as an IQIT command packet. Additionally, the first

flit contains a field, Sign Mask, which indicates the sign of each of the 16 spatial domain residuals

in the next two flits. The second and third flit contains the flattened 2-d array ordered, inverse

quantized, inverse transformed residuals as absolute values. The buffer node must either add or

subtract these residuals from the selected channel’s buffer based on the value of the corresponding

bit in the Sign Mask field. The use of this mask is done to avoid 9 bit numbers for the residuals.

Figure 5.13: Response packet format for the inverse quantization inverse transform node.

5.5.6 Simulation

Initial testing of the IQIT node was performed by comparing the simulation output, see

Fig 5.14, against a variety of outputs from the IQIT algorithm in the open source decoder [27] the

parser and buffer node are based on. In addition to verifying the IQIT algorithm itself this

simulation also shows the send and receive behavior of the IQIT node. In this simulation the IQIT

node receives three flits and dequeues them from the appropriate VC. After receiving the entire
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packet the IQIT node waits until the network is ready to accept flits and transmits the expected

three flit response packet.

0000000000000000 00001801000000FF 0000000000000000

0 1 0 1 0

0 1 0 1 0

0

0000000000000000

/iqit_test/clk

/iqit_test/recv_data 0000000000000000 00001801000000FF 0000000000000000

/iqit_test/is_tail_flit

/iqit_test/data_in_buffer 0 1 0 1 0

/iqit_test/dequeue 0 1 0 1 0

/iqit_test/select_vc_read 0

/iqit_test/send_data 0000000000000000

/iqit_test/set_tail_flit

/iqit_test/send_flit

/iqit_test/ready_to_send

0000000000000000 01010000000001AE

0 1 0

0 1 0

0

0000000000000000 000088AE000000FF 08040000... 04000405... 0000000000000000

/iqit_test/clk

/iqit_test/recv_data 0000000000000000 01010000000001AE

/iqit_test/is_tail_flit

/iqit_test/data_in_buffer 0 1 0

/iqit_test/dequeue 0 1 0

/iqit_test/select_vc_read 0

/iqit_test/send_data 0000000000000000 000088AE000000FF 08040000... 04000405... 0000000000000000

/iqit_test/set_tail_flit

/iqit_test/send_flit

/iqit_test/ready_to_send

Figure 5.14: Simulation of the IQIT node.

5.6 Luma Motion Compensation Node

The luma motion compensation node, depicted in Fig. 5.15, performs the sub-pixel

motion compensation algorithm for luma samples. This algorithm consists of a series of FIR filters

which are used to interpolate between a set of reference samples. The luma motion compensation

node is capable of interpolating 8 samples at a time. The number of samples to interpolate at a

time is chosen to match the width of a flit in the NoC. Because motion compensation only has a

data dependency on the reference frame, and not on the current frame, both the luma and chroma

motion compensation nodes are good targets for parallelization by adding multiple instances of

each node, although this is left as future work.
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Figure 5.15: High level design of luma motion compensation node.

5.6.1 Parsing and Input Packet Format

The input packet format is shown in Fig. 5.16. In total, a luma motion compensation

packet is 20 flits long. The first flit contains the header flit which only contains the identifier and

the fractional component of the motion vector being used for inter prediction. The remaining flits

contain the rows to be stored in the reference sample register. There are a total of 9 rows required

to interpolate a 4x4 block, with 2 flits per row this brings the total number of flits to 18 plus the

header. The rows for the reference sample come from the reference buffer, which is the most

recently decoded video frame.

Figure 5.16: Request packet format for the luma motion compensation node.

5.6.2 Sample Register

The Sample Register holds one 9x9 block of reference samples. The output of the Sample

Register is a 7x9 block containing the reference samples required to perform the luma motion

compensation algorithm on one half of the 4x4 block in the Sample Register.
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5.6.3 Interpolator

The interpolator contains the FIR filter required to perform the sub-pixel motion

compensation algorithm on half of the 4x4 block contained in the Sample Register. This results in

8 samples of output from the interpolator each clock cycle which is enough to fill one flit.

5.6.4 Packet Generation and Output Packet Format

The format of Luma Motion Compensation response packet is shown in Fig 5.17. The

header of this packet contains only the identifier for the packet, while the other two flits each

contain two rows of the final 4x4 luma inter prediction result.

Figure 5.17: Response packet format for the luma inter prediction node.

5.6.5 Simulation

Fig. 5.18 shows the simulation output of the luma motion compensation node. This

simulation uses a fractional motion vector component of zero. Therefore, the primary purpose of

this simulation is to determine that the input samples of the request packet are being properly

parsed, saved in the Sample Register, presented to the interpolator, and packaged by the response

generator. Additionally, this simulation shows the proper NoC interfacing behavior of the node.
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0000000000000000 0000000000000080 0000000000040400 0000000000000000

0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0

0

0000000000000000 0000000000000080 0000000000000000

/inter_test/clk

/inter_test/recv_data 0000000000000000 0000000000000080 0000000000040400 0000000000000000

/inter_test/is_tail_flit

/inter_test/data_in_buffer 0 1 0 1 0 1 0 1 0 1 0 1

/inter_test/dequeue 0 1 0 1 0 1 0 1 0 1 0

/inter_test/select_vc_read 0

/inter_test/send_data 0000000000000000 0000000000000080 0000000000000000

/inter_test/set_tail_flit

/inter_test/send_flit

/inter_test/ready_to_send

0000000000000000 0000101010100000 FFFFFFFFFFFFFFFF 0000212223240000 FFFFFFFFFFFFFFFF 0000303030300000 F...

