760 research outputs found

    A tutorial on recursive models for analyzing and predicting path choice behavior

    Full text link
    The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones

    Capturing positive utilities during the estimation of recursive logit models: A prism-based approach

    Full text link
    Although the recursive logit (RL) model has been recently popular and has led to many applications and extensions, an important numerical issue with respect to the evaluation of value functions remains unsolved. This issue is particularly significant for model estimation, during which the parameters are updated every iteration and may violate the model feasible condition. To solve this numerical issue, this paper proposes a prism-constrained RL (Prism-RL) model that implicitly restricts the path set by the prism constraint defined based upon a state-extended network representation. Providing a set of numerical experiments, we show that the Prism-RL model succeeds in the stable estimation regardless of the initial and true parameter values and is able to capture positive utilities. In the real application to a pedestrian network, we found the positive effect of street green presence on pedestrians. Moreover, the Prism-RL model achieved higher goodness of fit than the RL model, implying that the Prism-RL model can also describe more realistic route choice behavior.Comment: 20 pages, 9 figure

    Route choice and traffic equilibrium modeling in multi-modal and activity-based networks

    Get PDF
    Que ce soit pour aller au travail, faire du magasinage ou participer à des activités sociales, la mobilité fait partie intégrante de la vie quotidienne. Nous bénéficions à cet égard d'un nombre grandissant de moyens de transports, ce qui contribue tant à notre qualité de vie qu'au développement économique. Néanmoins, la demande croissante de mobilité, à laquelle s'ajoutent l'expansion urbaine et l'accroissement du parc automobile, a également des répercussions négatives locales et globales, telles que le trafic, les nuisances sonores, et la dégradation de l'environnement. Afin d'atténuer ces effets néfastes, les autorités cherchent à mettre en oeuvre des politiques de gestion de la demande avec le meilleur résultat possible pour la société. Pour ce faire, ces dernières ont besoin d'évaluer l'impact de différentes mesures. Cette perspective est ce qui motive le problème de l'analyse et la prédiction du comportement des usagers du système de transport, et plus précisément quand, comment et par quel itinéraire les individus décident de se déplacer. Cette thèse a pour but de développer et d'appliquer des modèles permettant de prédire les flux de personnes et/ou de véhicules dans des réseaux urbains comportant plusieurs modes de transport. Il importe que de tels modèles soient supportés par des données, génèrent des prédictions exactes, et soient applicables à des réseaux réels. Dans la pratique, le problème de prédiction de flux se résout en deux étapes. La première, l'analyse de choix d'itinéraire, a pour but d'identifier le chemin que prendrait un voyageur dans un réseau pour effectuer un trajet entre un point A et un point B. Pour ce faire, on estime à partir de données les paramètres d'une fonction de coût multi-attribut représentant le comportement des usagers du réseau. La seconde étape est celle de l'affectation de trafic, qui distribue la demande totale dans le réseau de façon à obtenir un équilibre, c.-à-d. un état dans lequel aucun utilisateur ne souhaite changer d'itinéraire. La difficulté de cette étape consiste à modéliser la congestion du réseau, qui dépend du choix de route de tous les voyageurs et affecte simultanément la fonction de coût de chacun. Cette thèse se compose de quatre articles soumis à des journaux internationaux et d'un chapitre additionnel. Dans tous les articles, nous modélisons le choix d'itinéraire d'un individu comme une séquence de choix d'arcs dans le réseau, selon une approche appelée modèle de choix d'itinéraire récursif. Cette méthodologie possède d'avantageuses propriétés, comme un estimateur non biaisé et des procédures d'affectation rapides, en évitant de générer des ensembles de chemins. Néanmoins, l'estimation de tels modèles pose une difficulté additionnelle puisqu'elle nécessite de résoudre un problème de programmation dynamique imbriqué, ce qui explique que cette approche ne soit pas encore largement utilisée dans le domaine de la recherche en transport. Or, l'objectif principal de cette thèse est de répondre des défis liés à l'application de cette méthodologie à des réseaux multi-modaux. La force de cette thèse consiste en des applications à échelle réelle qui soulèvent des défis computationnels, ainsi que des contributions méthodologiques. Le premier article est un tutoriel sur l'analyse de choix d'itinéraire à travers les modèles récursifs susmentionnés. Les contributions principales sont de familiariser les chercheur.e.s avec cette méthodologie, de donner une certaine intuition sur les propriétés du modèle, d'illustrer ses avantages sur de petits réseaux, et finalement de placer ce problème dans un contexte plus large en tissant des liens avec des travaux dans les domaines de l'optimisation inverse et de l'apprentissage automatique. Deux articles et un chapitre additionnel appartiennent à la catégorie de travaux appliquant la méthodologie précédemment décrite sur des réseaux réels, de grande taille et multi-modaux. Ces applications vont au-delà des précédentes études dans ce contexte, qui ont été menées sur des réseaux routiers simples. Premièrement, nous estimons des modèles de choix d'itinéraire récursifs pour les trajets de cyclistes, et nous soulignons certains avantages de cette méthodologie