216 research outputs found

    Closed-Loop, Open-Source Electrophysiology

    Get PDF
    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents

    Telemetry Controlled Brain Machine Interface To Train Cortical Circuits

    Get PDF
    The goal of this dissertation is to document functional reorganization in rat primary somatosensory (SI) cortex. This work proposes to strengthen the interhemispheric connection between homotopic sites in forelimb barrel cortex (FBC) through intracortical microstimulation (ICMS) and induce functional reorganization whereby neurons in the FBC respond to new input from the ipsilateral forelimb. Furthermore, a wireless microstimulation and recording device was developed for producing enhancement and functional reorganization of cortical circuits in FBC. The goal of Experiment One was to test the hypothesis that layer V neurons projected to homotopic sites in contralateral layer V FBC. Retrograde or anterograde neuronal tracer injections were made to characterize the distribution of callosal projecting neurons in contralateral SI that terminate in layer VFBC and where layer V callosal projecting neurons terminate in contralateral SI. The results showed a differential pattern of interhemispheric connectivity between homotopic forelimb representations in layer V FBC. The goal of Experiment Two was to test the hypothesis that ICMS enhances the interhemispheric pathway and leads to functional reorganization. ICMS was delivered in vivo to the interhemispheric pathway between homotopic layer V barrel cortices and multiunit recordings were made to assess changes in firing rate. The results showed ICMS strengthens interhemispheric connectivity and leads to functional reorganization in rat FBC. The goal of Experiment Three was to develop an interactive telemetry-based neural interface device for the controlled delivery of ICMS and recording response activity in rodent. The device successfully delivered microstimulation to a single electrode in SIand recorded evoked responses from a separate electrode in contralateral SI. Its performance was shown to be comparable to commercial stimulating and recording systems. This system serves as a prototype of a wearable compact device. The data suggest that neurons in rat FBC can be induced to respond to new input from the ipsilateral forelimb by enhancing the interhemispheric pathway with ICMS. An interactive system for the controlled delivery of telemetry-based microstimulation and real-time recordings has been demonstrated in vivo. These studies provide the framework for subsequent studies of interhemispheric pathway enhancement and functional reorganization in freely moving rats

    A Wireless, High-Voltage Compliant, and Energy-Efficient Visual Intracortical Microstimulator

