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Faculté des arts et des sciences
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Résumé
Que ce soit pour aller au travail, faire du magasinage ou participer à des activités

sociales, la mobilité fait partie intégrante de la vie quotidienne. Nous bénéficions à
cet égard d’un nombre grandissant de moyens de transports, ce qui contribue tant
à notre qualité de vie qu’au développement économique. Néanmoins, la demande
croissante de mobilité, à laquelle s’ajoutent l’expansion urbaine et l’accroissement
du parc automobile, a également des répercussions négatives locales et globales,
telles que le trafic, les nuisances sonores, et la dégradation de l’environnement.
Afin d’atténuer ces effets néfastes, les autorités cherchent à mettre en œuvre des
politiques de gestion de la demande avec le meilleur résultat possible pour la société.
Pour ce faire, ces dernières ont besoin d’évaluer l’impact de différentes mesures.
Cette perspective est ce qui motive le problème de l’analyse et la prédiction du
comportement des usagers du système de transport, et plus précisément quand,
comment et par quel itinéraire les individus décident de se déplacer.

Cette thèse a pour but de développer et d’appliquer des modèles permettant de
prédire les flux de personnes et/ou de véhicules dans des réseaux urbains compor-
tant plusieurs modes de transport. Il importe que de tels modèles soient supportés
par des données, génèrent des prédictions exactes, et soient applicables à des ré-
seaux réels. Dans la pratique, le problème de prédiction de flux se résout en deux
étapes. La première, l’analyse de choix d’itinéraire, a pour but d’identifier le che-
min que prendrait un voyageur dans un réseau pour effectuer un trajet entre un
point A et un point B. Pour ce faire, on estime à partir de données les paramètres
d’une fonction de coût multi-attribut représentant le comportement des usagers du
réseau. La seconde étape est celle de l’affectation de trafic, qui distribue la demande
totale dans le réseau de façon à obtenir un équilibre, c.-à-d. un état dans lequel
aucun n’utilisateur ne souhaite changer d’itinéraire. La difficulté de cette étape
consiste à modéliser la congestion du réseau, qui dépend du choix de route de tous
les voyageurs et affecte simultanément la fonction de coût de chacun.

Cette thèse se compose de quatre articles soumis à des journaux internationaux
et d’un chapitre additionnel. Dans tous les articles, nous modélisons le choix d’iti-
néraire d’un individu comme une séquence de choix d’arcs dans le réseau, selon une
approche appelée modèle de choix d’itinéraire récursif. Cette méthodologie pos-
sède d’avantageuses propriétés, comme un estimateur non biaisé et des procédures
d’affectation rapides, en évitant de générer des ensembles de chemins. Néanmoins,
l’estimation de tels modèles pose une difficulté additionnelle puisqu’elle nécessite
de résoudre un problème de programmation dynamique imbriqué, ce qui explique
que cette approche ne soit pas encore largement utilisée dans le domaine de la
recherche en transport. Or, l’objectif principal de cette thèse est de répondre des
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défis liés à l’application de cette méthodologie à des réseaux multi-modaux. La
force de cette thèse consiste en des applications à échelle réelle qui soulèvent des
défis computationnels, ainsi que des contributions méthodologiques.

Le premier article est un tutoriel sur l’analyse de choix d’itinéraire à travers les
modèles récursifs susmentionnés. Les contributions principales sont de familiariser
les chercheur.e.s avec cette méthodologie, de donner une certaine intuition sur les
propriétés du modèle, d’illustrer ses avantages sur de petits réseaux, et finalement de
placer ce problème dans un contexte plus large en tissant des liens avec des travaux
dans les domaines de l’optimisation inverse et de l’apprentissage automatique.

Deux articles et un chapitre additionnel appartiennent à la catégorie de travaux
appliquant la méthodologie précédemment décrite sur des réseaux réels, de grande
taille et multi-modaux. Ces applications vont au-delà des précédentes études dans
ce contexte, qui ont été menées sur des réseaux routiers simples. Premièrement,
nous estimons des modèles de choix d’itinéraire récursifs pour les trajets de cy-
clistes, et nous soulignons certains avantages de cette méthodologie dans le cadre
de la prédiction. Nous étendons ensuite ce premier travail afin de traiter le cas d’un
réseau de transport public comportant plusieurs modes. Enfin, nous considérons
un problème de prédiction de demande plus large, où l’on cherche à prédire simul-
tanément l’enchâınement des trajets quotidiens des voyageurs et leur participation
aux activités qui motivent ces déplacements.

Finalement, l’article concluant cette thèse concerne la modélisation d’affecta-
tion de trafic. Plus précisément, nous nous intéressons au calcul d’un équilibre dans
un réseau où chaque arc peut posséder une capacité finie, ce qui est typiquement
le cas des réseaux de transport public. Cet article apporte d’importantes contribu-
tions méthodologiques. Nous proposons un modèle markovien d’équilibre de trafic
dit stratégique, qui permet d’affecter la demande sur les arcs du réseau sans en
excéder la capacité, tout en modélisant comment la probabilité qu’un arc atteigne
sa capacité modifie le choix de route des usagers.

Mots-clés: Modèles de choix d’itinéraire récursifs, modèle markovien d’équilibre
de trafic, estimation par maximum de vraisemblance, programmation dynamique,
réseaux multi-modaux.
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Summary
Traveling is an essential part of daily life, whether to attend work, perform so-

cial activities, or go shopping among others. We benefit from an increasing range of
available transportation services to choose from, which supports economic growth
and contributes to our quality of life. Yet the growing demand for travel, com-
bined with urban sprawl and increasing vehicle ownership rates, is also responsible
for major local and global externalities, such as degradation of the environment,
congestion and noise. In order to mitigate the negative impacts of traveling while
weighting benefits to users, transportation planners seek to design policies and im-
prove infrastructure with the best possible outcome for society as a whole. Taking
effective actions requires to evaluate the impact of various measures, which necessi-
tates first to understand and predict travel behavior, i.e., how, when and by which
route individuals decide to travel.

With this background in mind, this thesis has the objective of developing and
applying models to predict flows of persons and/or vehicles in multi-modal trans-
portation networks. It is desirable that such models be data-driven, produce accu-
rate predictions, and be applicable to real networks. In practice, the problem of flow
prediction is addressed in two separate steps, and this thesis is concerned with both.
The first, route choice analysis, is the problem of identifying the path a traveler
would take in a network. This is achieved by estimating from data a parametrized
cost function representing travelers’ behavior. The second step, namely traffic as-
signment, aims at distributing all travelers on the network’s paths in order to find
an equilibrium state, such that no traveler has an interest in changing itinerary.
The challenge lies in taking into account the effect of generated congestion, which
depends on travelers’ route choices while simultaneously impacting their cost of
traveling.

This thesis is composed of four articles submitted to international journals and
an additional chapter. In all the articles of the thesis, we model an individual’s
choice of path as a sequence of link choices, using so-called recursive route choice
models. This methodology is a state-of-the-art framework which is known to possess
the advantage of unbiased parameter estimates and fast assignment procedures, by
avoiding to generate choice sets of paths. However, it poses the additional challenge
of requiring one to solve embedded dynamic programming problems, and is hence
not widely used in the transportation community. This thesis addresses practi-
cal and theoretical challenges related to applying this methodological framework
to real multi-modal networks. The strength of this thesis consists in large-scale
applications which bear computational challenges, as well as some methodological
contributions to this modeling framework.
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The first article in this thesis is a tutorial on predicting and analyzing path
choice behavior using recursive route choice models. The contribution of this article
is to familiarize researchers with this methodology, to give intuition on the model
properties, to illustrate its advantages through examples, and finally to position this
modeling framework within a broader context, by establishing links with recently
published work in the inverse optimization and machine learning fields.

Two articles and an additional chapter can be categorized as applications of the
methodology to estimate parameters of travel demand models in several large, real,
and/or multi-dimensional networks. These applications go beyond previous studies
on small physical road networks. First, we estimate recursive models for the route
choice of cyclists and we demonstrate some advantages of the recursive models
in the context of prediction. We also provide an application to a time-expanded
public transportation networks with several modes. Then, we consider a broader
travel demand problem, in which decisions regarding daily trips and participation
in activities are made jointly. The latter is also modeled with recursive route choice
models by considering sequences of activity, destination and mode choices as paths
in a so-called supernetwork.

Finally, the subject of the last article in this thesis is traffic assignment. More
precisely, we address the problem of computing a traffic equilibrium in networks
with strictly limited link capacities, such as public transport networks. This article
provides important methodological contributions. We propose a strategic Marko-
vian traffic equilibrium model which assigns flows to networks without exceeding
link capacities while realistically modeling how the risk of not being able to access
an arc affects route choice behavior.

Keywords: Recursive route choice models, Markovian traffic assignment model,
maximum likelihood estimation, dynamic programming, multi-modal route choice,
activity-based travel demand.
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1 Introduction

This thesis is concerned with the development and application of models to

predict flows of people and/or vehicles in transportation networks. We focus on

two interrelated aspects of the problem. First, estimating parameters of cost func-

tions representing the observed behavior of network users with probabilistic demand

models ; second, assigning travelers to the network’s paths using traffic equilibrium

models. In this section, we first present the motivation underlying this work. Then,

we give an overview of the research context which precedes this thesis. We subse-

quently lay out the scope and describe the specific objectives we set out to achieve.

We conclude this section by providing an overview of the structure of this thesis

and its contributions.

1.1 Motivation

Transportation systems are an essential component of the livability of any city.

We all travel to go to work, pick up children or perform various activities, whether

by necessity or for recreation. Urban transportation systems typically consist of

infrastructure, including roads, bridges and railways, but also vehicles, such as

buses, trams and cars. The planning and management of transportation systems

is the role of central authorities, i.e., public administrations or network operators.

These actors can make strategic choices which have a long-term impact on the

system, such as enacting regulations and policies, planning investments in facilities,

or making decisions regarding the use of existing resources.

