15 research outputs found

    On the general position subset selection problem

    Full text link
    Let f(n,)f(n,\ell) be the maximum integer such that every set of nn points in the plane with at most \ell collinear contains a subset of f(n,)f(n,\ell) points with no three collinear. First we prove that if O(n)\ell \leq O(\sqrt{n}) then f(n,)Ω(nln)f(n,\ell)\geq \Omega(\sqrt{\frac{n}{\ln \ell}}). Second we prove that if O(n(1ϵ)/2)\ell \leq O(n^{(1-\epsilon)/2}) then f(n,)Ω(nlogn)f(n,\ell) \geq \Omega(\sqrt{n\log_\ell n}), which implies all previously known lower bounds on f(n,)f(n,\ell) and improves them when \ell is not fixed. A more general problem is to consider subsets with at most kk collinear points in a point set with at most \ell collinear. We also prove analogous results in this setting

    Author index volume 75 (1989)

    Get PDF

    General Position Subsets and Independent Hyperplanes in d-Space

    Full text link
    Erd\H{o}s asked what is the maximum number α(n)\alpha(n) such that every set of nn points in the plane with no four on a line contains α(n)\alpha(n) points in general position. We consider variants of this question for dd-dimensional point sets and generalize previously known bounds. In particular, we prove the following two results for fixed dd: - Every set HH of nn hyperplanes in Rd\mathbb{R}^d contains a subset SHS\subseteq H of size at least c(nlogn)1/dc \left(n \log n\right)^{1/d}, for some constant c=c(d)>0c=c(d)>0, such that no cell of the arrangement of HH is bounded by hyperplanes of SS only. - Every set of cqdlogqcq^d\log q points in Rd\mathbb{R}^d, for some constant c=c(d)>0c=c(d)>0, contains a subset of qq cohyperplanar points or qq points in general position. Two-dimensional versions of the above results were respectively proved by Ackerman et al. [Electronic J. Combinatorics, 2014] and by Payne and Wood [SIAM J. Discrete Math., 2013].Comment: 8 page

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    On Higher Dimensional Point Sets in General Position

    Get PDF
    A finite point set in ?^d is in general position if no d + 1 points lie on a common hyperplane. Let ?_d(N) be the largest integer such that any set of N points in ?^d with no d + 2 members on a common hyperplane, contains a subset of size ?_d(N) in general position. Using the method of hypergraph containers, Balogh and Solymosi showed that ??(N) < N^{5/6 + o(1)}. In this paper, we also use the container method to obtain new upper bounds for ?_d(N) when d ? 3. More precisely, we show that if d is odd, then ?_d(N) < N^{1/2 + 1/(2d) + o(1)}, and if d is even, we have ?_d(N) < N^{1/2 + 1/(d-1) + o(1)}. We also study the classical problem of determining the maximum number a(d,k,n) of points selected from the grid [n]^d such that no k + 2 members lie on a k-flat. For fixed d and k, we show that a(d,k,n)? O(n^{d/{2?(k+2)/4?}(1- 1/{2?(k+2)/4?d+1})}), which improves the previously best known bound of O(n^{d/?(k + 2)/2?}) due to Lefmann when k+2 is congruent to 0 or 1 mod 4
    corecore