dans le cadre de la prédiction. Nous étendons ensuite ce premier travail afin de traiter le cas d'un réseau de transport public comportant plusieurs modes. Enfin, nous considérons un problème de prédiction de demande plus large, où l'on cherche à prédire simultanément l'enchaînement des trajets quotidiens des voyageurs et leur participation aux activités qui motivent ces déplacements. Finalement, l'article concluant cette thèse concerne la modélisation d'affectation de trafic. Plus précisément, nous nous intéressons au calcul d'un équilibre dans un réseau où chaque arc peut posséder une capacité finie, ce qui est typiquement le cas des réseaux de transport public. Cet article apporte d'importantes contributions méthodologiques. Nous proposons un modèle markovien d'équilibre de trafic dit stratégique, qui permet d'affecter la demande sur les arcs du réseau sans en excéder la capacité, tout en modélisant comment la probabilité qu'un arc atteigne sa capacité modifie le choix de route des usagers.Traveling is an essential part of daily life, whether to attend work, perform social activities, or go shopping among others. We benefit from an increasing range of available transportation services to choose from, which supports economic growth and contributes to our quality of life. Yet the growing demand for travel, combined with urban sprawl and increasing vehicle ownership rates, is also responsible for major local and global externalities, such as degradation of the environment, congestion and noise. In order to mitigate the negative impacts of traveling while weighting benefits to users, transportation planners seek to design policies and improve infrastructure with the best possible outcome for society as a whole. Taking effective actions requires to evaluate the impact of various measures, which necessitates first to understand and predict travel behavior, i.e., how, when and by which route individuals decide to travel. With this background in mind, this thesis has the objective of developing and applying models to predict flows of persons and/or vehicles in multi-modal transportation networks. It is desirable that such models be data-driven, produce accurate predictions, and be applicable to real networks. In practice, the problem of flow prediction is addressed in two separate steps, and this thesis is concerned with both. The first, route choice analysis, is the problem of identifying the path a traveler would take in a network. This is achieved by estimating from data a parametrized cost function representing travelers' behavior. The second step, namely traffic assignment, aims at distributing all travelers on the network's paths in order to find an equilibrium state, such that no traveler has an interest in changing itinerary. The challenge lies in taking into account the effect of generated congestion, which depends on travelers' route choices while simultaneously impacting their cost of traveling. This thesis is composed of four articles submitted to international journals and an additional chapter. In all the articles of the thesis, we model an individual's choice of path as a sequence of link choices, using so-called recursive route choice models. This methodology is a state-of-the-art framework which is known to possess the advantage of unbiased parameter estimates and fast assignment procedures, by avoiding to generate choice sets of paths. However, it poses the additional challenge of requiring one to solve embedded dynamic programming problems, and is hence not widely used in the transportation community. This thesis addresses practical and theoretical challenges related to applying this methodological framework to real multi-modal networks. The strength of this thesis consists in large-scale applications which bear computational challenges, as well as some methodological contributions to this modeling framework. The first article in this thesis is a tutorial on predicting and analyzing path choice behavior using recursive route choice models. The contribution of this article is to familiarize researchers with this methodology, to give intuition on the model properties, to illustrate its advantages through examples, and finally to position this modeling framework within a broader context, by establishing links with recently published work in the inverse optimization and machine learning fields. Two articles and an additional chapter can be categorized as applications of the methodology to estimate parameters of travel demand models in several large, real, and/or multi-dimensional networks. These applications go beyond previous studies on small physical road networks. First, we estimate recursive models for the route choice of cyclists and we demonstrate some advantages of the recursive models in the context of prediction. We also provide an application to a time-expanded public transportation networks with several modes. Then, we consider a broader travel demand problem, in which decisions regarding daily trips and participation in activities are made jointly. The latter is also modeled with recursive route choice models by considering sequences of activity, destination and mode choices as paths in a so-called supernetwork. Finally, the subject of the last article in this thesis is traffic assignment. More precisely, we address the problem of computing a traffic equilibrium in networks with strictly limited link capacities, such as public transport networks. This article provides important methodological contributions. We propose a strategic Markovian traffic equilibrium model which assigns flows to networks without exceeding link capacities while realistically modeling how the risk of not being able to access an arc affects route choice behavior