In the last decades, most cities have witnessed an increase in road traffic and

travel demand. This phenomenon is partly explained by rapid growth rates in

vehicle ownership, longer travel distances due to urban sprawl, but also the expan-

sion of the transportation supply which is known to trigger more demand. The
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expanded mobility we benefit from contributes to economic growth and quality of

life. Yet, the resulting road traffic also has visible and inevitable detrimental effects

on society. Air quality degradation, congestion, noise and traffic hazards are local

burdens associated to most urban areas. World-wide negative impacts are also felt

as CO2 concentration reaches alarming levels.

Reducing traffic growth and driving individuals towards a more sustainable use

of the transportation system is therefore a long-standing objective for our society.

Nowadays, people benefit from an increasingly wide range of available services to

choose from to perform trips. In addition to the traditional modes consisting of

cars, metro lines and buses, emerging bike sharing systems and alternative vehicles

at the frontier between public and private modes are changing the way people

travel. There exists thus many ways for cities to encourage a shift towards more

efficient and sustainable traveling via subsidies, congestion charges, improvement

of public transportation and biking facilities or implementation of pilot projects.

However, in order to appropriately plan infrastructure and demand management

policies, authorities need decision aid tools to forecast the effect of such measures.

This requires the development of models which can predict flow patterns resulting

from different scenarios and can be used to answer questions such as “What is the

impact of improving the capacity of a metro line?” or“What is the effect of building

separate bike lanes on specific streets?”.

As opposed to goods, transportation of people, on which this thesis focuses, is

driven by individual intentions which cannot be controlled by a globally optimized

system. Therefore, effectively managing travel demand and traffic flows requires to

design the right incentives to encourage behavioral change, informed by knowledge

of the mechanisms and trade-offs driving individual decisions. Many dimensions of

travel choice, such as why, where, how and when each person chooses to travel, are

central to understanding urban flow patterns. Naturally, analyzing this complex

system requires answering many overlapping questions. This thesis addresses some

of them, and it specifically seeks to understand what path individuals choose to

travel between a specific origin and destination in a multi modal urban network,

and how these individual choices aggregate to form urban traffic. The overall

motivation is to predict network flows, which are the number of pedestrians and/or

vehicles present on a given link within a certain time unit. With this background

in mind, it is desirable that the models developed and applied in this thesis be
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data-driven, have predictive accuracy and be operational for real networks.

1.2 Research context

Consider a network composed of links connecting nodes representing an urban

transportation system. The state of such a network at a given time is defined by the

flows of persons and/or vehicles on each arc. Network flow patterns are commonly

described in the literature as the result of two distinct mechanisms (Sheffi, 1985).

On the one hand, individuals choose a path in the network to reach their desired

destination so as to minimize their personalized generalized cost. On the other

hand, the finite capacity of the network induces congestion which impacts this cost,

thus forcing individuals to adapt their path choice in accordance with other users.

Over time, the interaction of these competing mechanisms yields a user equilibrium

(UE), defined by Wardrop (1952) as a network state in which the journey costs on

all routes actually used are equal, and less than those which would be experienced

by a single traveler on an unused path.

In practice, distinct bodies of literature address each part of the problem. Trav-

elers’ route choice preferences are unknown, but it is generally assumed that the

cost of traveling takes a parametric form and depends on several attributes, includ-

ing travel time and other route characteristics. Uncovering this generalized cost

function is part of the demand analysis problem. The discrete choice framework

is widely used to estimate models of users’ behavior, and it is the most endorsed

methodology for the route choice problem in the literature (Ben-Akiva et al., 1984;

Frejinger, 2008; Prato, 2009). Such models are calibrated on data which generally

consists of observed individual decisions (e.g., GPS traces). Discrete choice mod-

els specifically assume that costs are random variables in order to account for the

inherent uncertainty and heterogeneity of human behavior. As a result, estimated

models identify a choice probability distribution over the network’s paths instead

of a single best path. There exists different model structures based on hypotheses

on the distribution of random terms (e.g., multinomial logit, nested logit, mixed

logit). A desirable property of this methodology is its microeconomic foundation

(McFadden, 1978), which is suitable for behavioral interpretation of the model and

computation of welfare change measures.
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The literature on traffic assignment analyses the second part of the problem,

which takes as input an origin-destination matrix representing the total demand and

a cost function dependent on the amount of flow. Usually, the analysis is restricted

to a small time interval under which the travel costs and the demand are considered

constant. The aim of traffic assignment models is to compute the equilibrium flows

resulting from loading the given demand. Different traffic assignment models exist

based on distinct assumptions regarding users’ path choice behavior. Initial models

(Wardrop, 1952) treated the path choice component deterministically, implicitly

implying that individuals behaved identically and with perfect knowledge of costs.

The theory underlying stochastic traffic equilibrium models has since then been

developed by Daganzo and Sheffi (1977) to overcome limitations of deterministic

models, by postulating that users’ path choices are governed by a discrete choice

model.

The main challenge associated with both route choice and traffic assignment

models is the impractically large number of paths in real urban networks. This is

why traditionally, modelers first generate plausible sets of routes before modeling

how travelers choose between them. There are however drawbacks to assuming

that travelers choose among a restricted choice set, discussed in many works: in

particular, the resulting parameter estimates may be biased, the predicted flow

patterns may be unrealistic, and this imposes a need to perform some beforehand

calculations (Frejinger et al., 2009; Bliemer and Bovy, 2008; Akamatsu, 1996).

How to circumvent the need for path generation has thus been a central problem

in the literature, until recent work (Baillon and Cominetti, 2008; Fosgerau et al.,

2013) proposed general recursive models based on links. In these models, Markov

decision processes (MDPs) characterize the path choice behavior of travelers, and

the obstacle of path enumeration is replaced by the necessity to solve a dynamic

programming (DP) problem. The models hence borrow terminology from DP:

the concept of state is used to represent the network link (or node) where the

traveler finds himself, while an action is a choice of outgoing arc. The forward

looking behavior of users is captured by adding the expected minimum cost to

destination (value function) to the immediate cost of each arc. Discrete choice

models based on this concept have been called recursive route choice models and

more generally dynamic discrete choice models. In the traffic assignment literature,

the corresponding Markovian traffic equilibrium model (MTE) emerged in parallel,
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based on an embedded recursive path choice model. This thesis is built on ideas

proposed in these initial works and further pursued by Mai (2016a).

1.3 Scope, objectives and challenges

Considerable recent progress has been made to improve recursive route choice

and traffic equilibrium models. For example, Mai et al. (2015) proposed an ex-

tension of the discrete choice modeling framework of Fosgerau et al. (2013) which

allows path costs to be correlated. Oyama and Hato (2017) introduced a discount

factor in the model in order to capture more complex decision-making dynamics.

Cominetti and Torrico (2016) considered the risk adverse behavior of users in the

context of Markovian traffic equilibrium modeling. These improvements are mostly

aimed at enhancing the realism of the behavioral assumptions underlying the mod-

els. Still, we believe there are presently important incentives to give consideration

to more complex network settings.

In previous works (e.g., Fosgerau et al., 2013; Mai et al., 2015), applications of

recursive models have been directed at uni-modal networks with deterministic link

attributes, aiming at modeling car traffic. In reality, while the car remains the most

widely used transportation mode, a non negligible proportion of trips are performed

either by bike or public transport, or increasingly by combining distinct modes

(Kuhnimhof et al., 2012). Such travel behavior is the key to sustainable mobility.

There is thus an increased political and academic interest in better understanding

flows of alternative modes and the deciding factors driving their use. It is however

non trivial to direct this analysis towards other modes than car. The route choice

behavior of cyclist is influenced by considerably more factors than that of car

drivers; flows in public transportation networks follow entirely different dynamics

because of transfers and limited capacities of transit vehicles.

To capture the complexity of real mobility patterns, and to fulfill the promise

of driving individuals towards a more sustainable use of the transportation infras-

tructures, an integrated approach is necessary. The choices of mode and route,

although viewed for the most part as sequential in the demand modeling litera-

ture, are in fact interrelated: the number and attractiveness of routes connecting a

given origin and destination is likely to influence the mode choice of an individual
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traveling between them. In fact, several other aspects of trip making behavior are

interdependent. When making trade-offs between one mode or another, individuals

consider as well the possibility to reschedule trips, chain trips, or substitute them

entirely for in-home time. There are therefore benefits to model jointly not only

route and mode choice, but also decisions related to which activities are pursued

when, where and for how long, which is the conceptual basis behind activity-based

travel demand models.

Interrelated decisions regarding e.g., mode, route, timing and activity partici-

pation, can also be represented as a network. Traditionally, a network represents a

physical structure (e.g., roads and intersections, or metro lines and stations), but it

can also be an abstract representation. Supernetworks, defined by Sheffi (1985) as

networks augmented with virtual dummy links to represent multiple choice dimen-

sions, provide an ideal representation to model multi-faceted demand problems as

a choice of path. Thus, a link in a supernetwork could represent a specific leg of a

trip using a certain mode at a given time. Recursive models can conceptually eas-

ily be adapted to such networks and offer great flexibility. Indeed states as well as

actions in recursive choice models can be defined as any combination of variables.

There are however non trivial challenges associated with modeling complex travel

choice situations in such networks.

The overall objective of this thesis is to develop recursive route choice and

traffic equilibrium models which are suitable for both real large scale networks and

multi-dimensional supernetworks, in order to (i) estimate parameters of travelers’

behavior, and (ii) predict equilibrium flows in such networks. Although this thesis

does not aim at proposing a solution which addresses all issues simultaneously, it

tackles several specific problems within this scope. In the following, we detail the

specific objectives of this thesis and the related challenges.

The first and main objective is to propose methodological developments in order

to deal with networks which may be dynamic, stochastic and represent combinations

of choices. Traveling in real multi-modal networks is subject to sources of uncer-

tainty, related to, e.g., the available capacity of a transit line or its arrival time.

Existing recursive route choice models do not allow to take stochastic outcomes into

account because they have degenerate state transitions (i.e., the next state is always

equal to the chosen link). Incorporating stochastic transitions between states offers

the potential for modeling sources of uncertainty, however this is at the cost of
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solving more complex DP problems. A second issue occurring in multi-dimensional

networks is the question of how to handle correlation between random path costs.

Mai et al. (2015) proposed an extension of Fosgerau et al. (2013) to model correla-

tion between physically overlapping paths, yet multiple choice dimensions require

more complex correlation structures. Finally, an additional challenge posed by

dynamic or multidimensional networks is their large number of state-action pairs,

which entails great computational efforts due to the curse of dimensionality.