    Get PDF
    RÉSUMÉ L’objectif général de ce projet de recherche est la conception, la mise en oeuvre et la validation d’une interface sans fil intracorticale implantable en technologie CMOS avancée pour aider les personnes ayant une déficience visuelle. Les défis majeurs de cette recherche sont de répondre à la conformité à haute tension nécessaire à travers l’interface d’électrode-tissu (IET), augmenter la flexibilité dans la microstimulation et la surveillance multicanale, minimiser le budget de puissance pour un dispositif biomédical implantable, réduire la taille de l’implant et améliorer le taux de transmission sans fil des données. Par conséquent, nous présentons dans cette thèse un système de microstimulation intracorticale multi-puce basée sur une nouvelle architecture pour la transmission des données sans fil et le transfert de l’énergie se servant de couplages inductifs et capacitifs. Une première puce, un générateur de stimuli (SG) éconergétique, et une autre qui est un amplificateur de haute impédance se connectant au réseau de microélectrodes de l’étage de sortie. Les 4 canaux de générateurs de stimuli produisent des impulsions rectangulaires, demi-sinus (DS), plateau-sinus (PS) et autres types d’impulsions de courant à haut rendement énergétique. Le SG comporte un contrôleur de faible puissance, des convertisseurs numérique-analogiques (DAC) opérant en mode courant, générateurs multi-forme d’ondes et miroirs de courants alimentés sous 1.2 et 3.3V se servant pour l’interface entre les deux technologies utilisées. Le courant de stimulation du SG varie entre 2.32 et 220μA pour chaque canal. La deuxième puce (pilote de microélectrodes (MED)), une interface entre le SG et de l’arrangement de microélectrodes (MEA), fournit quatre niveaux différents de courant avec la valeur maximale de 400μA par entrée et 100μA par canal de sortie simultanément pour 8 à 16 sites de stimulation à travers les microélectrodes, connectés soit en configuration bipolaire ou monopolaire. Cette étage de sortie est hautement configurable et capable de délivrer une tension élevée pour satisfaire les conditions de l’interface à travers l’impédance de IET par rapport aux systèmes précédemment rapportés. Les valeurs nominales de plus grandes tensions d’alimentation sont de ±10V. La sortie de tension mesurée est conformément 10V/phase (anodique ou cathodique) pour les tensions d’alimentation spécifiées. L’incrémentation de tensions d’alimentation à ±13V permet de produire un courant de stimulation de 220μA par canal de sortie permettant d’élever la tension de sortie jusqu’au 20V par phase. Cet étage de sortie regroupe un commutateur haute tension pour interfacer une matrice des miroirs de courant (3.3V /20V), un registre à décalage de 32-bits à entrée sérielle, sortie parallèle, et un circuit dédié pour bloquer des états interdits.----------ABSTRACT The general objective of this research project is the design, implementation and validation of an implantable wireless intracortical interface in advanced CMOS technology to aid the visually impaired people. The major challenges in this research are to meet the required highvoltage compliance across electrode-tissue interface (ETI), increase lexibility in multichannel microstimulation and monitoring, minimize power budget for an implantable biomedical device, reduce the implant size, and enhance the data rate in wireless transmission. Therefore, we present in this thesis a multi-chip intracortical microstimulation system based on a novel architecture for wireless data and power transmission comprising inductive and capacitive couplings. The first chip is an energy-efficient stimuli generator (SG) and the second one is a highimpedance microelectrode array driver output-stage. The 4-channel stimuli-generator produces rectangular, half-sine (HS), plateau-sine (PS), and other types of energy-efficient current pulse. The SG is featured with low-power controller, current mode source- and sinkdigital- to-analog converters (DACs), multi-waveform generators, and 1.2V/3.3V interface current mirrors. The stimulation current per channel of the SG ranges from 2.32 to 220μA per channel. The second chip (microelectrode driver (MED)), an interface between the SG and the microelectrode array (MEA), supplies four different current levels with the maximum value of 400μA per input and 100μA per output channel. These currents can be delivered simultaneously to 8 to 16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. This output stage is highly-configurable and able to deliver higher compliance voltage across ETI impedance compared to previously reported designs. The nominal values of largest supply voltages are ±10V. The measured output compliance voltage is 10V/phase (anodic or cathodic) for the specified supply voltages. Increment of supply voltages to ±13V allows 220μA stimulation current per output channel enhancing the output compliance voltage up to 20V per phase. This output-stage is featured with a high-voltage switch-matrix, 3.3V/20V current mirrors, an on-chip 32-bit serial-in parallel-out shift register, and the forbidden state logic building blocks. The SG and MED chips have been designed and fabricated in IBM 0.13μm CMOS and Teledyne DALSA 0.8μm 5V/20V CMOS/DMOS technologies with silicon areas occupied by them 1.75 x 1.75mm2 and 4 x 4mm2 respectively. The measured DC power budgets consumed by low-and mid-voltage microchips are 2.56 and 2.1mW consecutively

    Wireless Simultaneous Stimulation-and-Recording Device (SRD) to Train Cortical Circuits in Rat Somatosensory Cortex

    Get PDF
    The primary goal of this project is to develop a wireless system for simultaneous recording-and-stimulation (SRD) to deliver low amplitude current pulses to the primary somatosensory cortex (SI) of rats to activate and enhance an interhemispheric cortical pathway. Despite the existence of an interhemispheric connection between similar forelimb representations of SI cortices, forelimb cortical neurons respond only to input from the contralateral (opposite side) forelimb and not to input from the ipsilateral (same side) forelimb. Given the existence of this interhemispheric pathway we have been able to strengthen/enhance the pathway through chronic intracortical microstimulation (ICMS) in previous acute experiments of anesthetized rats. In these acute experiments strengthening the interhemispheric pathway also brings about functional reorganization whereby cortical neurons in forelimb cortex respond to new input from the ipsilateral forelimb. Having the ability to modify cortical circuitry will have important applications in stroke patients and could serve to rescue and/or enhance responsiveness in surviving cells around the stroke region. Also, the ability to induce functional reorganization within the deafferented cortical map, which follows limb amputation, will also provide a vehicle for modulating maladaptive cortical reorganization often associated with phantom limb pain leading to reduced pain. In order to increase our understanding of the observed functional reorganization and enhanced pathway, we need to be able to test these observations in awake and behaving animals and eventually study how these changes persist over a prolonged period of time. To accomplish this a system was needed to allow simultaneous recording and stimulation in awake rats. However, no such commercial or research system exists that meets all requirements for such an experiment. In this project we describe the (1) system design, (2) system testing, (3) system evaluation, and (4) system implementation of a wireless simultaneous stimulation-and-recording device (SRD) to be used to modulate cortical circuits in an awake rodent animal model

    Toward an energy-efficient high-voltage compliant visual intracortical multichannel stimulator

