8 research outputs found

    A Decomposition of Gallai Multigraphs

    Get PDF
    An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees

    Density of Gallai Multigraphs

    Get PDF
    Diwan and Mubayi asked how many edges of each color could be included in a 33-edge-colored multigraph containing no rainbow triangle. We answer this question under the modest assumption that the multigraphs in question contain at least one edge between every pair of vertices. We also conjecture that this assumption is, in fact, without loss of generality

    On rainbow tetrahedra in Cayley graphs

    Full text link
    Let Γn\Gamma_n be the complete undirected Cayley graph of the odd cyclic group ZnZ_n. Connected graphs whose vertices are rainbow tetrahedra in Γn\Gamma_n are studied, with any two such vertices adjacent if and only if they share (as tetrahedra) precisely two distinct triangles. This yields graphs GG of largest degree 6, asymptotic diameter ∣V(G)∣1/3|V(G)|^{1/3} and almost all vertices with degree: {\bf(a)} 6 in GG; {\bf(b)} 4 in exactly six connected subgraphs of the (3,6,3,6)(3,6,3,6)-semi-regular tessellation; and {\bf(c)} 3 in exactly four connected subgraphs of the {6,3}\{6,3\}-regular hexagonal tessellation. These vertices have as closed neighborhoods the union (in a fixed way) of closed neighborhoods in the ten respective resulting tessellations. Generalizing asymptotic results are discussed as well.Comment: 21 pages, 7 figure

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Subdivisions with Distance Constraints in Large Graphs

    Get PDF
    In this dissertation we are concerned with sharp degree conditions that guarantee the existence of certain types of subdivisions in large graphs. Of particular interest are subdivisions with a certain number of arbitrarily specified vertices and with prescribed path lengths. Our non-standard approach makes heavy use of the Regularity Lemma (Szemerédi, 1978), the Blow-Up Lemma (Komlós, Sárkózy, and Szemerédi, 1994), and the minimum degree panconnectivity criterion (Williamson, 1977).Sharp minimum degree criteria for a graph G to be H-linked have recently been discovered. We define (H,w,d)-linkage, a condition stronger than H-linkage, by including a weighting function w consisting of required lengths for each edge-path of a desired H-subdivision. We establish sharp minimum degree criteria for a large graph G to be (H,w,d)-linked for all nonnegative d. We similarly define the weaker condition (H,S,w,d)-semi-linkage, where S denotes the set of vertices of H whose corresponding vertices in an H-subdivision are arbitrarily specified. We prove similar sharp minimum degree criteria for a large graph G to be (H,S,w,d)-semi-linked for all nonnegativeWe also examine path coverings in large graphs, which could be seen as a special case of (H,S,w)-semi-linkage. In 2000, Enomoto and Ota conjectured that a graph G of order n with degree sum σ2(G) satisfying σ2(G) \u3e n + k - 2 may be partitioned into k paths, each of prescribed order and with a specified starting vertex. We prove the Enomoto-Ota Conjecture for graphs of sufficiently large order

    A decomposition of Gallai multigraphs

    No full text
    An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed tree
    corecore