The second objective of this thesis is to use real networks and revealed preference

data to apply the proposed models on a large set of applications. Previous work by

Fosgerau et al. (2013) and Mai (2016a) has only been applied on the small road

network of Borlänge (about 7000 arcs), and focuses exclusively on the problem

of model estimation. We aim at illustrating the applicability of recursive route

choice models by estimating parameters of travelers preferences for a large variety

of route characteristics and modes. Moreover, we aim at illustrating the benefits of

the methodology from a policy analysis perspective by discussing the interpretation

of results in depth.

1.4 Thesis outline and contributions

In this thesis we present four published or submitted articles and one additional

chapter which was part of research work leading to a related paper (de Freitas

et al., 2019). They consist of one tutorial, three application-oriented articles, and

a methodological paper. Specific contributions of this thesis can be grouped under

three different themes: recursive route choice modeling, estimation of large-scale

demand models, and traffic assignment modeling.

Although we do not propose new recursive route choice models, our contribution

around the first theme is to render recursive route choice models more accessible

to researchers and practitioners. While such models overcome many limitations

of their path-based counterparts, they are not yet widely used in the transporta-

tion research community, as their advantages are outweighed by the additional

complexity introduced by embedded dynamic programming problems. Therefore,

we propose a tutorial in Zimmermann and Frejinger (2019) which provides guid-

ance on recursive route choice models, by summarizing the overall advantages of
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the methodology and illustrating them on toy examples. The tutorial also posi-

tions this work within a broader context by providing links to related work in the

machine learning and inverse optimization fields. Secondly, while Fosgerau et al.

(2013) focused on model properties related to estimation, in Zimmermann et al.

(2017), we set out to illustrate advantages related to prediction. Our contributions

are i) deriving the accessibility measure for recursive route choice models and show-

ing that previous results deemed a paradox are in fact a consequence of choice set

generation, and ii) illustrating gains in computational time for prediction on real

networks.

Under the second theme, the main contribution consists in exhibiting extensive

large-scale applications of different recursive route choice models and dealing with

associated computational challenges. We consider recursive logit models (RL), but

also other choice structures to account for correlation (nested logit, mixed logit).

We select appropriate estimation methods to deal with the curse of dimensionality.

More specifically, we treat three different applications which are relevant to travel

behavior research, for which we provide estimation results and interpretation for

policy analysis. In Zimmermann et al. (2017), we analyze the path choice of cy-

clists from GPS traces in the real network of Eugene, Oregon (40,000 links). In

an additional chapter, we extend this analysis to a dynamic multi-modal public

transport network consisting of three modes (bus, train, tram) with a case study in

Zürich (around 1 million links). Finally, Zimmermann et al. (2018) treats the case

of an abstract supernetwork expanded in multiple dimensions (mode, destination,

timing, activity) based on travel diary in Stockholm (millions of links).

Finally, regarding the last theme, the principal contribution consists in incor-

porating sources of uncertainty in Markovian traffic equilibrium models. More

specifically, we contribute by considering in Zimmermann et al. (2018) the case

of networks with strict capacity limits, which induces uncertainty related to the

unknown availability of links. We introduce to this effect a strategic Markovian

traffic equilibrium model, which also generalizes previous work on assignment in

capacitated networks (Marcotte et al., 2004). Unlike other works which treat ca-

pacity limits in an heuristic way by artificially increasing link costs, we model the

effect of this uncertainty on user behavior by introducing arc access probabilities

in the cost function and supposing users have recourse actions.

Below, we summarize the structure of the thesis. Each chapter contains a

8



prologue before the manuscript itself, summarizing the relevance of the article

within the thesis, stating the author’s contributions and the publication details.

The chapter outline is the following:

Chapter 2 (Zimmermann, M., Frejinger, E., submitted to EURO Journal on

Transportation and Logistics), is a tutorial on the recursive models for route

choice analysis which are at the heart of this thesis.

Chapter 3 (Zimmermann, M., Mai, T., Frejinger, E., published inTransportation

Research Part C), presents recursive models for the choice of route of cyclists

estimated on GPS data.

Chapter 4 (Zimmermann, M., Frejinger, E., Axhausen, K., presented at the

IATBR conference), presents a recursive model for the choice of path in

public transport networks with train, tram and bus modes.

Chapter 5 (Zimmermann, M., Blom Västberg, O., Karlström, A., Frejinger,

E., published in Transportation Research Part C), presents recursive models

for activity-based travel demand accounting for correlation across alterna-

tives.

Chapter 6 (Zimmermann, M., Frejinger, E., Marcotte, P., under review in

Transportation Science) presents a strategic Markovian traffic equilibrium

model for networks with strict link capacities.

Chapter 7 provides a conclusion and outlook.
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2

A tutorial on recursive
models for analyzing and
predicting path choice
behavior

Prologue

Context

Route choice models exist in the transportation demand literature since the

early works of Ben-Akiva et al. (1984). More recently, there has been progress

to overcome a major inconvenient of traditional route choice models, namely the

necessity of a choice set generation step preceding the path choice modeling it-

self. This state of the art framework is known as recursive route choice modeling

(Fosgerau et al., 2013).

Nowadays, the majority of applied studies in transport demand modeling adopt

traditional path-based models. There is a lack of familiarity in the transporta-

tion research community with recursive choice models and related work which has

emerged independently in separate research areas, such as inverse optimization and

inverse reinforcement learning. These research communities work on similar issues,

namely identifying the utility function of a decision maker, and yet keep each other

at bay, mainly because of the use of distinct notation and terminology.

Contributions

This article is the first tutorial on analyzing and predicting path choice behavior

of network users. It ties together different threads of research and establishes links

between route choice modeling and related works in different research communities,

in particular inverse optimization and inverse reinforcement learning. This tutorial

is also specifically addressed at transportation modelers. It highlights shortcomings

of path-based models, introduces recursive choice models in a didactic fashion, and

illustrates the advantages of the latter through examples.
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Author contributions

The ideas in this tutorial came both from me and Emma Frejinger. I was

responsible for running the numerical experiments and the full redaction of the

article, which was revised by Emma Frejinger.

Article Details

A tutorial on recursive models for analyzing and predicting path choice be-

havior. Maëlle Zimmermann, Emma Frejinger. Submitted to: EURO Journal on

Transportation and Logistics.

2.1 Introduction

Road traffic, while essential to the proper functioning of a city, generates a

number of nuisances, including pollution, noise, delays and accidents. It is the

role of city managers, network administrators and urban planners to attempt to

mitigate the negative impact of transportation by planning adequate infrastructure

and policies. Most of the traffic is generated by individual travelers who seek to

minimize their own travel costs without guidance from a system maximizing the

overall welfare. It is thus a necessity to understand how users of the transportation

system behave and choose their path in the network in order to provide planners

with decision-aid tools to manage it.

This is the main motivation for the introduction of what is known in the trans-

port demand modeling literature as the route choice problem, which seeks to predict

and explain the choice of path of travelers in a network. All path choice models

are based on the assumption that individuals behave rationally by minimizing a

certain cost function. The models’ aim is to identify this cost function from a set of

observed trajectories, which allows to predict chosen paths for all origin destination

pairs.

It is desirable that path choice models satisfy several properties, such as i) scal-

ing with the size of large urban networks in order to be efficiently used for real

applications, ii) lending themselves well to behavioral interpretation, in order to,

e.g., assess travelers’ value of time, and iii) yielding accurate predictions. In the
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transportation demand literature, the most common methodology is a probabilistic

approach known as discrete choice modeling, which finds its origin in econometrics.

It views path choice as a particular demand modeling problem, where the alterna-

tives of the decision maker are the paths in the network. The principal issue with

this modeling approach stems from the fact that the number of feasible paths in a

real network cannot be enumerated, and we do not observe which paths are actu-

ally considered by individuals. As a result, discrete choice models based on paths

currently used in the transportation literature may suffer from biased estimates

and inaccurate predictions, as well as potentially long computational times.

This work is a tutorial on a modeling framework which in comparison meets

the previously enumerated expectations. Dubbed “recursive choice models”, this

methodology draws its efficiency from modeling the path choice problem as a para-

metric Markov decision process (MDP) and resorting to dynamic programming to

solve its embedded shortest path problem. In this tutorial, we aim at i) facilitat-

ing understanding of the recursive model’s formulation by drawing links to related

work in inverse optimization, and ii) comparing recursive models on the basis of

desirable properties with the most well-known approach in the transportation de-

mand literature, i.e., discrete choice models based on paths. We note here that this

tutorial is addressed to both transportation demand researchers who are unfamiliar

with recursive models, and researchers from the machine learning community who

are keen to find out about state-of-the-art methods in the area of transportation

science. For this purpose, we use general terminology and speak about path choice

instead of route choice in the remaining of this paper.

This tutorial proposes to view this problem from a fresh perspective and makes

several contributions. First, we give background and intuition on recursive models’

formulation and properties. Indeed, we contextualize discrete choice models as a

probabilistic approach for what is in fact an inverse optimization problem. Through

a brief overview of that literature, we motivate and throw light on the recursive

formulation, which bears similarities to models for inverse reinforcement learning,

but is also theoretically equivalent to a discrete choice model based on the set of all

feasible paths. Second, we illustrate the advantages of the recursive model, namely

consistent estimates and fast predictions, through several examples and discussions

related to model estimation and prediction.

The remainder of this paper is organized as follows. In the following section,
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we provide a broader context with an overview of inverse shortest path problems.

In Section 2.3, we present discrete choice models, which we liken to a probabilistic

paradigm for solving inverse optimization problems with noisy data. In particu-

lar, we introduce recursive discrete choice models in Section 2.3.2, which provides

consistent parameter estimates of the cost function. Section 2.4 provides an il-

lustrative comparison of path choice probabilities under both the recursive model

and a path-based discrete choice model. Section 2.5 discusses the issues related to

the latter and demonstrates the advantages of recursive models through practical

examples of both model estimation and prediction. Finally, Section 5.6 provides

an outlook and concludes.