    Traffic prediction and bilevel network design

    Full text link
    Cette thèse porte sur la modélisation du trafic dans les réseaux routiers et comment celle-ci est intégrée dans des modèles d'optimisation. Ces deux sujets ont évolué de manière plutôt disjointe: le trafic est prédit par des modèles mathématiques de plus en plus complexes, mais ce progrès n'a pas été incorporé dans les modèles de design de réseau dans lesquels les usagers de la route jouent un rôle crucial. Le but de cet ouvrage est d'intégrer des modèles d'utilités aléatoires calibrés avec de vraies données dans certains modèles biniveaux d'optimisation et ce, par une décomposition de Benders efficace. Cette décomposition particulière s'avère être généralisable par rapport à une grande classe de problèmes communs dans la litérature et permet d'en résoudre des exemples de grande taille. Le premier article présente une méthodologie générale pour utiliser des données GPS d'une flotte de véhicules afin d'estimer les paramètres d'un modèle de demande dit recursive logit. Les traces GPS sont d'abord associées aux liens d'un réseau à l'aide d'un algorithme tenant compte de plusieurs facteurs. Les chemins formés par ces suites de liens et leurs caractéristiques sont utilisés afin d'estimer les paramètres d'un modèle de choix. Ces paramètres représentent la perception qu'ont les usagers de chacune de ces caractéristiques par rapport au choix de leur chemin. Les données utilisées dans cet article proviennent des véhicules appartenant à plusieurs compagnies de transport opérant principalement dans la région de Montréal. Le deuxième article aborde l'intégration d'un modèle de choix de chemin avec utilités aléatoires dans une nouvelle formulation biniveau pour le problème de capture de flot de trafic. Le modèle proposé permet de représenter différents comportements des usagers par rapport à leur choix de chemin en définissant les utilités d'arcs appropriées. Ces utilités sont stochastiques ce qui contribue d'autant plus à capturer un comportement réaliste des usagers. Le modèle biniveau est rendu linéaire à travers l'ajout d'un terme lagrangien basé sur la dualité forte et ceci mène à une décomposition de Benders particulièrement efficace. Les expériences numériques sont principalement menés sur un réseau représentant la ville de Winnipeg ce qui démontre la possibilité de résoudre des problèmes de taille relativement grande. Le troisième article démontre que l'approche du second article peut s'appliquer à une forme particulière de modèles biniveaux qui comprennent plusieurs problèmes différents. La décomposition est d'abord présentée dans un cadre général, puis dans un contexte où le second niveau du modèle biniveau est un problème de plus courts chemins. Afin d'établir que ce contexte inclut plusieurs applications, deux applications distinctes sont adaptées à la forme requise: le transport de matières dangeureuses et la capture de flot de trafic déterministe. Une troisième application, la conception et l'établissement de prix de réseau simultanés, est aussi présentée de manière similaire à l'Annexe B de cette thèse.The subject of this thesis is the modeling of traffic in road networks and its integration in optimization models. In the literature, these two topics have to a large extent evolved independently: traffic is predicted more accurately by increasingly complex mathematical models, but this progress has not been incorporated in network design models where road users play a crucial role. The goal of this work is to integrate random utility models calibrated with real data into bilevel optimization models through an efficient Benders decomposition. This particular decomposition generalizes to a wide class of problems commonly found in the literature and can be used to solved large-scale instances. The first article presents a general methodology to use GPS data gathered from a fleet of vehicles to estimate the parameters of a recursive logit demand model. The GPS traces are first matched to the arcs of a network through an algorithm taking into account various factors. The paths resulting from these sequences of arcs, along with their characteristics, are used to estimate parameters of a choice model. The parameters represent users' perception of each of these characteristics in regards to their path choice behaviour. The data used in this article comes from trucks used by a number of transportation companies operating mainly in the Montreal region. The second article addresses the integration of a random utility maximization model in a new bilevel formulation for the general flow capture problem. The proposed model allows for a representation of different user behaviors in regards to their path choice by defining appropriate arc utilities. These arc utilities are stochastic which further contributes in capturing real user behavior. This bilevel model is linearized through the inclusion of a Lagrangian term based on strong duality which paves the way for a particularly efficient Benders decomposition. The numerical experiments are mostly conducted on a network representing the city of Winnipeg which demonstrates the ability to solve problems of a relatively large size. The third article illustrates how the approach used in the second article can be generalized to a particular form of bilevel models which encompasses many different problems. The decomposition is first presented in a general setting and subsequently in a context where the lower level of the bilevel model is a shortest path problem. In order to demonstrate that this form is general, two distinct applications are adapted to fit the required form: hazmat transportation network design and general flow capture. A third application, joint network design and pricing, is also similarly explored in Appendix B of this thesis

