6,643 research outputs found

    Increasing persistence in undergraduate science majors: a model for institutional support of underrepresented students.

    Get PDF
    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most "gatekeeper" chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap

    The Case for Improving U.S. Computer Science Education

    Get PDF
    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. school system has disregarded differences within STEM fields. Indeed, the most important STEM field for a modern economy is not only one that is not represented by its own initial in "STEM" but also the field with the fewest number of high school students taking its classes and by far has the most room for improvement—computer science

    Improving Underrepresented Minority Student Persistence in STEM.

    Get PDF
    Members of the Joint Working Group on Improving Underrepresented Minorities (URMs) Persistence in Science, Technology, Engineering, and Mathematics (STEM)-convened by the National Institute of General Medical Sciences and the Howard Hughes Medical Institute-review current data and propose deliberation about why the academic "pathways" leak more for URM than white or Asian STEM students. They suggest expanding to include a stronger focus on the institutional barriers that need to be removed and the types of interventions that "lift" students' interests, commitment, and ability to persist in STEM fields. Using Kurt Lewin's planned approach to change, the committee describes five recommendations to increase URM persistence in STEM at the undergraduate level. These recommendations capitalize on known successes, recognize the need for accountability, and are framed to facilitate greater progress in the future. The impact of these recommendations rests upon enacting the first recommendation: to track successes and failures at the institutional level and collect data that help explain the existing trends

    Breaking Boundaries in Computing in Undergraduate Courses

    Get PDF
    An important question in undergraduate curricula is that of incorporating computing into STEM courses for majors and non-majors alike. What does it mean to teach “computing” in this context? What are some of the benefits and challenges for students and instructors in such courses? This paper contributes to this important dialog by describing three undergraduate courses that have been developed and taught at Harvey Mudd College and Loyola Marymount University. Each case study describes the course objectives, implementation challenges, and assessments

    A Mixed-Methods Study of Students’ Success and Persistence in Biology

    Get PDF
    Undergraduate success and persistence in Science Technology Engineering and Mathematics (STEM) fields is of critical importance to the United States (U.S.) maintenance of its position as the world leader in scientific innovations. While the total number of undergraduate degrees awarded annually has nearly tripled over the past 40 years, the same cannot be said for the proportion of degrees in Science Technology, Engineering and Mathematics (STEM) fields. The U.S. share of the world’s STEM graduates is sharply declining, on average less than 40% of incoming college freshmen elect to pursue a degree in a STEM field each year, with more than half of those individuals declaring a major in the biological sciences or a closely related area (e.g., premedicine, pre-health or nursing). Research indicates that, there is need to promote success and persistence among the undergraduates undertaking STEM fields. In an effort to address this call, a majority of research has employed a variety of empirically validated instruction strategies designed to promote undergraduate success and persistence in biological sciences. Although of integral importance, such studies have often not extensively explored the impact of motivational and attitudinal factors in tandem with demographic and educational characteristics, especially in the field of biology. The current study used quantitative methods utilizing Quasi experimental design to examine the impact of motivational and attitudinal factors alongside with demographic and secondary characteristics in relation to students’ success and persistence in biology among students enrolled in two introductory biology courses (Principles of Biology and Organismal Biology) at a mid-size research and teaching university. Additionally, the study examined to what extent do such factors differentially predict success and persistence among underrepresented minority and first generation students within the aforementioned cohort. A second component of the study used qualitative inquiry and thematic data analysis techniques, to explore the persistence of both average and below average performing students in biology by examining their experiences in biology program. Analyses examining student success found that motivational factors were equally important predictors of success among all student types. The top demographic predictors of success were: index score (a combination of high school GPA, SAT and ACT scores), minority status and first generation status, uniquely explaining 4.7%, 3.0% and 1% of variance in students’ course grade, respectively. The attitudinal predictors of students’ success were: students’ ability to apply knowledge to solve biology-specific tasks and enjoyment of the biology major each explaining 1.0% of variance in students’ final course grade. Among the underrepresented minority students, dual enrollment in an active learning-based supplemental instruction course explained 1.1% of the variance. Analyses examining predictors of persistence in biology found that self-efficacy and grade motivation were the important motivational factors predicting students’ persistence. Strategies employed by students to solve biology problems was the only attitudinal factor important for persistence in biology. Students’ final percent course grade in introductory biology courses also emerged as a significant predictor of student persistence in biology. Interestingly, first generation students were more likely to persist in biology compared to continuing students, while minority students were less likely to persist in biology compared to non-minority students. The qualitative aspects of this study involved 12 participants, among these, 10 had persisted in biology while 2 had switched from biology to other majors. The four most important factors highlighted by the participants were: challenges associated with transitioning from high school to college, instructional aspects of the introductory biology courses, effects of participants’ social interactions and aspects of competition and weeding out in biology introductory courses. The results and findings from this study suggests several things. First, developing and nurturing proper motivations and positive attitudes in post-secondary classrooms alongside with factoring motivational and attitudinal factors that are important for URMs and FGs success and persistence may be a step forward in addressing the critical problem of success in STEM fields in general. Second, meaningful engagement of students in solving biology related problems appears to be an essential task of educators leading first-semester biology experiences. Thirdly, approaches geared towards increasing student success in introductory courses seem to be essential in students’ persistence in specific majors. Finally, the study findings suggest that students’ success and persistence in biology may be reduced with sufficient streamlining of high school preparation to meet college level expectations with respect to what high school graduates entering college need to know and be able to do for success and persistence in college
    • …
    corecore