2.2 Context: from shortest paths problems to

path choice models

In this section, we frame the path choice problem as that of unveiling an un-

known cost function from noisy shortest paths observations, which is an inverse

optimization problem where the forward (inner) problem is a shortest path. We

give some background on the literature on inverse optimization and we situate the

problem this tutorial addresses within this context. We illustrate that there is a

close connection between stochastic shortest path problems and the inverse problem

with noisy data we are interested in. For the sake of clarity we start this section by

introducing deterministic and stochastic shortest path problems before describing

the related inverse problems.

2.2.1 Shortest path problems

Throughout this section, we consider a simple oriented graph G with a set of

nodes V and a set of arcs A = {(i, j) | i, j ∈ V}. We denote v the nodes in V and

a the arcs in A, which are characterized by a source node ia and a tail node ja.

Arcs (i, j) have an associated cost cij given by a function c : A → R. A path is a

sequence of arcs such that the head node of each arc is the tail node of the next.
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The deterministic shortest path problem

The deterministic shortest path problem (DSP) in the graph G is concerned

with finding the path with minimum cost between an origin node and a destination

node, where the cost of a path is defined by the sum of its arc costs. More often,

methods developed in the literature are designed to solve the shortest path problem

between a given origin and all possible destinations, or a given destination and all

possible origins.

This combinatorial optimization problem has been amply studied in the liter-

ature. Its chief difficulty is the existence of a very large number of feasible paths

between each node pair, which precludes proceeding by naive enumeration. The

problem could be formulated and solved as a linear program, however more effi-

cient algorithms have been developed, relying on dynamic programming (DP). In

general, DP is a methodology to solve optimization problems in dynamic (often

discrete time) systems, where a decision (denoted action or control) must be taken

in each state in order to minimize future additive costs over a certain time horizon

(finite or infinite). The shortest path problem in the graph G can be formulated as

a DP problem by considering nodes as states and an arc choice as an action taken

in a given state.

The Bellman principle of optimality at the core of deterministic problems states

that for an optimal sequence of choices (in this case, arcs along the shortest path),

each subsequence is also be optimal. This allows to decompose the problem and

formulate a recursive expression for the optimal arc choice at node i as well as the

cost C(i) of the shortest path from i to destination node d,

C(i) =

{
0, i = d

minj∈V+
i
{cij + C(j)}, ∀i 6= d, i ∈ V

(2.1)

where V+
i = {j ∈ V | (i, j) ∈ A}.

Solving (2.1) is however not straightforward in cyclic graphs. In this case,

note that the problem is well-defined only when there are no negative cost cycles,

otherwise there would be paths of cost −∞. Under this assumption, the shortest

path in G contains at most |V| − 1 arcs. Bellman (1958) shows how to solve the

shortest path problem by backward induction as a deterministic finite state finite
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horizon optimal control problem. The DP algorithm is

CN(i) = cid, ∀i ∈ V−d
Cn(i) = minj∈V+

i
{cij + Cn+1(j)}, ∀i ∈ V , n = 1, ..., N − 1

(2.2)

where V−i = {h ∈ V | (h, i) ∈ A}, and N = |V| − 1 is the length of the horizon.

The value Cn(i) represents the cost of the shortest path from i to d using at most

N − n + 1 arcs, and in this sense is an upper bound on the cost of the shortest

path. The cost of the shortest path from i corresponds to C1(i). Note that the

value of the shortest paths can also be found by label correction algorithms (see,

e.g., Dijkstra, 1959; Floyd, 1962).

The stochastic shortest path problem

The stochastic shortest path problem (SSP), as defined by Bertsekas and Tsit-

siklis (1991), is an extension of the previous problem which considers a discrete

time dynamic system where a decision must be made in each state and causes the

system to move stochastically to a new state according to a transition probability

distribution. This problem can be analyzed using the framework of Markovian

Decision Processes (MDP), formally defined as:

— A set of states S and a set of available actions A(s) for each state s ∈ S.

— The cost cs,a,s′ incurred by taking action a in state s and moving to next

state s′.

— p(s′|s, a) the transition probability from s to s′ when taking action a.

An MDP models problems where an action must be taken in each state, with

the aim to minimize expected future discounted costs over a certain horizon. The

SSP is a special case of MDP with infinite horizon, no discounting and a cost-

free absorbing state d, where p(d|d, a) = 1 ∀a. The SSP is an infinite horizon

problem since there is no upper limit on the number of arcs traversed. However,

by assumption the absorbing state can be reached with probability 1 in finite time.

The optimal solution of the SSP is not a path but a policy, which consists in a

probability distribution over all possible actions in each state. When the optimal

policy is followed, the path which is actually travelled is random but has minimum

expected cost.

This stochastic problem can be solved with DP and the recursion which defines
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the optimal expected cost V (s) from any given state s is given by the Bellman

equation

V (s) = min
a∈A(s)

[
cs,a +

∑
s′

p(s′|s, a)V (s′)

]
, (2.3)

where cs,a =
∑

s′ p(s
′|s, a)cs,a,s′ . V (s) is also known as the value function.

Note that the DSP is a particular degenerate case of the SSP where states s

are nodes i of the graph G, action costs are arc costs cij and state transitions are

deterministic, since the next state is always equal to the chosen successor node.

Therefore, it is in fact a deterministic MDP.

This definition of SSPs provided by Bertsekas and Tsitsiklis (1991) is very gen-

eral. It also encompasses variants of shortest paths problems on random graphs

(see, e.g., Polychronopoulos and Tsitsiklis, 1996), where arc costs are modeled as

random variables c̃ij = cij +εij, with cij the average arc cost and εij a random error

term. Arguably the most interesting variation of the problem is the one where the

realization of the arc costs is learned at each intersection as the graph is traversed.

Below, we make the additional assumption that εij are i.i.d. variables. In this case,

by defining an action a as an arc (i, j) and a state s as a network node i and a

vector ei of learned realizations eij of the error term for all outgoing arcs from i,

(2.3) becomes

V (i, ei) = min
j∈V+

i

[
cij + eij +

∫
V (j, ej)f(dej)

]
, (2.4)

where transitions between states are entirely contained by the density f(ej). This

specific SSP will be of importance in Section 2.3.2.

2.2.2 Inverse shortest path problems

In shortest path problems it is assumed that the modeler has complete knowl-

edge of the cost function c or its distribution in the previous case, as well as state

transitions p. In contrast, inverse shortest path problems study the case where

the cost function is unknown and must be inferred with the help of an additional

source of information at disposal, in the form of observed optimal paths between

some origin-destination (OD) pairs. This class of problems broadly belongs to in-

verse optimization, an extensively studied problem (see e.g. Ahuja and Orlin, 2001)
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where the modeler seeks to infer the objective function (and sometimes the con-

straints) of a forward (inner) optimization problem based on a sample of optimal

solutions.

Motivation for studying inverse problems can be drawn from several types of

applications. Burton and Toint (1992) cites possible motivations to examine inverse

shortest path problems, one of which is precisely the subject of this tutorial. One

may view the underlying optimization problem as a model for rational human de-

cision making and assume that the cost function represents the preferences of users

traveling in a network (possibly a parametrized function of certain arc features). In

this context, recovering the cost function allows to analyze why individuals choose

the observed routes and to gain understanding of network users’ behavior. Using

the recovered cost function, the inner shortest path problem can be solved and in

this sense yield predictions of path choices for unobserved OD pairs.

Related to inverse shortest path problems is the literature on inverse reinforce-

ment learning (IRL) or imitation learning (Ng et al., 2000; Abbeel and Ng, 2004).

The IRL problem is more general than the inverse shortest path, since it consid-

ers an underlying optimization problem generally formulated as a infinite horizon

MDP. In this context, observations consist of optimal sequences of actions. Nev-

ertheless, models for IRL have also been applied to the problem of recovering the

cost function of network users (e.g. Ziebart et al., 2008). Such applications consider

specific MDPs where an action is a choice of arc in a network, and the destina-

tion is an absorbing state, as in Section 2.2.1. Most applications of IRL on path

choice however consider a deterministic MDP (state transitions probabilities are

degenerate) in contrast to the more general formulation in Section 2.2.1.

Inverse problems are in general under-determined and may not possess a unique

solution. In the inverse shortest path problem and in IRL, there may be an infinite

number of ways to define the cost function such that observations form optimal

solutions. Different modeling paradigms propose to solve this issue. They may

be separated in two categories depending on the assumptions made on the pres-

ence of noise in the data, which distinguishes between deterministic and stochastic

problems. The former considers that demonstrated behavior is optimal, while the

latter makes the hypothesis that observed trajectories deviate from deterministic

shortest paths. The second case is often studied when the data collecting process

may have induced measurement errors or when the data is generated by a decision
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maker who exhibits seemingly inconsistent behavior. In the following sections, we

review existing models for the above mentioned inverse problems.

Deterministic problems

Burton and Toint (1992) introduced the original deterministic inverse shortest

path problem where observed trajectories are assumed to correspond to determin-

istic shortest paths. They do not assume that the cost function is parametrized

by arc features and simply seek the value cij associated to each arc (i, j). They

propose to provide uniqueness to the inverse problem by seeking the arc costs c that

are closest to a given estimation ĉ of costs based on a certain measure of distance,

thus minimizing an objective of the form ||c− ĉ||. This implies that the modeler has

an a priori knowledge of costs, which is reasonable in some applications. Burton

and Toint (1992) provide seismic tomography as an example. Seismic waves are

known to propagate according to the shortest path along the Earth’s crust, but the

geological structure of the zone of study is typically not entirely known, although

modelers have an estimate. Given measurements of earthquakes’ arrival times at

different points in the “network”, the goal is then to predict movements of future

earthquakes by recovering the actual transmission times of seismic waves.

Variants of this problem have been studied by Burton and Toint (1994); Burton

et al. (1997), for instance considering the case where arcs costs may be correlated

or their values belong to a certain range. In Burton and Toint (1992) and following

works, the l2 norm is selected as a distance measure between initial and modified

costs, and yields a quadratic programming formulation. In Zhang et al. (1995), the

l1 norm is assumed so that the problem can be modelled as a linear program and

solved using column generation. In all the studies above, the inverse shortest past

problem is modeled as a constrained optimization problem, with an exponential

number of linear constraints to ensure that each observed path is shortest under

the chosen cost function.