    On inverse reinforcement learning and dynamic discrete choice for predicting path choices

    Full text link
    La modélisation du choix d'itinéraire est un sujet de recherche bien étudié avec des implications, par exemple, pour la planification urbaine et l'analyse des flux d'équilibre du trafic. En raison de l'ampleur des effets que ces problèmes peuvent avoir sur les communautés, il n'est pas surprenant que plusieurs domaines de recherche aient tenté de résoudre le même problème. Les défis viennent cependant de la taille des réseaux eux-mêmes, car les grandes villes peuvent avoir des dizaines de milliers de segments de routes reliés par des dizaines de milliers d'intersections. Ainsi, les approches discutées dans cette thèse se concentreront sur la comparaison des performances entre des modèles de deux domaines différents, l'économétrie et l'apprentissage par renforcement inverse (IRL). Tout d'abord, nous fournissons des informations sur le sujet pour que des chercheurs d'un domaine puissent se familiariser avec l'autre domaine. Dans un deuxième temps, nous décrivons les algorithmes utilisés avec une notation commune, ce qui facilite la compréhension entre les domaines. Enfin, nous comparons les performances des modèles sur des ensembles de données du monde réel, à savoir un ensemble de données couvrant des choix d’itinéraire de cyclistes collectés dans un réseau avec 42 000 liens. Nous rapportons nos résultats pour les deux modèles de l'économétrie que nous discutons, mais nous n'avons pas pu générer les mêmes résultats pour les deux modèles IRL. Cela était principalement dû aux instabilités numériques que nous avons rencontrées avec le code que nous avions modifié pour fonctionner avec nos données. Nous proposons une discussion de ces difficultés parallèlement à la communication de nos résultats.Route choice modeling is a well-studied topic of research with implications, for example, for city planning and traffic equilibrium flow analysis. Due to the scale of effects these problems can have on communities, it is no surprise that diverse fields have attempted solutions to the same problem. The challenges, however, come with the size of networks themselves, as large cities may have tens of thousands of road segments connected by tens of thousands of intersections. Thus, the approaches discussed in this thesis will be focusing on the performance comparison between models from two different fields, econometrics and inverse reinforcement learning (IRL). First, we provide background on the topic to introduce researchers from one field to become acquainted with the other. Secondly, we describe the algorithms used with a common notation to facilitate this building of understanding between the fields. Lastly, we aim to compare the performance of the models on real-world datasets, namely covering bike route choices collected in a network of 42,000 links. We report our results for the two models from econometrics that we discuss, but were unable to generate the same results for the two IRL models. This was primarily due to numerical instabilities we encountered with the code we had modified to work with our data. We provide a discussion of these difficulties alongside the reporting of our results
    • …
    corecore