0 1 0 1 0 1 0 1 0 1 0 1 ...

...1 0 1 0 1 0 1 0 1 0 1 0 ...

0

0000000000000000 1010101000000000 1010101024232221

/inter_test/clk

/inter_test/recv_data 0000000000000000 0000101010100000 FFFFFFFFFFFFFFFF 0000212223240000 FFFFFFFFFFFFFFFF 0000303030300000 F...

/inter_test/is_tail_flit

/inter_test/data_in_buffer 0 1 0 1 0 1 0 1 0 1 0 1 ...

/inter_test/dequeue ...1 0 1 0 1 0 1 0 1 0 1 0 ...

/inter_test/select_vc_read 0

/inter_test/send_data 0000000000000000 1010101000000000 1010101024232221

/inter_test/set_tail_flit

/inter_test/send_flit

/inter_test/ready_to_send

FFFFFFFFFFFFFFFF 0000404040400000 FFFFFFFFFFFFFFFF 0000505050500000 FFFFFFFFFFFFFFFF 0000000000000000

0 1 0 1 0 1 0 1 0 1 0 1 0

...0 1 0 1 0 1 0 1 0 1 0 1 ...

0

1010101024232221

/inter_test/clk

/inter_test/recv_data FFFFFFFFFFFFFFFF 0000404040400000 FFFFFFFFFFFFFFFF 0000505050500000 FFFFFFFFFFFFFFFF 0000000000000000

/inter_test/is_tail_flit

/inter_test/data_in_buffer 0 1 0 1 0 1 0 1 0 1 0 1 0

/inter_test/dequeue ...0 1 0 1 0 1 0 1 0 1 0 1 ...

/inter_test/select_vc_read 0

/inter_test/send_data 1010101024232221

/inter_test/set_tail_flit

/inter_test/send_flit

/inter_test/ready_to_send

0000000000000000

0 1 0 1 0

0 1 0 1 0

0

1010101024232221 0000000000000080 1010... 3030... 1010101024232221

/inter_test/clk

/inter_test/recv_data 0000000000000000

/inter_test/is_tail_flit

/inter_test/data_in_buffer 0 1 0 1 0

/inter_test/dequeue 0 1 0 1 0

/inter_test/select_vc_read 0

/inter_test/send_data 1010101024232221 0000000000000080 1010... 3030... 1010101024232221

/inter_test/set_tail_flit

/inter_test/send_flit

/inter_test/ready_to_send

Figure 5.18: Simulation of the luma motion compensation node.

5.7 Chroma Motion Compensation Node

The chroma motion compensation node performs the sub-pixel portion of the chroma

inter prediction algorithm. A high level design of this node is shown in Fig 5.19. This node
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Figure 5.19: High level design of chroma motion compensation node.

performs this algorithm for 2x2 chroma blocks from the same location in both chroma channels

simultaneously. This node is very similar to the luma motion compensation node, with a few

exceptions. First, the interpolator is different because luma and chroma motion compensation

require different interpolators. Similarly, the reference sample register is smaller since chroma

motion compensation only requires a 3x3 block of samples for interpolation. Finally, the chroma

motion compensation node has two copies of the reference sample buffer and the interpolator in

order to perform motion compensation on both channels simultaneously.

5.7.1 Parsing and Input Packet Format

Fig. 5.20 shows the input packet format for the chroma motion compensation node. The

header contains all of the parameters required for the interpolator as well as the id number used

by the buffer node. The next three flits contain all of the reference samples required by the

interpolators for both channels. The order of the samples was chosen to allow efficient reading

from the reference buffer.

Figure 5.20: Request packet format for the chroma motion compensation node.
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5.7.2 Interpolator

Each interpolator is a 2-d linear interpolator as defined earlier in Chapter 2. Both of the

interpolators have access to all of the samples in the reference buffer for their channel

simultaneously, and produce the prediction for their channel in one clock cycle.

5.7.3 Packet Generation and Output Packet Format

The output packet format is shown in Fig. 5.21. The header flit contains only the id used

by the buffer node. The second flit contains each 2x2 block of prediction results for the two

chroma channels.

Figure 5.21: Response packet format for the chroma inter prediction node.

5.7.4 Simulation

Fig. 5.22 shows the results from simulating the test bench for the chroma motion

compensation node. This test bench has one of the chroma channels using motion vectors of zero

for x and y, while the other channel uses motion vectors of eight, which is the full scale value for

the fractional motion vectors. The result is that one channels passes though the upper corner of

the provided reference sample block, while the other passes though the lower corner of the

provided reference sample block.
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0000000000000000 00000000000808FF

0 1 0

0 1 0

0

0000000000000000

/chroma_motion_test/clk

/chroma_motion_test/recv_data 0000000000000000 00000000000808FF

/chroma_motion_test/is_tail_flit

/chroma_motion_test/data_in_buffer 0 1 0

/chroma_motion_test/dequeue 0 1 0

/chroma_motion_test/select_vc_read 0

/chroma_motion_test/send_data 0000000000000000

/chroma_motion_test/set_tail_flit

/chroma_motion_test/send_flit

/chroma_motion_test/ready_to_send

00000000000808FF 0102030405060708

0 1 0 1 ...