Bärmann et al. (2017) provide another example of inverse optimization with an

application to learning the travel costs of network users, in particular subject to

budget constraints. More precisely, they consider an inverse resource-constrained

shortest path problem. Their approach does not recover an exact cost function, but

provides a sequence of cost functions (c1, ..., cT ) corresponding to each observation

t = 1, ..., T , which allows to replicate demonstrated behavior. Their framework
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explicitly assumes the optimality of observations in order to infer the objective

functions ct.

The deterministic problem has also notably been studied under the guise of

inverse reinforcement learning in Ratliff et al. (2006), with an application to robot

path planning. The objective of their work is to learn a cost function in order to

teach a robot to imitate observed trajectories, which are assumed optimal. In con-

trast to the aforementioned works, no hypothesis is made regarding preliminary arc

costs. However, the environment is considered to be described by features, such as

elevation, slope or presence of vegetation, and the model seeks to obtain a mapping

from features to costs by learning the weights associated to each feature. To ob-

tain uniqueness of the solution, they cast the problem as one of maximum margin

planning, i.e., choosing the parameters of the cost function that makes observed

trajectories better by a certain margin than any other path, while minimizing the

norm of weights. This notion of distance between solutions is defined by a loss

function to be determined by the modeler. Under the l2 norm, this also results in a

quadratic programming formulation with a number of constraints that depend on

the number of state-action pairs, which consist of node-arc pairs in this context.

Stochastic problems

Inverse optimization problems with noisy data have been studied in, e.g., Aswani

et al. (2018) or Chan et al. (2018). In addition to non-uniqueness, the problem

which typically arises in this situation is that there may not be any non trivial

value of arc costs which makes the demonstrated paths optimal solutions of a DSP.

If solutions do exist, they may be uninformative, such as the zero cost function.

To solve this issue, the previous framework is extended by letting solutions be

approximately optimal and measuring the amount of error. Thus, accommodating

noise requires to estimate a model for the choice of path which “fits” as closely

as possible the observed data with various methods for measuring the fit, or loss,

drawing from statistics. The chosen measure for the fit should uniquely define the

solution.

Different points of views exist on achieving a good fit in the literature. Ap-

proaches grounded in machine learning make no assumptions on the underlying

process that generated the data and merely focus on obtaining good predictive

power with the simplest possible model while considering a large family of po-
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tential functions. In contrast, the statistical inference perspective on the problem

considers that there exists an underlying true cost function with a known paramet-

ric form. The aim is to obtain parameter estimates that asymptotically converge

to the real values, a property known as consistency. Several loss functions are

conceivable to formulate a minimization problem, and often the choice of loss is

directly related to assumptions made on the underlying model.

Examples for the former are the work of Keshavarz et al. (2011), who estimate

cost functions in a flow network assuming an affine parametric shape, and the work

of Bertsimas et al. (2015), who seek to infer cost functions in a network subject to

congestion at equilibrium. The specificity of the latter is that the cost functions

are endogenous, i.e., the cost of paths include congestion costs. This makes it an

inverse variational inequality problem with noisy data. In both works the proposed

method is a heuristic and treats the process that generates the data as a black box.

E.g. in Bertsimas et al. (2015), nonparametric cost functions are considered and

the problem is formulated as a constraint programming model which balances the

objective of minimizing the norm of the cost function against that of maximizing

the fit of the data. They follow the approach of measuring the loss of the model by

the amount of slack required to accommodate equilibrium constraints, i.e., making

observed solutions “ε-optimal”.

In contrast, the latter category of models assume that observed behavior devi-

ates randomly from optimality according to a certain known probability distribu-

tion. This leads to a different modeling paradigm, in which a random term is added

to the true cost function of the inner optimization problem, with the interpretation

that each observation corresponds to an instantiation of the cost. This framework,

described in, e.g., Nielsen and Jensen (2004) for general inverse problems, has re-

ceived limited attention in the literature on inverse shortest path problems. One

notable exception consists in path choice models based on the discrete choice mod-

eling framework. In the next section, we review the literature surrounding this

probabilistic modeling framework, which is at the heart of this tutorial.
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2.3 Probabilistic models for path choice

The inverse shortest path problem with noisy data is motivated by the situation

of individuals traveling in real networks, where the assumption that a cost function

can account for all observed behavior is rarely valid. Probabilistic methods for this

noisy problem assume that observed path choices randomly deviate from determin-

istic shortest paths. In particular, discrete choice models are a particular type of

probabilistic models grounded in econometrics, which provides the theoretical basis

for behavioral interpretation.

One of the interpretations of the distributional assumption on the data is that

travelers act rationally but observe additional factors impacting their path choice

which vary among individuals and are unknown to the modeler. These factors are

encompassed in a random term ε added to the cost function. Discrete choice models

assume that the cost function is a parametrized function of several attributes. The

only option available to the modeler, who knows the family of distributions for ε

but does not observe the realization of random terms for a given individual, is to

infer the probability that a given path is optimal.

The problem becomes akin to density estimation, i.e., recovering the parameters

of a probability distribution over a set of paths. In this context, statistical consis-

tency of the estimator is a desirable property. Yet there are several ways to define

a probability distribution over paths, well-known in the discrete choice literature,

which do not necessarily yield a consistent estimator. In the following sections, we

elaborate on the above statement and describe two distinct discrete choice models

for path choice.

Note that discrete choice models employ the terminology of utilities instead of

costs and that we uphold this convention in the remainder of this tutorial. This im-

plies a trivial change of the above formulations from minimization to maximization

problems and the definition of a utility function v = −c.

2.3.1 Path-based models

Discrete choice models based on paths are the methodology embraced by most

works on the topic (Prato, 2009; Frejinger, 2008). They assume that the utility of

a path i is a random variable ui = vi+µεi, where εi is a random error term, µ is its

scale, and the deterministic utility vi is parametrized by attributes of the network,
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such as travel time. Often the parametrization consists of a linear in parameters

formulation of the shape vi = βTxi, where β is a vector of parameters and xi is a

vector of attribute variables of the path i. Measuring the fit of a discrete choice

model to the data naturally leads to selecting the log-likelihood loss, which assesses

the plausibility of observing the chosen trajectories {σn}n=1,...,N under the current

value of parameters β. Thus the problem is one of maximum likelihood estimation,

i.e., finding the set of parameters that minimize the log-likelihood loss.

The difficulty in specifying the probability of a given path is to identify the

class of paths over which this probability should be defined. Since the very large

number of feasible paths in a real network precludes enumeration, the immediate

solution consists in choosing a subset of reasonable paths, assuming that all other

paths have a null choice probability. This implies a two-step modeling framework,

in which

1. Plausible paths are generated between the origin and destination of each

observation n by solving versions of the DSP, forming the choice set Cn;

2. Parameters β̂ that maximize the probability P (σn|Cn; β) of observed paths

within the choice set previously defined are estimated via maximum likeli-

hood, i.e., by maximizing LL(β) defined as

LL(β) = log
N∏
n=1

P (σn|Cn; β). (2.5)

The distribution chosen for εi leads to different forms of discrete choice models with

distinct path choice probabilities. The most well-known is the multinomial logit

formulation, resulting from the assumption of i.i.d Extreme value type I distributed

error terms, also known as the softmax in the machine learning community. Other

models exist, such as the probit model. In the logit case, we have

P (σn|Cn; β) =
e

1
µ
vσn (β)∑

j∈Cn e
1
µ
vjn(β)

. (2.6)

There exists a vast array of methods to extract plausible paths from the network

in order to generate the needed choice sets. Usually, they consists in assuming an

a priori cost function and solving variants of the shortest path problem described

in Section 2.2.1, until a large enough set of paths is obtained. Problematically,
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the preliminary value of costs used to define the probability distribution through

the choice set is in general not equivalent to the true value of the utility which

is ultimately sought. This discrepancy is what prevents the consistency of the

resulting estimates.

Frejinger et al. (2009) designed a method to correct for the induced sampling

bias, by adjusting the choice probability P (σn|Cn; β) of a given path depending

on parameter values and the choice set. The adjusted path choice probabilities

include a correction term which accounts for the probability P (Cn|σn; β) that the

given choice set was selected under the current parameter values conditionally on

the observed choice.

The method proposed by Frejinger et al. (2009) can be understood as assuming

that the true distribution is based on the set consisting of all feasible paths, while

resorting to sampling paths in order to estimate the parameters of the distribu-

tion in practice. The advantage is that it yields consistent parameter estimates.

Nevertheless, since there is no means to compute the normalizing constant of the

distribution save for the impractical enumeration of all paths, the estimated model

still requires to sample choice sets for prediction, an issue we further discuss in

Section 2.5.2.

Arguably, since these issues arise from the combinatorial size of the inner prob-

lem, one may expect that DP could provide a solution for the inverse problem as

well. The literature on IRL supplies such an example with Ziebart et al. (2008),

who model the path choice problem as a MDP and estimate a probabilistic model

which normalizes over the global set of feasible paths. This is achieved without enu-

meration nor sampling by viewing the path choice process as a sequence of action

choices depending on a current state as in Section 2.2.1. In fact, this methodol-

ogy is equivalent to the recursive discrete choice model, which has been developed

independently and in parallel in the transportation research community. We intro-

duce this model in the following section, which provides a method to consistently

estimate parameters of the utility function without resorting to choice sets of paths.

2.3.2 Recursive models

In this section, we introduce the recursive model proposed by Fosgerau et al.

(2013) for the choice of path within the discrete choice modeling framework. We
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also discuss the link to the IRL model by Ziebart et al. (2008).

Path choice as a deterministic MDP

Contrary to the previous section in which the problem is formulated in the

high dimensional space of paths, the recursive choice model considers arc-based

variables. Its formulation is explicitly based on the framework of Markov Decision

Processes used to solve shortest path problems in Section 2.2.1.