    Get PDF
    ABSTRACT: We present, in this paper, a new multichip system aimed toward building an implantable visual intracortical stimulation device. The objective is to deliver energy-optimum pulse patterns to neural sites with needed compliance voltage across high electrode–tissue interface impedance of implantable microelectrodes. The first chip is an energy-efficient stimuli generator (SG), and the second one is a high-impedance microelectrode array driver (MED) output stage. The fourchannel SG produces rectangular, half-sine, plateau-sine, and other types of current pulse with stimulation current ranging from 2.32 to 220 μA per channel. The microelectrode array driver is able to deliver 20 V per anodic or cathodic phase across the microelectrode–tissue interface for ±13 V power supplies. The MED supplies different current levels with the maximum value of 400 μA per input and 100 μA per output channel simultaneously to 8–16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. Both chips receive power via inductive link and data through capacitive coupling. The SG and MED chips have been fabricated in 0.13-μm CMOS and 0.8-μm 5-/20-V CMOS/double-diffused metal-oxidesemiconductor technologies. The measured dc power budgets consumed by low- and mid-voltage chips are 2.56 and 2.1 mW consecutively. The system, modular in architecture, is interfaced with a newly developed platinum-coated pyramidal microelectrode array. In vitro test results with 0.9% phosphate buffer saline show the microelectrode impedance of 70 Ωk at 1 kHz

    The Design and Implementation of an Extensible Brain-Computer Interface

    Get PDF
    An implantable brain computer interface: BCI) includes tissue interface hardware, signal conditioning circuitry, analog-to-digital conversion: ADC) circuitry and some sort of computing hardware to discriminate desired waveforms from noise. Within an experimental paradigm the tissue interface and ADC hardware will rarely change. Recent literature suggests it is often the specific implementation of waveform discrimination that can limit the usefulness and lifespan of a particular BCI design. If the discrimination techniques are implemented in on-board software, experimenters gain a level of flexibility not currently available in published designs. To this end, I have developed a firmware library to acquire data sampled from an ADC, discriminate the signal for desired waveforms employing a user-defined function, and perform arbitrary tasks. I then used this design to develop an embedded BCI built upon the popular Texas Instruments MSP430 microcontroller platform. This system can operate on multiple channels simultaneously and is not fundamentally limited in the number of channels that can be processed. The resulting system represents a viable platform that can ease the design, development and use of BCI devices for a variety of applications

    Wireless integrated circuit for 100-channel charge-balanced neural stimulation

    Get PDF
    Journal ArticleThe authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (100 pF) for tuning the coil to resonance, and a coil for power and command reception. The chip was fabricated in a commercially available 0.6- m 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex

    Wireless tools for neuromodulation

    Get PDF
    Epilepsy is a spectrum of diseases characterized by recurrent seizures. It is estimated that 50 million individuals worldwide are affected and 30% of cases are medically refractory or drug resistant. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are the only FDA approved device based therapies. Neither therapy offers complete seizure freedom in a majority of users. Novel methodologies are needed to better understand mechanisms and chronic nature of epilepsy. Most tools for neuromodulation in rodents are tethered. The few wireless devices use batteries or are inductively powered. The tether restricts movement, limits behavioral tests, and increases the risk of infection. Batteries are large and heavy with a limited lifetime. Inductive powering suffers from rapid efficiency drops due to alignment mismatches and increased distances. Miniature wireless tools that offer behavioral freedom, data acquisition, and stimulation are needed. This dissertation presents a platform of electrical, optical and radiofrequency (RF) technologies for device based neuromodulation. The platform can be configured with features including: two channels differential recording, one channel electrical stimulation, and one channel optical stimulation. Typical device operation consumes less than 4 mW. The analog front end has a bandwidth of 0.7 Hz - 1 kHz and a gain of 60 dB, and the constant current driver provides biphasic electrical stimulation. For use with optogenetics, the deep brain optical stimulation module provides 27 mW/mm2 of blue light (473 nm) with 21.01 mA. Pairing of stimulating and recording technologies allows closed-loop operation. A wireless powering cage is designed using the resonantly coupled filter energy transfer (RCFET) methodology. RF energy is coupled through magnetic resonance. The cage has a PTE ranging from 1.8-6.28% for a volume of 11 x 11 x 11 in3. This is sufficient to chronically house subjects. The technologies are validated through various in vivo preparations. The tools are designed to study epilepsy, SUDEP, and urinary incontinence but can be configured for other studies. The broad application of these technologies can enable the scientific community to better study chronic diseases and closed-loop therapies