0 1 0

0

0000000000000000 0807050400000000

/chroma_motion_test/clk

/chroma_motion_test/recv_data 00000000000808FF 0102030405060708

/chroma_motion_test/is_tail_flit

/chroma_motion_test/data_in_buffer 0 1 0 1 ...

/chroma_motion_test/dequeue 0 1 0

/chroma_motion_test/select_vc_read 0

/chroma_motion_test/send_data 0000000000000000 0807050400000000

/chroma_motion_test/set_tail_flit

/chroma_motion_test/send_flit

/chroma_motion_test/ready_to_send

0102030405060708 0000000900000009

0 1 0

0 1 0 1 0

0

... 0807050404030100 0807... 00000000000000FF

/chroma_motion_test/clk

/chroma_motion_test/recv_data 0102030405060708 0000000900000009

/chroma_motion_test/is_tail_flit

/chroma_motion_test/data_in_buffer 0 1 0

/chroma_motion_test/dequeue 0 1 0 1 0

/chroma_motion_test/select_vc_read 0

/chroma_motion_test/send_data ... 0807050404030100 0807... 00000000000000FF

/chroma_motion_test/set_tail_flit

/chroma_motion_test/send_flit

/chroma_motion_test/ready_to_send

0000000900000009

0

0

0

00000000000000FF 0807050404030109

/chroma_motion_test/clk

/chroma_motion_test/recv_data 0000000900000009

/chroma_motion_test/is_tail_flit

/chroma_motion_test/data_in_buffer 0

/chroma_motion_test/dequeue 0

/chroma_motion_test/select_vc_read 0

/chroma_motion_test/send_data 00000000000000FF 0807050404030109

/chroma_motion_test/set_tail_flit

/chroma_motion_test/send_flit

/chroma_motion_test/ready_to_send

Figure 5.22: Simulation of the chroma motion compensation node.

5.8 Intra Prediction Node

The high level design of the intra prediction node is shown in Fig. 5.23. The intra

prediction node performs the intra prediction algorithm for one block from any of the luma or
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Figure 5.23: High level design of intra prediction node.

chroma channels at a time. Since the intra prediction mode may be different for blocks in the same

location in different channels, the intra prediction node does not operate on all channels

simultaneously. These blocks can be either 16x16 or 4x4. All of the modes specified in Chapter 2

are supported by this node for both block sizes.

5.8.1 Parsing and Input Packet Format

The intra prediction node accepts two different types of messages. Both of these messages

are shown in Fig. 5.24. The first packet type accepted is a write command which writes four

neighbor samples used by the intra prediction core to the registers at a time. The second type of

packet initiates the intra prediction process and contains the intra prediction mode to be used as

well as all of the relevant information to perform the prediction algorithm.

Figure 5.24: Command packets recognized by the intra prediction node.

5.8.2 Intra Prediction Core

The intra prediction core is organized as a 2-d array of combinational functions

implementing each of the intra prediction equations defined in the standard [4]. This array of

functions is surrounded by registers containing each of reference samples required by the

algorithm as shown in Fig.5.25.
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Figure 5.25: Organization of the intra core. Note that the upper three bytes of the input samples
written to address four are ignored.

5.8.3 Packet Generation and Output Packet Format

The output packet format is shown in Fig. 5.26. The intra node sends a variable length

packet to the buffer node after each intra prediction command is received. The length of the

packet is dependent on the block size in the intra prediction command. In the case of a block size

of four, the packet is 5 flits long and the least significant half of each of the flits one through four

are reserved. If a block size of 8 is received, the intra node responds with 9 flits, although the intra

core does not fully support this block size. If the block size is 16 the response size is 33 flits, which

is the largest packet size sent by any node in the system. When reading the diagram in Fig. 5.26, if

the block size is 16, each row takes up two flits instead of one. This means, when the flit number is

even and greater than zero the most significant byte of the flit contains the ninth element of its

respective row instead of the first.
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Figure 5.26: Response packet format for the intra prediction node.

5.8.4 Simulation

Partial simulation output for the intra prediction core is shown in Fig. 5.27. This

simulation writes a set of input values to the intra core, and writes both the reference samples, and

the prediction results for each of the modes to a comma separated value (CSV) file. The included

image is of the 16x16 plane prediction mode. The inputs are the leftmost and topmost cells, while

the rest of the image is the prediction result. The CSV file from the simulation was imported into

Excel for shading.

Figure 5.27: Simulation of the intra prediction node showing the 16x16 plane prediction mode.

5.9 Deblocking Filter Node

The high level design of the deblocking filter node is shown in Fig. 5.28. The role of this

node is to perform the deblocking filter algorithm as described in Chapter 2. Like the luma and

chroma motion compensation nodes, this node is a good candidate for parallelization by adding

multiple instances of this node. Although some dependency on previously deblocked samples

exist, they are much less than the dependency intra prediction has on previous intra prediction

results for example.
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Figure 5.28: High level design of the Deblocking Filter Node.

