4 research outputs found

    Process hazard and operability analysis of BPCS and SIS malicious manipulations by POROS 2.0

    Get PDF
    The increasing interconnectivity with external networks and the higher reliance on digital systems make the facilities of the chemical, process, and Oil&Gas industry more vulnerable to cyber-attacks. These attacks have the potential of causing events with severe consequences on property, people, and the surrounding environment such as major event scenarios. The application of the currently available methodologies for cyber risk identification to complex plants with a large number of units may be demanding and cumbersome. The present study proposes an updated methodology, named POROS 2.0, that allows reducing time and effort in application by limiting the scope of the analysis to relevant cybersecurity scenarios. The latter are identified by investigating the potential escalation of consequences propagating among process and/or utility nodes of the manipulations of BPCS and SIS, similar to what is done in the HazOp technique in the safety domain. POROS 2.0 was demonstrated by the application to a case study addressing a fixed offshore platform for gas exploitation

    A SECURITY-CENTRIC APPLICATION OF PRECISION TIME PROTOCOL WITHIN ICS/SCADA SYSTEMS

    Get PDF
    Industrial Control System and Supervisory Control and Data Acquisition (ICS/SCADA) systems are key pieces of larger infrastructure that are responsible for safely operating transportation, industrial operations, and military equipment, among many other applications. ICS/SCADA systems rely on precise timing and clear communication paths between control elements and sensors. Because ICS/SCADA system designs place a premium on timeliness and availability of data, security ended up as an afterthought, stacked on top of existing (insecure) protocols. As precise timing is already resident and inherent in most ICS/SCADA systems, a unique opportunity is presented to leverage existing technology to potentially enhance the security of these systems. This research seeks to evaluate the utility of timing as a mechanism to mitigate certain types of malicious cyber-based operations such as a man-on-the-side (MotS) attack. By building a functioning ICS/SCADA system and communication loop that incorporates precise timing strategies in the reporting and control loop, specifically the precision time protocol (PTP), it was shown that certain kinds of MotS attacks can be mitigated by leveraging precise timing.Navy Cyber Warfare Development Group, Suitland, MDLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Security risks in cyber physical systems—A systematic mapping study

    Get PDF
    The increased need for constant connectivity and complete automation of existing systems fuels the popularity of Cyber Physical Systems (CPS) worldwide. Increasingly more, these systems are subjected to cyber attacks. In recent years, many major cyber-attack incidents on CPS have been recorded and, in turn, have been raising concerns in their users' minds. Unlike in traditional IT systems, the complex architecture of CPS consisting of embedded systems integrated with the Internet of Things (IoT) requires rather extensive planning, implementation, and monitoring of security requirements. One crucial step to planning, implementing, and monitoring of these requirements in CPS is the integration of the risk management process in the CPS development life cycle. Existing studies do not clearly portray the extent of damage that the unattended security issues in CPS can cause or have caused, in the incidents recorded. An overview of the possible risk management techniques that could be integrated into the development and maintenance of CPS contributing to improving its security level in its actual environment is missing. In this paper, we are set out to highlight the security requirements and issues specific to CPS that are discussed in scientific literature and to identify the state-of-the-art risk management processes adopted to identify, monitor, and control those security issues in CPS. For that, we conducted a systematic mapping study on the data collected from 312 papers published between 2000 and 2020, focused on the security requirements, challenges, and the risk management processes of CPS. Our work aims to form an overview of the security requirements and risks in CPS today and of those published contributions that have been made until now, towards improving the reliability of CPS. The results of this mapping study reveal (i) integrity authentication and confidentiality as the most targeted security attributes in CPS, (ii) model-based techniques as the most used risk identification and assessment and management techniques in CPS, (iii) cyber-security as the most common security risk in CPS, (iv) the notion of “mitigation measures” based on the type of system and the underline internationally recognized standard being the most used risk mitigation technique in CPS, (v) smart grids being the most targeted systems by cyber-attacks and thus being the most explored domain in CPS literature, and (vi) one of the major limitations, according to the selected literature, concerns the use of the fault trees for fault representation, where there is a possibility of runtime system faults not being accounted for. Finally, the mapping study draws implications for practitioners and researchers based on the findings.</p

    A digraph model for risk identification and mangement in SCADA systems

    No full text
    corecore