    소형동물의 뇌신경 자극을 위한 완전 이식형 신경자극기

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 전기·정보공학부,2020. 2. 김성준.In this study, a fully implantable neural stimulator that is designed to stimulate the brain in the small animal is described. Electrical stimulation of the small animal is applicable to pre-clinical study, and behavior study for neuroscience research, etc. Especially, behavior study of the freely moving animal is useful to observe the modulation of sensory and motor functions by the stimulation. It involves conditioning animal's movement response through directional neural stimulation on the region of interest. The main technique that enables such applications is the development of an implantable neural stimulator. Implantable neural stimulator is used to modulate the behavior of the animal, while it ensures the free movement of the animals. Therefore, stable operation in vivo and device size are important issues in the design of implantable neural stimulators. Conventional neural stimulators for brain stimulation of small animal are comprised of electrodes implanted in the brain and a pulse generation circuit mounted on the back of the animal. The electrical stimulation generated from the circuit is conveyed to the target region by the electrodes wire-connected with the circuit. The devices are powered by a large battery, and controlled by a microcontroller unit. While it represents a simple approach, it is subject to various potential risks including short operation time, infection at the wound, mechanical failure of the device, and animals being hindered to move naturally, etc. A neural stimulator that is miniaturized, fully implantable, low-powered, and capable of wireless communication is required. In this dissertation, a fully implantable stimulator with remote controllability, compact size, and minimal power consumption is suggested for freely moving animal application. The stimulator consists of modular units of surface-type and depth-type arrays for accessing target brain area, package for accommodating the stimulating electronics all of which are assembled after independent fabrication and implantation using customized flat cables and connectors. The electronics in the package contains ZigBee telemetry for low-power wireless communication, inductive link for recharging lithium battery, and an ASIC that generates biphasic pulse for neural stimulation. A dual-mode power-saving scheme with a duty cycling was applied to minimize the power consumption. All modules were packaged using liquid crystal polymer (LCP) to avoid any chemical reaction after implantation. To evaluate the fabricated stimulator, wireless operation test was conducted. Signal-to-Noise Ratio (SNR) of the ZigBee telemetry were measured, and its communication range and data streaming capacity were tested. The amount of power delivered during the charging session depending on the coil distance was measured. After the evaluation of the device functionality, the stimulator was implanted into rats to train the animals to turn to the left (or right) following a directional cue applied to the barrel cortex. Functionality of the device was also demonstrated in a three-dimensional maze structure, by guiding the rats to navigate better in the maze. Finally, several aspects of the fabricated device were discussed further.본 연구에서는 소형 동물의 두뇌를 자극하기 위한 완전 이식형 신경자극기가 개발되었다. 소형 동물의 전기자극은 전임상 연구, 신경과학 연구를 위한 행동연구 등에 활용된다. 