5.9.1 Parsing and Input Packet Format

Fig. 5.29 shows the packet format accepted by the deblocking filter node. The first flit

contains the set of parameters defining the threshold levels for the deblocking process. The

second flit contains the four samples from each macroblock nearest to the edge being processed by

the deblocking filter.

Figure 5.29: Deblocking Filter Node request packet format.

5.9.2 Deblocking Filter

The deblocking filter component implements the conditional filtering equations defined

in the standard [4] for each of the samples provided by the input packet. All eight of the resulting

samples are calculated in a single clock cycle and the result is sent back to the buffer node. The

response packet of the deblocking filter node is shown in Fig. 5.30.

Figure 5.30: Response packet format for the Deblocking Filter Node
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5.9.3 Simulation

The simulation included in Fig. 5.31 contains an input sequence to the deblocking filter

which surpasses the threshold level of the conditional filters in the deblocking filter node. Because

of this, filtering does not occur and the response packet contains the original samples it received

from the buffer node.

0000000000000000 000000000000FF00 0...

0 1 0 1

0 1 0

0

0000000000000000

/db_test/clk

/db_test/recv_data 0000000000000000 000000000000FF00 0...

/db_test/is_tail_flit

/db_test/data_in_buffer 0 1 0 1

/db_test/dequeue 0 1 0

/db_test/select_vc_read 0

/db_test/send_data 0000000000000000

/db_test/set_tail_flit

/db_test/send_flit

/db_test/ready_to_send

0102030401020304

1 0

0 1 0

0

0000... 00000000000000FF 0102030401020304

/db_test/clk

/db_test/recv_data 0102030401020304

/db_test/is_tail_flit

/db_test/data_in_buffer 1 0

/db_test/dequeue 0 1 0

/db_test/select_vc_read 0

/db_test/send_data 0000... 00000000000000FF 0102030401020304

/db_test/set_tail_flit

/db_test/send_flit

/db_test/ready_to_send

Figure 5.31: Simulation results showing the correct operation of the deblocking node.

5.10 Display Control Node

The display node, shown in Fig. 5.32, provides a display buffer for the decoded video as

well as color space transformation functionality to convert the LCbCr pixels into RGB pixels.

Additionally, the display node contains logic to drive a VGA controller.
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Figure 5.32: High level design of the Display Node.

5.10.1 Parsing and Input Packet Format

Fig. 5.33 shows the packet format accepted by the display node. Each of these packets are

one flit long and contain two LCbCr pixels and an address. The size of the pixel buffer is 320

pixels wide and 200 pixels high. The pixel address is calculated as shown in Eq. 5.1.

pixel addr(x, y) = x + y ∗ 320 (5.1)

Figure 5.33: Display node write pixel command packet format.

5.10.2 Color Space Transformation

The color space transformation component is modified based off of a YCbCr to RGB

component provided by Altera [26]. The modifications done to this component where done to

make it match the YCbCr color conversion functions specified by the ITU [29]. The color space

conversion functions used are shown in Eqs. 5.2- 5.4. The clip function is the same as defined in

Chapter 2 and makes the value of its argument saturate at either 255 or 0 whenever it would

overflow or fall below zero respectively.

R = clip(Y + 1.402 ∗ (Cr− 128)) (5.2)

G = clip(Y− 0.344136 ∗ (Cb− 128)− 0.714136 ∗ (Cr− 128)) (5.3)
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B = clip(Y + 1.772 ∗ (Cb− 128)) (5.4)

5.10.3 VGA Controller

The VGA controller component is an open source VGA controller [30]. This VGA

controller is parametrized, and the display node uses the parameter set for a 640x400 display.

Since the video display buffer is only 320x200 the VGA controller displays four copies of the

buffer each refresh cycle.

5.10.4 VGA Digital to Analog Converter

The VGA DAC is an open source hardware R-2R style VGA DAC originally designed for

use with the Raspberry Pi boards [25]. This VGA DAC has 6 bits per color. The limited precision

of this DAC is used by the display controller to reduce the amount of On-Chip-Memory required

by the display node. This is done by only saving the 6 most significant bits of the 8 bit RGB values

determined by the color space conversion component.

5.11 Compilation for FPGA

The h.264 decoder described in this chapter was compiled for the Stratix IV FPGA on the

DE4 development board [31] using Quartus Prime 16.1 Standard Edition [32]. A summary of the

resource utilization report is given in Table 5.2

Table 5.2: Resource utilization of the proposed 3x3 NoC based h.264 decoder.

Item Report
FPGA Device Family Stratix IV GX
Device EP4SGX230C2
Logic Utilization 135,953 / 182,400 ( 75 % )
Total Combinational Functions 87002
Total Registers 65437
Dedicated Logic Registers 64,161 / 182.400 ( 35 % )
Total Pins 292 / 888 ( 33 % )
Total Block Memory Bits 1,886,567 / 14,625,792 ( 13 % )
DSP Block 18-bit Elements 224 / 1,288 ( 17 % )
Total PLLs 3 / 8 (38 % )
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CHAPTER 6

SCALABILITY

6.1 Introduction

One of the primary benefits of an NoC based design is improved scalability and

reusability of components. To demonstrate this, a scaled down version of the proposed NoC

based h.264 decoder is presented in this chapter. This scaled down version of the decoder targets

an SoC style FPGA in the Cyclone V-SoC family [33]. Comparing the number of Adaptive Logic

Modules (ALMs), the smaller FPGA has only 32,070 ALMs while the original target has 91,200.