In recursive models, network arcs correspond to states, while outgoing links at

the head node of the current arc assume the role of available actions. For this

purpose, we subsequently denote arcs as either k or a depending on whether they

play the role of states or actions, and we denote A(k) the set of outgoing arcs

from k. Note that it would also be possible to select nodes as states, however the

arc-based formulation allows the deterministic utility v(a|k) of an action-state pair

to depend on turn angles between two subsequent arcs k and a. The destination is

represented by a dummy link d which is an absorbing state of the MDP, where no

additional utility is gained. Finally, utilities are undiscounted and the action-state

transition function is assumed to be degenerate, since the new state is simply the

chosen arc. A path under this framework is a sequence of states {k0, k1, ..., kT},
starting from an origin state k0 and leading to the absorbing state kT representing

the destination d.

Parametric estimation of MDPs

Under this perspective, the inverse problem of recovering the utility function

is a problem of parametric estimation of MDPs, as first described by Rust (1994).

As in the previous section, the noise in the data is accounted for by assuming the

presence of an i.i.d random error term εa, added to the utility v(a|k). The utility

becomes a random variable u(a|k) = v(a|k) + µεa, where µ is the scale of the error

term. It is assumed that the individual observes the realizations of the random

variables at each step of the process and chooses the best action accordingly. From

the point of view of the modeler, the individual’s behavior hence consists in solving

a stochastic shortest path problem similarly to Section 2.2.1. In this context, the

Bellman equation gives the optimal value function when the state consists of an
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arc k and realizations ea∈A(k),

V d(k, ea) =

{
0, k = d,

maxa∈A(k)

(
v(a|k) + µea +

∫
V d(a, ea′)f(dea′)

)
, ∀k ∈ A,

(2.7)

which is very similar to (2.4). We may however simplify this equation by taking

the expectation with respect to εa of (2.7) and defining the expected value function

V d(k) =
∫
V d(k, ea)f(dea) of a state k, which gives

V d(k) =

{
0, k = d,

Eε
[
maxa∈A(k)

{
v(a|k) + µεa + V d(a)

}]
, ∀k ∈ A.

(2.8)

For simplicity and consistency with terminology in other works (Fosgerau et al.,

2013; Mai et al., 2015), we nevertheless refer to (2.8) as the value function in this

work.

The modeler does not observe the realized utilities and can only compute the

probability that each given action be optimal. According to the modeler, the

observed behavior of individuals follows a probability distribution over the set of

actions which maximizes the expected utility in (2.8). As in Section 2.3.1, choice

probabilities may take several forms depending on the distributional assumption

for the error terms εa. Assuming an Extreme value type I probability distribution,

the probability of an individual choosing a certain action a conditional on the state

k and the destination d is given by the familiar multinomial logit formula:

P d(a|k; β) =
e

1
µ
v(a|k;β)+V d(a|β)∑

a′∈A(k) e
1
µ
v(a′|k;β)+V d(a′|β)

. (2.9)

Given observations of sequences of actions (i.e., paths), the model can be esti-

mated by maximum likelihood. This requires to define the probability of choosing

an observed path, which can be expressed as the product of the corresponding ac-

tion choice probabilities using (2.9). For an observed path σn = k0, k1, ..., kT , the

path choice probability is given by

P (σn|β) =
T−1∏
j=0

P d(kj+1|kj; β), (2.10)
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where d is the link kT , which can more simply be expressed as

P (σn|β) =
e

1
µ
v(σn|β)

e
1
µ
V (k0|β)

(2.11)

where v(σn|β) is the sum of the link utilities of the path σn.

As a result, the likelihood of a set of N path observations {σn}n=1,...,N is defined

as

L(β) =
N∏
n=1

P (σn|β) =
N∏
n=1

Tn−1∏
i=0

P d(kni+1|kni ; β). (2.12)

The expression in (2.12) does not depend on choice sets, in contrast to (2.5).

However, the value function which appears in (2.9) must be computed in order

to evaluate the likelihood. This suggests resorting to a two-step likelihood maxi-

mization algorithm, in which an inner loop solves the SSP and obtains the value

function in (2.8) for the current value of parameters β, while an outer loop browses

through the values of β. Rust (1994) proposed such a method, denoted the nested

fixed point algorithm. The resulting parameter estimates are consistent.

The model for IRL proposed in Ziebart et al. (2008) bears another name but is

equivalent to a recursive logit model, since they assume a maximum entropy (expo-

nential family) distribution. The only difference lies in the method for estimating

the model, as Ziebart et al. (2008) approximate the value function in (2.8), whereas

we exemplify in the next section that they can conveniently be solved as a system

of linear equations (Fosgerau et al., 2013; Mai et al., 2016).

2.4 Illustrative examples

Section 2.3 presented two discrete choice models for the problem of estimating

the utility function of travelers in a network: (i) Path-based models, (ii) Recursive

models. Although the first is extensively used in practice, the second is superior

because of its consistent estimator and accurate predictions without choice set

generation.

This section has two purposes. First, we use small illustrative examples on

acyclic and cyclic toy networks to provide a clear understanding and intuition of
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Figure 2.1 – Small network

the recursive model and the value function; second, we compare path probabilities

obtained with both model formulations. Although both models can take several

forms depending on distributional assumptions on the error terms, the focus of this

tutorial is on the logit model. Therefore in the following we refer to the recursive

logit as the RL model and the path-based logit as the PL model. We refer the

reader to Mai et al. (2015); Mai (2016b) for details regarding the incorporation

of complex correlation structures in recursive discrete choice models (e.g., nested

logit, mixed logit).

Note that the MATLAB code used for these numerical examples is available

online, as well as a tutorial detailing how to use it 1.

2.4.1 An acyclic network

The motivation for this example is to show that it is possible to obtain with

the recursive formulation in (2.9) the same choice probabilities on paths as with

the PL model in (2.6). For this illustrative purpose, it is meaningful to consider

a given specification of the utility function. Hence we assume that path utilities

are specified by an additive function of arc length La, such that for each path i we

have vi = −Li, where Li is the sum of the lengths of arcs contained in path i.

The OD pair considered for the toy network displayed in Figure 2.1 is (1, 4).

The two dashed arcs represent dummy origin and destination links. There exists 4

1. http://intermodal.iro.umontreal.ca/software.html
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Path Length Path probability (PL) Product of link probabilities (RL)

1− 4 2 0.6572 0.6572
1− 4 6 0.0120 0.0120
1− 2− 4 3 0.2418 0.3307 · 0.7311 = 0.2418
1− 2− 3− 4 4 0.0889 0.3307 · 0.2689 = 0.0889

Table 2.1 – Path choice probabilities under both models

Node Value function

4 0
3 −1.5000
2 −1.6867
1 −1.5803

Table 2.2 – Value function at each node

possible paths from node 1 to node 4, of respective length 2, 3, 4 and 6. Under the

logit model, it is easy to compute the choice probability of the shortest path for this

OD pair, which goes directly from node 1 to node 4 with length 2. Assuming that

the scale µ of the random term for this example is 1, we obtain at the denominator

of the logit function in (2.6) the term e−2, and at the numerator the term e−2+e−3+

e−4 + e−6, therefore the choice probability is equal to 0.6572. Table 2.1 displays

similarly the choice probability of all other paths.

Let us now suppose that instead of choosing between the possible paths con-

necting origin and destination, the traveler builds the chosen path along the way

through a series of consecutive link choices, as in the RL formulation. In each

link choice situation, the alternatives to choose from are the outgoing links at the

current node. We denote v(a|k) = −La the utility of links a ∈ A(k) originating

from link k. The choice probability of a path under the RL model is then equal to

the product of each link choice probability in (2.9).

In order to compute link choice probabilities, we need to compute the value

function in (2.7). This equation can be rewritten as the logsum when εa is assumed

to be i.i.d. Extreme value type I distributed as in the logit model:

V d(k) =

{
µ ln

∑
a∈A(k) e

1
µ

(v(a|k)+V d(a)) ,∀k ∈ A
0 , k = d.

(2.13)

Since the specified utility of a link does not depend on the incoming arc, the value
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function is identical for all links with the same end node. It is thus more convenient

to compute the value function at each of the 4 nodes (the value function at a link

is then equivalent to the value function at the end node of that link). Below, we

show how to compute the value function in this network and display the value for

each node.

In this case, since the network is acyclic, it is possible to compute the value

function by backward induction. At the destination node 4, given that there is no

utility to be gained, the value function V (4) is zero. Working our way backwards,

we compute at node 3 the value function V (3) = ln(e−1.5) = 1.5. At node 2,

we have V (2) = ln(e−2 + e−3) = −2.6867. Finally, at node 1 we obtain V (1) =

ln(e−6 + e−2 + e−2.6867) = −1.5803. The values for all nodes are summarized in

Table 2.2.

Having computed the value function for this network, we may apply (2.9) to

this example and we obtain the path probabilities in the last column of Table 2.1.

We notice that they are identical to choice probabilities under the PL model. This

is due to the property of the RL model of being formally equivalent to a discrete

choice model over the full choice set of paths (Fosgerau et al., 2013). Therefore,

the PL and the RL models are two strictly equivalent approaches when the set of

all possible paths in the network can be enumerated.

2.4.2 A cyclic network

Let us now consider a very similar network in Figure 2.2, with an added link

between nodes 3 and 1. This network is no longer acyclic, and as a result there is

in theory an infinite number of paths between nodes 1 and 4, when accounting for

paths with loops.

The first consequence of dealing with a cyclic network is that the value function

can no longer be computed by backwards induction starting from destination, since

the network admits no topological order. However, the value function is still well

defined as the solution of the fixed point problem (2.7) and can be solved either

by value iteration or, in the case of the recursive logit, as the solution of a system

of linear equations. For the latter, notice that by taking the exponential of (2.13)
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Figure 2.2 – Small cyclic network

and raising to the power 1
µ
, we obtain

e
1
µ
V d(k) =

{ ∑
a∈A(k) e

1
µ

(v(a|k)+V d(a)) ∀k ∈ A
1 k = d.

(2.14)

This is a linear system of equations if we solve for variable z = e
1
µ
V . Doing so, we

obtain the value function in Table 2.3.

As in the previous example, having solved the value function, we can trivially

compute the choice probabilities for different paths in this network as product of

link choice probabilities. As can be observed, the probabilities of the four paths

used in the acyclic example do not sum to 1 anymore (rather to 0.9698), and

neither do the probabilities of the additional paths displayed in Table 2.4, which

sum to 0.9965. This is because a cyclic network contains an infinite number of

possible paths, and the RL model attributes a positive choice probability to each

outgoing arc at an intersection. Hence, even paths with multiple cycles have a

small probability of being chosen. We notice however that choosing a path with

two or more cycles is extremely unlikely, with a probability of 0.0009 according to

the model.