특히, 자유롭게 움직이는 동물을 대상으로 한 행동 연구는 자극에 의한 감각 및 운동 기능의 조절을 관찰하는 데 유용하게 활용된다. 행동 연구는 두뇌의 특정 관심 영역을 직접적으로 자극하여 동물의 행동반응을 조건화하는 방식으로 수행된다. 이러한 적용을 가능케 하는 핵심기술은 이식형 신경자극기의 개발이다. 이식형 신경자극기는 동물의 움직임을 방해하지 않으면서도 그 행동을 조절하기 위해 사용된다. 따라서 동물 내에서의 안정적인 동작과 장치의 크기가 이식형 신경자극기를 설계함에 있어 중요한 문제이다. 기존의 신경자극기는 두뇌에 이식되는 전극 부분과, 동물의 등 부분에 위치한 회로부분으로 구성된다. 회로에서 생산된 전기자극은 회로와 전선으로 연결된 전극을 통해 목표 지점으로 전달된다. 장치는 배터리에 의해 구동되며, 내장된 마이크로 컨트롤러에 의해 제어된다. 이는 쉽고 간단한 접근방식이지만, 짧은 동작시간, 이식부위의 감염이나 장치의 기계적 결함, 그리고 동물의 자연스러운 움직임 방해 등 여러 문제점을 야기할 수 있다. 이러한 문제의 개선을 위해 무선통신이 가능하고, 저전력, 소형화된 완전 이식형 신경자극기의 설계가 필요하다. 본 연구에서는 자유롭게 움직이는 동물에 적용하기 위하여 원격 제어가 가능하며, 크기가 작고, 소모전력이 최소화된 완전이식형 자극기를 제시한다. 설계된 신경자극기는 목표로 하는 두뇌 영역에 접근할 수 있는 표면형 전극과 탐침형 전극, 그리고 자극 펄스 생성 회로를 포함하는 패키지 등의 모듈들로 구성되며, 각각의 모듈은 독립적으로 제작되어 동물에 이식된 뒤 케이블과 커넥터로 연결된다. 패키지 내부의 회로는 저전력 무선통신을 위한 지그비 트랜시버, 리튬 배터리의 재충전을 위한 인덕티브 링크, 그리고 신경자극을 위한 이상성 자극파형을 생성하는 ASIC으로 구성된다. 전력 절감을 위해 두 개의 모드를 통해 사용률을 조절하는 방식이 장치에 적용된다. 모든 모듈들은 이식 후의 생물학적, 화학적 안정성을 위해 액정 폴리머로 패키징되었다. 제작된 신경자극기를 평가하기 위해 무선 동작 테스트가 수행되었다. 지그비 통신의 신호 대 잡음비가 측정되었으며, 해당 통신의 동작거리 및 데이터 스트리밍 성능이 검사되었고, 장치의 충전이 수행될 때 코일간의 거리에 따라 전송되는 전력의 크기가 측정되었다. 장치의 평가 이후, 신경자극기는 쥐에 이식되었으며, 해당 동물은 이식된 장치를 이용해 방향 신호에 따라 좌우로 이동하도록 훈련되었다. 또한, 3차원 미로 구조에서 쥐의 이동방향을 유도하는 실험을 통하여 장치의 기능성을 추가적으로 검증하였다. 마지막으로, 제작된 장치의 특징이 여러 측면에서 심층적으로 논의되었다.Chapter 1 : Introduction 1 1.1. Neural Interface 2 1.1.1. Concept 2 1.1.2. Major Approaches 3 1.2. Neural Stimulator for Animal Brain Stimulation 5 1.2.1. Concept 5 1.2.2. Neural Stimulator for Freely Moving Small Animal 7 1.3. Suggested Approaches 8 1.3.1. Wireless Communication 8 1.3.2. Power Management 9 1.3.2.1. Wireless Power Transmission 10 1.3.2.2. Energy Harvesting 11 1.3.3. Full implantation 14 1.3.3.1. Polymer Packaging 14 1.3.3.2. Modular Configuration 16 1.4. Objectives of This Dissertation 16 Chapter 2 : Methods 18 2.1. Overview 19 2.1.1. Circuit Description 20 2.1.1.1. Pulse Generator ASIC 21 2.1.1.2. ZigBee Transceiver 23 2.1.1.3. Inductive Link 24 2.1.1.4. Energy Harvester 25 2.1.1.5. Surrounding Circuitries 26 2.1.2. Software Description 27 2.2. Antenna Design 29 2.2.1. RF Antenna 30 2.2.1.1. Design of Monopole Antenna 31 2.2.1.2. FEM Simulation 31 2.2.2. Inductive Link 36 2.2.2.1. Design of Coil Antenna 36 2.2.2.2. FEM Simulation 38 2.3. Device Fabrication 41 2.3.1. Circuit Assembly 41 2.3.2. Packaging 42 2.3.3. Electrode, Feedthrough, Cable, and Connector 43 2.4. Evaluations 45 2.4.1. Wireless Operation Test 46 2.4.1.1. Signal-to-Noise Ratio (SNR) Measurement 46 2.4.1.2. Communication Range Test 47 2.4.1.3. Device Operation Monitoring Test 48 2.4.2. Wireless Power Transmission 49 2.4.3. Electrochemical Measurements In Vitro 50 2.4.4. Animal Testing In Vivo 52 Chapter 3 : Results 57 3.1. Fabricated System 58 3.2. Wireless Operation Test 59 3.2.1. Signal-to-Noise Ratio Measurement 59 3.2.2. Communication Range Test 61 3.2.3. Device Operation Monitoring Test 62 3.3. Wireless Power Transmission 64 3.4. Electrochemical Measurements In Vitro 65 3.5. Animal Testing In Vivo 67 Chapter 4 : Discussion 73 4.1. Comparison with Conventional Devices 74 4.2. Safety of Device Operation 76 4.2.1. Safe Electrical Stimulation 76 4.2.2. Safe Wireless Power Transmission 80 4.3. Potential Applications 84 4.4. Opportunities for Further Improvements 86 4.4.1. Weight and Size 86 4.4.2. Long-Term Reliability 93 Chapter 5 : Conclusion 96 Reference 98 Appendix - Liquid Crystal Polymer (LCP) -Based Spinal Cord Stimulator 107 국문 초록 138 감사의 글 140Docto
    corecore