One aspect of the smaller target which enables this port is the built-in Hard Processor System

(HPS) on the new target. The HPS contains two ARM processors which will serve as the parser

and buffer node’s main computational device in this port.

6.2 Scaling Design to Fit a Smaller Target FPGA

Three major changes where made to the original design to allow it to fit on a smaller

FPGA. First, intra prediction was moved onto the buffer node to be performed in software.

Second, the NoC topology was changed to use only four routers with multiple ports on each

router to accommodate the seven node design. Finally, instead of using NIOS II cores for the

buffer and parser nodes, the built-in ARM cores available on the FPGA chip where used.

Additionally, two noteworthy compromises were made to allow this decoder to be implemented

on this smaller FPGA. First, the main memory used by the parser and buffer is no longer

physically isolated, as it is in the original design. However, the buffer and parser still use logically

isolated memory. Second, the IO used by each processor based node is physically accessible to

each other, although neither node ever accesses the IO ports used by the other node.

6.2.1 Porting Process

The process of porting begins with choosing a subset of the full design which will fit on

the smaller device. Intra prediction was chosen to be moved into software because, based on

profiling results, it is not utilized as much as inter prediction, but still uses a large amount of area

on the FPGA. The choice to reduce the number of routers, while increasing the number of ports

per router was made because it saves on the number of resources greatly and was not expected to
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Figure 6.1: Scaled down version of the proposed NoC based h.264 decoder.

greatly degrade performance. The architecture chosen for this scaled down decoder is shown in

Fig. 6.1. Each node in this architecture is mapped to have the same address as it has in the

original design.

The porting process continues by modifying either the buffer or parser node to add any

algorithms eliminated from the hardware. In this case, the intra prediction algorithm was added

into the buffer node. Additionally, the software which controls network interface needed to be

modified to support the IO interface of the target processor. After the network interface code is

rewritten for the new processor to hardware interface of the SoC style FPGA target, the hardware

and software can be compiled and tested on the new target platform.

6.2.2 Porting Results

The scaled down version of the architecture achieves very similar performance to the

original design as shown in Chapter 7. This version has a considerably higher overhead

associated with interacting with the NoC as measured from the buffer node. However, the HPS

processors are much faster than the NIOS II cores used in the original design and the performance

of the scaled down version is slightly better than the full scale version despite higher overhead.
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Two factors could be causing the higher overhead. First, the interface between the FPGA fabric

and the HPS could simply be slower than the interface provided by the NIOS II processors.

Second, since fewer routers are used in the scaled down design, and the buffer depth per router is

the same as the full scale design, the scaled down architecture has a much lower flit capacity

which would cause increased waiting times when transmitting a large amount of data.

6.3 Compilation for FPGA

The 2x2 NoC based h.264 video decoder described in this chapter is compiled for FPGA

using Quartus Prime 15.1 Lite Edition [32]. The target board used in this design is the DE1-SoC

board [33]. A summary of the compilation report is given in Table 6.1.

Table 6.1: Resource utilization of the proposed 2x2 NoC based h.264 decoder.

Item Report
FPGA Device Family Cyclone V
Device 5CSEMA5F31C6
Logic Utilization 24,708 / 32,070 ( 77 % )
Total Registers 30978
Dedicated Logic Registers 31,102
Total Pins 159 / 457 ( 35 % )
Total Block Memory Bits 1,152,000/4,065,280 ( 28 % )
Total DSP Blocks 87 / 87 ( 100 % )
Total PLLs 1 / 6 ( 17 % )
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CHAPTER 7

PERFORMANCE TESTING AND PROFILING

7.1 Introduction

This chapter presents the results of performance testing and profiling performed on both

versions of the NoC based h.264 decoder presented in Chapters 5 and 6. To perform this

profiling, a counter was added to the hardware component of the NIOS II nodes. This counter is

read by the software running on the NIOS II cores at a variety of locations in order to determine

what the limiting factors of system performance are. Additionally, the timer is also used to

determine total system performance and compare against the software decoder the parser and

buffer are based on, as well as the USHA decoder [17] which is a hybrid NoC-Bus based design.

The USHA decoder is chosen as a comparison because it is a partially NoC based system.

7.2 Test Videos

The test videos are from an online repository of YUV encoded video files [34]. Five test

sequences are used from this repository called ”akiyo”, ”foreman”, ”highway”, ”hall”, and

”paris”. The first three are QCIF format video with a resolution of 176x144, the other two are CIF

format videos which have twice the horizontal and vertical resolution of the QCIF videos. An

important note here is that although the video decoder itself can decode CIF, as well as higher

resolution videos, the display node only contains enough RAM to display 320x200 videos. Thus,

for CIF videos the entire video is decoded, but only the top and leftmost 320x200 pixels are

displayed. Each of the five test videos are encoded using the JM reference encoder [35]. The

encoding settings use a modified baseline profile which uses a single reference image and a

periodic intra prediction update to avoid accumulated error in the output video stream. The

encoder configuration file is available alongside the released source materials for this thesis [36].