This example illustrates that the RL model offers a convenient mathematical

formulation for the choice of path in a cyclic network. In comparison, using the PL

model for this network raise a well-known challenge. Indeed, the logit formula in

(2.6) requires to define a finite choice set of alternative paths for the OD pair. Given
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Node Value function

4 0
3 −1.1998
2 −1.5968
1 −1.5496

Table 2.3 – Value function at each node

Path Length Product of link choice probabilities

1− 4 2 0.6374
1− 4 6 0.0117
1− 2− 4 3 0.3509 · 0.6682 = 0.2345
1− 2− 3− 4 4 0.3509 · 0.3318 · 0.7407 = 0.0863
1− 2− 3− 1− 4 5.5 0.3509 · 0.3318 · 0.2593 · 0.6374 = 0.0192
1− 2− 3− 1− 4 9.5 0.3509 · 0.3318 · 0.2593 · 0.0117 = 0.0004
1− 2− 3− 1− 2− 4 6.5 0.3509 · 0.3318 · 0.2593 · 0.3509 · 0.6682 = 0.0071

Table 2.4 – Recursive logit path choice probabilities

that the possible paths cannot be all enumerated in this example, the modeler is

compelled to make hypotheses on which subset of paths should have a non zero

choice probability. The value of the resulting path choice probabilities will depend

the composition of the choice set. In reality, this issue is not necessarily related

to cycles only. In large networks, the number of possible acyclic paths may also

be too large to enumerate in practice. In the following section, we delve into the

issues which may arise from the necessity to generate choice sets to define choice

probabilities in path-based models.

2.5 An analysis of the advantages of recursive

models compared to path-based models

The goal of this section is to highlight the advantages of recursive models and

the issues related to path-based models. In this discussion, we use illustrative

examples and we focus on two practical purposes of such models; i) estimating

parameters from data of observed paths; ii) predicting choices from an estimated

model. We focus on logit models for this comparison.
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Figure 2.3 – Toy network labeled with link travel times

In practice, the PL model requires to generate choice sets of paths for both

purposes. There is an extensive literature on the questions of how to generate

choice sets of paths, what characteristics should choice sets observe, and what is the

impact of selecting a restricted choice set prior to model estimation and prediction

(Bekhor et al., 2006; Prato and Bekhor, 2007; Bovy, 2009; Bliemer and Bovy, 2008).

The consensus in that literature is that it is advantageous to explicitly separate

the procedures of generating path choice sets and modelling choice. Bekhor and

Toledo (2005) argue that predicted paths from link-based models are behaviorally

unrealistic as they may contain cycles. Bliemer and Taale (2006) claim that there

are computational advantages to choice set generation in large networks.

On the contrary, Horowitz and Louviere (1995) indicate that it is possible to mis-

specify choice sets with problematic consequences and that choice sets provide no

information on preferences besides what is already contained in the utility function,

although their study does not investigate path choice. Frejinger et al. (2009),

among others, empirically demonstrate that the definition of choice sets may affect

parameter estimates. In this section of this tutorial, we offer additional arguments

in this sense. We exemplify complications related to choice sets which arise when

using path-based models, and we demonstrate that recursive logit models do not

display these issues.
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Path σ Nodes C1 C2 C3 vσ

1 1− 3− 4− 9− 12− 13− 17 y y y −2.3
2 1− 3− 4− 7− 10− 17 y y y −2.6
3 1− 3− 4− 9− 10− 17 y y y −2.6
4 1− 3− 4− 7− 10− 13− 17 y y y −2.7
5 1− 3− 4− 9− 10− 13− 17 y y y −2.7
6 1− 3− 6− 16− 17 n y y −3.1
7 1− 3− 4− 9− 12− 17 n y y −3.2
8 1− 3− 4− 7− 16− 17 n y y −3.2
9 1− 3− 6− 16− 10− 17 n n y −4.0
10 1− 3− 4− 7− 16− 10− 17 n n y −4.1
11 1− 3− 6− 16− 10− 13− 17 n n y −4.1
12 1− 3− 4− 7− 16− 10− 13− 17 n n y −4.2
13 1− 3− 4− 9− 12− 15− 17 n n n −7.3
14 1− 3− 6− 16− 17 n n n −7.3
15 1− 3− 4− 7− 16− 17 n n n −7.4

Table 2.5 – Paths contained in each restricted choice set

2.5.1 Example of model estimation

Figure 2.3 displays a network with one OD pair connected by a set of feasible

paths U . We study estimation results for synthetic data of trajectories on this

toy network. This data is generated by simulation assuming that the true utility

specification is given by

ua = βTTa + βLCLCa + εa,

where Ta is the travel time on arc a, and LCa is a constant equal to 1, with

βT = −2.00 and βLC = −0.01. Travel time for each link is given in Figure 2.3.

The travelers are also assumed to consider every possible path in U , such that any

trajectory may be observed.

We compare the ability of the PL model versus that of the RL model to recover

the true parameter values. To do so, we estimate four path-based models based on

different choice sets C ⊆ U . Table 2.5 displays the paths contained in each choice

set, noting that choice set C4 contains all 15 paths and is equivalent to U . For

each observation, the chosen path is added to the choice set if not already present.

The last column displays the utility of each path based on the given specification,

obtained by summing the link utilities.

Results are shown in Table 2.6. In the cases where the choice set fails to

include several relevant alternatives (C1 and C2), the estimation algorithm for the
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Model βT βLC

PL(C1) 3.35 (0.59) −0.64 (0.32)
PL(C2) 2.00 (0.37) 0.64 (0.10)
PL(C3) −2.06 (0.17) −0.14 (0.07)
PL(C4) −2.15 (0.16) −0.15 (0.07)
RL −2.15 (0.15) −0.14 (0.07)

Table 2.6 – Estimation results of different models on synthetic data generated under the as-
sumption that the true choice set is U

PL model does not converge, and the parameter values obtained are significantly

different from the true ones. The fact that the algorithm does not converge may

seem counter-intuitive at first, but it is in fact due to i) the lack of variance in

attributes of the paths in these choice sets, ii) the omission in the choice set of

paths 6 to 12, which are chosen relatively often in the data, but only added to

C when corresponding to the observed path. As a result, when such paths are

present in the choice set, the data reports that they are selected 100% of the time,

which cannot be reconciled with the explanatory variables present in the utility

specification.

The only case where the PL model recovers the true parameter values based on

a restricted choice set is with C3, which contains almost the same paths as U but

for three paths. The estimates have slightly lower variance when all alternatives are

included with choice set C4, and the RL model obtains equivalent results (the slight

difference may be due to different implementations of the optimization algorithm).

In accordance with several other studies, we conclude from this experiment that

the PL model may not recover the true utility function when the choice set fails to

include several relevant alternatives.

Certain studies argue that the assumption that users consider any path in U is

behaviorally unrealistic, and inquire what would happen if the data reflects instead

the possibility that users do restrict their consideration set. In order to shed light

on this question, we study a second sample of synthetic data, where observed

trajectories include only paths 1 to 12, generated under the assumption that paths

13 to 15 are not considered by travelers due to their highly negative utility.

In Table 2.7, we show the estimation results of the same models on this new

data. It shows that although the RL model considers more paths than the true

choice set, it still recovers the true parameter values. On the other hand, the
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Model βT βLC

PL(C1) 3.00 (0.47) −0.59 (0.26)
PL(C2) 3.00 (0.49) 0.93 (0.13)
PL(C3) −1.94 (0.17) −0.07 (0.07)
PL(C4) −2.04 (0.16) −0.07 (0.07)
RL −2.04 (0.15) −0.07 (0.07)

Table 2.7 – Estimation results of different models on synthetic data generated under the as-
sumption that the true choice set is C3

models based on choice sets C1 and C2 do not. This second experiment suggests

that restricting the choice set without evidence regarding what alternatives are

truly considered is potentially harmful, while considering a larger set including

“irrelevant” alternatives does not interfere with estimation results in this case.

Finally, we note that Frejinger et al. (2009) provide a method to correct pa-

rameter estimates of path-based models. However, while this leads to consistent

estimates, there is no method to consistently predict path choice probabilities ac-

cording to the estimated model. Indeed, as the next examples highlight, predictions

vary significantly depending on the definition of the choice set.

2.5.2 Examples of prediction

In general, predicting choices from discrete choice models for a certain demand

requires knowing the utility function vn and choice sets Cn of the decision makers n,

on which the probability distribution depends. This is in theory more complex when

the utility function vn depends on socio-economic characteristics of individuals n.

However, in the following, we make the assumption that the utility function is not

individual specific and depends only on attributes of network links.

Link flows

Predicting link flows in the network is a typical application of path choice

models, of importance in, e.g., stochastic user equilibrium models. Link flows

represent the amount of individuals (or other unit) on each arc of the network

corresponding to loading a certain OD demand.

Two methods exist to predict expected flows with the RL model, none of which

require to enumerate choice sets of paths. The first method consists in sampling
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paths link by link for each individual using link choice probabilities in (2.9). The

second method allows to compute expected link flows without resorting to simu-

lation. According to the Markov property of the model, Baillon and Cominetti

(2008) proved that destination-specific link flows fd are obtained by solving the

linear system

(I − P dT )−1fd = gd, (2.15)

where gd is the demand vector from all origins to destination d and P dT is the

transposed of the matrix of link choice probabilities, where P d
ka = P d(a|k).

In this example, we predict link flows for the network in Figure 2.3, assuming

a demand of 100 for the single OD pair and the same utility specification as in

section 2.5.1. We compare the link flows predicted by the RL model and the three

PL models based on different restricted choice sets C1, C2 and C3. In each case,

the expected flow on a given path σ is equal to the fraction of the demand choosing

σ according to P (σ|Cn). We do not consider C4, because since C4 consists of the

unrestricted network, the link flows obtained from this model will be identical to

those computed from the RL model.

