1,783 research outputs found

    A Simple Derivation of the Refined Sphere Packing Bound Under Certain Symmetry Hypotheses

    Full text link
    A judicious application of the Berry-Esseen theorem via suitable Augustin information measures is demonstrated to be sufficient for deriving the sphere packing bound with a prefactor that is Ω(n−0.5(1−Esp′(R)))\mathit{\Omega}\left(n^{-0.5(1-E_{sp}'(R))}\right) for all codes on certain families of channels -- including the Gaussian channels and the non-stationary Renyi symmetric channels -- and for the constant composition codes on stationary memoryless channels. The resulting non-asymptotic bounds have definite approximation error terms. As a preliminary result that might be of interest on its own, the trade-off between type I and type II error probabilities in the hypothesis testing problem with (possibly non-stationary) independent samples is determined up to some multiplicative constants, assuming that the probabilities of both types of error are decaying exponentially with the number of samples, using the Berry-Esseen theorem.Comment: 20 page

    Asymptotic Behavior of Error Exponents in the Wideband Regime

    Full text link
    In this paper, we complement Verd\'{u}'s work on spectral efficiency in the wideband regime by investigating the fundamental tradeoff between rate and bandwidth when a constraint is imposed on the error exponent. Specifically, we consider both AWGN and Rayleigh-fading channels. For the AWGN channel model, the optimal values of Rz(0)R_z(0) and RzË™(0)\dot{R_z}(0) are calculated, where Rz(1/B)R_z(1/B) is the maximum rate at which information can be transmitted over a channel with bandwidth B/2B/2 when the error-exponent is constrained to be greater than or equal to z.z. Based on this calculation, we say that a sequence of input distributions is near optimal if both Rz(0)R_z(0) and RzË™(0)\dot{R_z}(0) are achieved. We show that QPSK, a widely-used signaling scheme, is near-optimal within a large class of input distributions for the AWGN channel. Similar results are also established for a fading channel where full CSI is available at the receiver.Comment: 59 pages, 6 figure

    The Sphere Packing Bound For Memoryless Channels

    Full text link
    Sphere packing bounds (SPBs) ---with prefactors that are polynomial in the block length--- are derived for codes on two families of memoryless channels using Augustin's method: (possibly non-stationary) memoryless channels with (possibly multiple) additive cost constraints and stationary memoryless channels with convex constraints on the composition (i.e. empirical distribution, type) of the input codewords. A variant of Gallager's bound is derived in order to show that these sphere packing bounds are tight in terms of the exponential decay rate of the error probability with the block length under mild hypotheses.Comment: 29 page

    The Sphere Packing Bound for DSPCs with Feedback a la Augustin

    Get PDF
    Establishing the sphere packing bound for block codes on the discrete stationary product channels with feedback ---which are commonly called the discrete memoryless channels with feedback--- was considered to be an open problem until recently, notwithstanding the proof sketch provided by Augustin in 1978. A complete proof following Augustin's proof sketch is presented, to demonstrate its adequacy and to draw attention to two novel ideas it employs. These novel ideas (i.e., the Augustin's averaging and the use of subblocks) are likely to be applicable in other communication problems for establishing impossibility results.Comment: 12 pages, 2 figure

    Error Probability Bounds for Gaussian Channels under Maximal and Average Power Constraints

    Get PDF
    This paper studies the performance of block coding on an additive white Gaussian noise channel under different power limitations at the transmitter. Lower bounds are presented for the minimum error probability of codes satisfying maximal and average power constraints. These bounds are tighter than previous results in the finite blocklength regime, and yield a better understanding on the structure of good codes under an average power limitation. Evaluation of these bounds for short and moderate blocklengths is also discussed.Comment: Submitted to the IEEE Transactions on Information Theory. This article was presented in part at the 2019 IEEE International Symposium on Information Theory, Paris, France (ISIT 2019) and at the 2020 International Z\"urich Seminar on Communication and Information, Z\"urich, Switzerland (IZS 2020
    • …
    corecore