Selected frames of these test videos being decoded by each of these implementations are shown in

Fig. 7.1 and Fig. 7.2.

7.3 Buffer Node Profiling

Because the buffer node controls access to a resource used by nearly every algorithm in

the system, the profiling measurements are taken at this node. A diagram depicting the profiled
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Figure 7.1: 3x3 implementation decoding the ”hall” test video sequence.

Figure 7.2: 2x2 implementation decoding the ”akiyo” video sequence.

zones of the buffer node is included in Fig. 7.3. A total of 9 counters are maintained for profiling

purposes. The first counter starts when the buffer node receives an allocate frame command and

stops when the buffer receives a special packet indicating the video stream is done. The purpose

of this counter is to keep track of the total time it takes to decode the video sequence. One timer

for deblocking, intra prediction and inter prediction are maintained to keep track of the total time
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taken to perform these algorithms. An additional timer for each of these three algorithms is also

maintained to keep track of the amount of time the buffer idles while waiting for a response from

the node associated with each of these algorithms. A timer is also used to keep track of the

amount of time a write to the display node takes. Another timer is used to determine the total

time the buffer spends idling after completing a command before it receives another one. The

IQIT algorithm is not profiled since this algorithm is essentially done by the time it reaches the

buffer node. The results for the 3x3 and 2x2 decoder implementations are shown in Table 7.1 and

Table 7.2 respectively. The average distribution for each decoder is shown in Fig. 7.4 for the 3x3

decoder and Fig. 7.5 for the 2x2 decoder.

Figure 7.3: Diagram of timer start/stop positions within the buffer node software.

7.3.1 Discussion of Profiling Results

The profiling results indicate a high proportion of total time spent in inter prediction and

deblocking relative to time the buffer node idling waiting for these algorithms nodes to respond.

This indicates that the buffer node is currently incapable of fully utilizing these nodes. Since the

code on the buffer node for dispatching either of these algorithms consists almost entirely of

reading from memory and writing to the NoC through the NoC interface, architectural changes

for improving performance in the future should focus on a few things. First, improving the total
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Table 7.1: Profiling Results from the 3x3 NoC Based Decoder. Times indicated are in units of
seconds.

Video akiyo highway foreman paris hall
Format qcif qcif qcif cif cif
Frames 300 2000 300 1060 300
Total Decode Time 37.18 310.00 55.07 579.68 168.65
Total Intra Time 1.61 11.46 1.96 23.68 6.08
Total Inter Time 8.08 83.26 16.36 135.85 38.65
Total Deblock Time 16.14 107.62 16.14 242.31 68.26
Total Display Time 3.99 26.60 3.99 35.95 10.13
Intra Idle Time 0.54 3.80 0.65 7.92 2.02
Inter Idle Time 0.47 12.97 3.25 11.39 3.52
Deblock Idle Time 2.57 17.12 2.57 38.51 10.85
Command Wait Time 6.23 68.75 14.14 121.27 38.63

Table 7.2: Profiling Results from the 2x2 NoC Based Decoder. Times indicated are in units of
seconds.

Video akiyo highway foreman paris hall
Format qcif qcif qcif cif cif
Frames 300 2000 300 1060 300
Total Decode Time 43.05 430.34 83.79 615.21 184.04
Total Intra Time 0.04 0.27 0.04 0.60 0.16
Total Inter Time 6.26 157.34 39.00 143.15 43.96
Total Deblock Time 13.30 88.71 13.31 199.47 56.19
Total Display Time 16.45 109.63 16.45 147.52 41.55
Intra Idle Time 0.00 0.00 0.00 0.00 0.00
Inter Idle Time 1.65 46.00 11.56 39.88 12.36
Deblock Idle Time 8.95 59.69 8.95 134.20 37.80
Command Wait Time 6.28 67.29 13.48 112.80 38.14

bandwidth to memory. Second, reducing the amount of interaction required by the buffer node

CPU to perform NoC read and writes. Additionally, given that the buffer node is simple enough

for a practical implementation as a hardware only node, this would be another area to investigate.

Additionally, the parser node is a good target for improvement since the command wait time

takes up a significant amount of the buffer’s time. A more detailed discussion of future work is

included in Chapter 8.

7.4 Performance Comparisons

Performance comparisons against the open source implementation [27] which provided

the basis for the parser node and parts of the buffer node are reported in Table 7.3. The decoder

was modified to use the VGA display node for video output. Additionally, the decoder was
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Figure 7.4: Average time spent in each section of the buffer node code for the 3x3 NoC based
decoder.
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Figure 7.5: Average time spent in each section of the buffer node code for the 2x2 NoC based
decoder.

modified to use the available hardware timer to measure the total decoding time. Since reading

from the timer has a performance impact, all of the profiling timers were removed from the NoC

based decoders except for the total decoding time timer. Each of the decoders were tested using

the same five test videos used for profiling. The test results are shown in Table 7.3.

The NoC based decoders were also compared against the USHA decoder. In order to

make a comparison against the results provided in the USHA paper [17], the performance results

where converted from frames per second to macroblocks per second since this is the performance

unit used in the USHA paper. The number of macroblocks per frame is calculated by dividing the
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Table 7.3: Comparison of the NoC based decoders with an open source software based decoder
running on the NIOS II core and HPS core. All reported numbers are in units of frames per second.

3x3 Decoder 2x2 Decoder Nios II SW HPS SW
akiyo (qcif) 8.26 7.12 4.86 11.57
highway (qcif) 6.74 4.73 3.55 11.03
foreman (qcif) 5.76 3.64 2.81 10.79
paris (cif) 1.96 1.76 0.82 4.23
hall (cif) 1.91 1.66 1.02 4.22
average fps (cif) 1.95 1.74 0.85 4.23
average fps (qcif) 6.75 4.75 3.56 11.06

Table 7.4: Comparison of USHA decoder and the 3x3 and 2x2 NoC Based Decoders

Frames per second Macroblocks per frame Macroblocks per second
3x3 decoder (qcif) 6.75 99 668
2x2 decoder (qcif) 4.75 99 470
3x3 decoder (cif) 1.95 396 771
2x2 decoder (cif) 1.74 396 688
USHA (1) n/a n/a 2475
USHA (2) n/a n/a 20250
USHA (3) n/a n/a 108000
USHA (4) n/a n/a 244800

total number of pixels by 16 squared since a macroblock is 16x16 pixels. The USHA decoder was

chosen as a comparison because it is a hybrid NoC-Bus based system. The USHA decoder has

four configurations which are single threaded CPU (configuration 1), multi-processor

(configuration 2), hardware accelerated (configuration 3), and full hardware (configuration 4). The

hardware accelerated implementation of USHA has all algorithms except inter prediction and

deblocking running in software on separate tiles.

7.4.1 Discussion of Performance Comparisons

As was expected, the NoC based implementation outperforms the NIOS II soft-core

processor running the full software decoder. An unexpected result is the performance of the

software decoder running on the ARM core available on the HPS. One important difference

between the software decoders and the NoC based decoders is that the software decoders do not

implement a deblocking filter. However, even after accounting for this a large performance

discrepancy exists. Another noteworthy point is that the 2x2 decoder is slower than the 3x3

decoder, despite the fact that the software decoder is over three times faster on the HPS compared
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to the NIOS II core, and intra prediction is not a heavily utilized function. Based on the profiling

results this appears to stem from the fact that the communication between the HPS and the FPGA

on the SoC style FPGA is slower than the communication between the NIOS Cores and the rest of

the FPGA on the large scale design. Evidence of this can be seen in the relative time spent writing

to the display node for each decoder. The 2x2 decoder spends about 26% of its time writing to the

display node, where as the 3x3 decoder only spends about 8% of its time engaged in the same

activity. This indicates a large difference in the communication overhead between the two

designs. Based on this information, efforts seeking to improve the NoC decoder implementations

to exceed the ARM processor’s performance should focus on improving the processor to FPGA

communication, or removing it altogether by creating a hardware only implementation of the

buffer node.

USHA [17] has much high performance in each of its configurations compared to the NoC

decoders presented here. The fact that multiple configurations are presented gives some insight

into how similar performance could be achieved. First, the performance of USHA configuration 1

indicates that either the software based decoder used in this processor only configuration is much

more efficient than the software decoder tested on the ARM core here, or the PowerPC processor

used by USHA is much faster than the ARM processor used in this thesis. Configuration 2

suggests a higher level of computational parallelism is achieved by USHA. Despite the limitations

of bus communications schemes, USHA’s use of a common bus for reading and writing memory

may provide advantages in terms of task level parallelism. This advantage exists not because of

including a bus, but because the included bus provides a direct access by each node to a shared

memory space. When such a shared memory space exists, the buffer node no longer plays such a

central role in the decoding process. This would allow the parser to send commands directly to

the intra and inter nodes instead of first sending them to the buffer node, greatly increasing the

achievable level of parallelism in the system. An NoC based shared memory space, potentially

implemented on a separate independent NoC, would be a worthwhile area of investigation for

improving performance.
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CHAPTER 8

FURTHER OPTIMIZATIONS AND FUTURE WORK

8.1 Overview

This chapter gives recommendations for future work. This contains both optimizations of

the current architecture as well as architectural modifications, which are likely to improve

performance. Other areas of future work also included are comparisons against different

communication methods, and general bug fixes and feature expansion.

8.2 Future Work Targeting Performance

Each subsection below presents proposed future work targeting increased performance.

The proposals are presented in order, starting with the most similar to the current 3x3 NoC based

decoder, and generally build upon each other as the section proceeds.

8.2.1 Parser and Buffer Node Optimization

We learned from the profiling results in Chapter 7 that increasing the performance of the

parser node would have a considerable impact on system performance. A number of approaches

could be taken to achieve this. The simplest approach to increasing the parser performance would

be to enqueue packets that could be sent into a FIFO when the parser would have sent a packet,

but has not received an acknowledgment from the buffer node yet. This queuing method would

improve performance by allowing the parser to get further ahead of the buffer when it is able.

Another approach to reducing the amount of time the buffer spends waiting for the parser would

be to add a second NIOS II core or a dedicated coprocessor to the buffer node which had its own

port, but direct access to the main buffer node. The purpose of this coprocessor would be to

consume all incoming packets at a guaranteed rate eliminating the need for a buffer to parser

acknowledgment. Neither of these approaches would improve the actual performance of the

parser node. Instead, they allow the parser node to stay as busy as possible which results in

improved performance. To improve the performance of the parser node itself, hardware

accelerators could be added for functions such as CALVC and Exp-Golomb decoding.

Additionally, the Hadamard transform could be offloaded to the IQIT node, but this is not

expected to yield much improvement in performance since this transform is not used very often.
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A better processor-network interface would benefit the buffer node, and to some extent

the parser node. A descriptor based NoC interface for the buffer node as described in [37] would

likely result in a large increase in performance. This type of NoC interface would have direct

access to the memory on the buffer node and could autonomously send packets based on

descriptions received from the main processor on the buffer node. This approach would be

especially powerful when combined with a separate port on the buffer for commands from the

parser and IQIT nodes because of the increased parallelism a multi-port buffer node would allow.

A slightly modified architecture based on proposed ideas in this section is shown in Fig. 8.1. In

this architecture, the algorithm dispatch node is the descriptor based NoC-interface coprocessor

previously mentioned.

Figure 8.1: Architecture with modified buffer and parser node.
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8.2.2 Further Partitioning

The profiling results from Chapter 7 indicate that memory access plays an important role

in the speed of the entire system. The use of a descriptor based NoC coprocessor would likely

reduce this bottleneck to some extent, however, further improvements may still be necessary. One

way to make improvements related to memory access would be to partition the buffer node in

such a way that the buffer commands and thus memory accesses are spread out over multiple

physical memories. One way to do this is to have separate buffer nodes for each of the channels.

This is possible since none of the algorithms which operate on the samples from a given channel

never have a data dependency on another channel. However, partitioning the buffer into three

nodes, one for L, Cb and Cr respectively is probably unnecessary. This is due to the sub-sampling

of the chroma channels. Each chroma channel only contains a quarter of the samples as the luma

channel, so even when combined into one node, a chroma buffer node would not be the limiting

factor in system performance. An example of a dual buffer node architecture is given in Fig. 8.1.

In order to allow this design to fit on the currently targeted FPGA, the Stratix IV, the parser node

has been modified to use on chip memory.

Figure 8.2: A dual buffer node architecture of a 3x4 NoC based decoder. Note that in this
architecture, the NoC topology is increased from 3x3 to 3x4.
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8.2.3 Combined Display and Deblocking

Currently, the decoder performs all of the deblocking filtering before sending the new

frame to the display node. One way of improving the efficiency of deblocking and displaying a

frame would be to write the entire frame to a combined display and deblocking node which

would then send back all of the updated macroblock edges after deblocking was performed.

Because this would also reduce the number of nodes, mapping nodes according to

communication patterns becomes an easier task, and therefore performance could improve.

8.2.4 Alternative Communication Pattern

Currently, the parser sends commands to the buffer which causes the buffer to send the

required data to one of the algorithm nodes, i.e. intra, inter, deblock. An alternative approach

would be to have the parser send these commands to the algorithm node itself and have that node

request the data it needs from the buffer node. The buffer node, or one of the buffer nodes in a

multiple buffer node design, would then respond with the data, and finally, the algorithm node

would send a write request back to the buffer after the algorithm finishes. A comparison of the

current communication pattern and the alternative communication pattern presented in this

subsection is shown in Fig. 8.3. This ends up being, potentially, quite a bit more communication

per command leaving the parser than the current design, but may allow for higher levels of task

level parallelism by reducing the extent to which ordered execution is enforced in the system.

Figure 8.3: Diagram of the current communication pattern (left) and an alternative which may
allow for better parallelism (right).
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8.2.5 Parallelization of Inter and Deblocking

Based on profiling results, as the parser node and memory to NoC speeds improve, the

most important algorithms for improving in speed are inter prediction and deblocking. Both inter

prediction and deblocking are good candidates for parallelization since both have minimal data

dependencies on results of previous iteration outputs. Inter prediction, for example, only has a

data dependency on commands from the parser, and the reference frame. Initial efforts

investigating the potential for parallelization of inter prediction indicated that the current design

of the buffer node and communication pattern can reliably perform inter prediction across two

luma nodes, with chroma done in software, or one luma and one chroma node, which is the

current design. However, when running inter prediction across two luma and one chroma node

response packets from the inter prediction nodes would go missing. The alternative

communication pattern introduced in the previous subsection would likely improve the reliability

of multiple inter prediction nodes running in parallel.

8.3 Other Future Work

Currently, there are noticeable visual artifacts in the output video stream. Future work

seeking to reduce these artifacts would be valuable for increasing the usability of this decoder as a

component in a larger media system. Additionally, although the deblocking filter is capable of

performing the full deblocking rules, only normal mode deblocking is performed on luma

macroblock edges to maintain reasonable performance. Also, redesigning the display node to use

an off-chip RAM for storing the video would be useful as it would allow display formats larger

than 320x200. Finally, a study making use of the dynamic communication capabilities of the NoC

to develop a full codec for h.264 building off the current design would be interesting.
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