For the RL model, link flows are obtained by solving (2.15). For the PL models,

flows on paths are computed from the path choice probabilities P (σ|Cn) for Cn =

C1, C2, C3. Flows on links are then obtained by summing the flows on all paths

traversing each link. Table 2.8 displays the amount of flow on each link according

to each model. As expected, we observe that the amount of predicted flow varies

greatly between path-based models depending on the chosen choice set. When the

choice set size increases, predicted flows tend to be closer to the values forecast by

the RL model. A particularity of the RL model is that it predicts non-null flow on

every link. However, the amount of flow on links 7, 10 and 16, which belong only

to paths with very small choice probabilities, is very close to zero.

In reality, it is difficult to judge which model predicts link flows better without

being able to compare to observed link counts. However, a crucial remark is that

in the absence of any information regarding which paths are truly considered by

travelers, the predictions of the PL models are arbitrarily dependent on the choice

set. On the other hand, the RL model allows to predict according to the true

estimated probability distribution. In addition, the RL model offers the advantage

of computing link flows very efficiently, as only one system of equations must be
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Link Nodes PL(C1) PL(C2) PL(C3) RL

1 o-E 0.00 8.83 13.88 12.99
2 o-A 100.00 91.17 86.12 87.01
3 A-F 36.92 35.75 37.10 37.39
4 A-B 63.08 55.42 49.02 46.63
5 B-C 26.16 27.67 24.47 25.10
6 B-H 36.92 27.75 24.55 24.53
7 C-D 0.00 0.00 0.00 0.12
8 C-d 0.00 8.00 7.07 6.77
9 C-I 26.16 19.67 17.40 18.21
10 D-d 0.00 0.00 0.00 0.12
11 E-G 0.00 8.83 13.88 12.99
12 F-G 0.00 8.00 12.55 12.86
13 F-H 36.92 27.75 24.55 24.53
14 G-H 0.00 0.00 11.54 12.04
15 G-d1 0.00 16.83 14.89 13.60
16 G-d2 0.00 0.00 0.00 0.20
17 H-I 35.08 26.36 28.80 30.40
18 H-d 38.76 29.14 31.84 30.70
19 I-d 61.24 46.03 46.20 48.60

Table 2.8 – Link flows according to each model

solved to obtain link flows for all OD pairs with the same destination. On the

contrary, the PL models require to define a choice set for each OD pair.

2.5.3 Accessibility measures

Accessibility measures are another example of information which can be com-

puted from path choice models. The accessibility is a measure of the overall sat-

isfaction of an individual for the available alternatives, i.e. the existing paths in

a network for a given OD pair, and is formally defined as the maximum expected

utility of the alternatives. According to the RL model, the accessibility is simply

the value function at the origin in (2.13). In path-based models there is no notion

of value function, and instead the accessibility depends on the generated choice set,

E(max
i∈Cn

ui) = µ log
∑
i∈Cn

e
1
µ
vi . (2.16)

In the network of this example, accessibility measures are given in Table 2.9.

This illustrates that the value of accessibility significantly differs depending on

choice set composition, and that as more paths are added to Cn the value pre-

dicted by PL models converges to that predicted by the RL model, as asserted by
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PL(C1) PL(C2) PL(C3) RL

-0.9592 -0.6738 -0.5512 -0.5478

Table 2.9 – Accessibility measures according to each model

Zimmermann et al. (2017). Obtaining a prediction of accessibility which is inde-

pendent of choice sets is very useful, as it allows to compare changes in accessibility

before and after network improvements (e.g. after links are added) without bias.

When path-based models are used, reported accessibility measures may be inco-

herent, e.g. decreasing after network improvements, an issue dubbed the Valencia

paradox in Nassir et al. (2014).

2.6 Conclusion

This paper presented a tutorial on analyzing and predicting path choices in a

network with recursive discrete choice models. The goal of path choice models is to

identify the cost function representing users’ behavior, assuming that individuals

act rationally by maximizing some kind of objective function when choosing a path

in a network. Such models are useful to provide insights into the motivations and

preferences of network users and to make aggregate predictions, for instance in the

context of traffic equilibrium models.

In this tutorial, we presented the state of the art methodology for this prob-

lem, namely recursive discrete choice models. This methodology is superior in

many respects to the discrete choice models based on paths extensively used in

the transportation demand modeling literature. This tutorial achieved two main

contributions, which we describe below.

First, we provided a fresh and broader research context for this problem, which

has traditionally been addressed mostly from the angle of econometrics in trans-

portation. Namely, we drew links between discrete choice modeling and related

work in inverse optimization and inverse reinforcement learning, which facilitates a

greater understanding of the recursive models presented in this work. In particular,

we contextualized discrete choice as a method for inverse optimization with noisy
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data, and showed that viewing the inner problem as a Markov decision process

naturally yields the recursive formulation.

Second, we highlighted the advantages of recursive models through an illustrated

comparison with the most widely used method in the literature, i.e., path-based

discrete choice models. While we do not aim at discussing the validity of the

behavioral assumptions between both models, we illustrated that recursive models

display mathematical convenience, by yielding consistent parameter estimates and

predicting choices faster without choice set generation.
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3
Bike route choice modeling
using GPS data without
choice sets of paths

Prologue

Context

This chapter focuses on the timely topic of sustainable means of transportation

by estimating a bike route choice model based on the recursive modeling framework

introduced in Chapter 2. Before this article, a majority of existing research on

cyclists’ route choice behavior was based on stated preference data (i.e., surveys),

and the few which made use of revealed trajectories (Broach et al., 2012; Menghini

et al., 2010; Hood et al., 2011) worked with path-based models, with known issues.

Although recursive discrete choice modeling appears as a suitable candidate for the

bike route choice problem, the methodology had previous to this article only been

applied to relatively small networks (about 7,000 links) with no more than 3 link

attributes.

Contributions

This article mostly makes an empirical contribution. We apply the recursive

choice modeling framework to GPS-based trajectories of cyclists in the network of

Eugene, Oregon (about 40,000 links), and we report estimation results of several

models. We analyze the path-choice behavior of cyclists with respect to 14 different

network link attributes, provide an interpretation of results as well as a comparison

with the literature.

Besides model estimation, this article also addresses the problem of prediction

and illustrates that recursive models are in this respect superior to the path-based

methodology. First, we provide a comparison of two methods to predict traffic flows

in an uncongested network which are compatible with the recursive models, namely

simulation and solving a system of linear equations (Baillon and Cominetti, 2008).
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Second, we highlight a property of the recursive logit model related to accessibility

predictions, which sheds light on a paradox recently observed in the route choice

literature by Nassir et al. (2014).

Author contributions

The general idea for this paper came from Emma Frejinger. I was responsible

for writing the code with initial script and support from Tien Mai, and for running

experiments. I took charge of the full redaction of the article, while Emma Frejinger

revised the manuscript.

Article Details

This work was presented at the 5th Symposium of the European Association

for Research in Transportation (hEART 2016) and resulted in a paper published

in Transportation Research Part C:

Bike route choice modeling using GPS data without choice sets of paths.

Maëlle Zimmermann, Tien Mai, Emma Frejinger. Transportation re-

search part C: Emerging technologies 75, pp. 183-196.

3.1 Introduction

The increasing concern of policy makers for the nuisances generated by mo-

torized travel, including air pollution, urban congestion and energy waste, has

triggered the need for research into sustainable means of transportation, such as

cycling. Cycling is not a popular option for US households, 92% of which owned

a car in 2001 (Pucher and Renne, 2003) and used it as their usual commute mode

(Polzin and Chu, 2005). In some European countries, however, cycling levels have

increased sharply since 1975, when efforts were first made to accommodate cyclists

on the road network, providing evidence of the powerful impact of policy on travel

behavior (Pucher and Buehler, 2008). The challenge policy makers face nowadays

is providing a safe and convenient cycling environment that will encourage a greater

shift to this mode.
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The high travel demand and the size constraints on the street network make

it difficult for urban planners to create a system adapted to cyclists. In order

to determine exactly what facilities are worth investing in, urban planners need

to understand the behavior of bike users and gain insight into the trade-offs they

make when choosing their route. Indeed, cyclists do not always choose the shortest

distance path to go from an origin to a destination, and in fact many other factors

play a part. For example, would a cyclist be willing to go far out of their way to

avoid a hill, or to use a bike lane?

One way to answer these questions is route choice analysis. Route choice models

in a real network deal with identifying the route a traveler would take to go from

one location to another. Discrete choice models and revealed preference (RP) data

can be used to define a choice probability distribution over paths in a network.

Such models have applications on multiple levels. Firstly, the interpretation of

model parameters quantifies the trade-offs made by cyclists, which provides helpful

guidance for improving network infrastructure. Secondly, link flows predicted by

the model are useful to target the network areas most in need of improvement.

Thirdly, route choice model output provides bike accessibility prediction to higher-

level models, e.g. mode choice.

GPS technology can be used to collect RP data on path choices in real networks.

In this case, the raw data is a sequence of GPS coordinates and this data needs to

be matched to the network used by the analyst. This may be challenging, in par-

ticular if trip start and end coordinates are not identified by the participant, or if

the precision of the GPS coordinates is poor. There is a vast literature focusing on

various modeling and data processing issues related to GPS data (see for example,

Murakami and Wagner, 1999; Wolf et al., 2001; Du and Aultman-Hall, 2007; Bier-

laire and Frejinger, 2008; Schuessler and Axhausen, 2009; Bierlaire et al., 2013).

This study focuses on bike route choice modeling rather than data processing and

the GPS data has already been matched to the network. The observations hence

correspond to paths.

In the literature on route choice models based on RP data in a real network,

there are two main modeling approaches. The most common approach is path-

based, in the sense that the model describes a discrete choice among paths. A well-

known issue associated with this framework is that, in a real network, the universal

set of all paths is intractable. The other approach, put forward by Fosgerau et al.
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(2013), is link-based. In this model, called recursive logit (RL), the choices of

itineraries are modeled as a sequence of link choices.

The literature on bike route choice modeling is scarce compared to its car coun-

terpart, and all current models are based on the first approach (e.g. Broach et al.,

2012; Hood et al., 2011; Menghini et al., 2010). A shortcoming of these models

is that due to the exponential number of paths in the network one has to make

assumptions about which paths to consider (i.e. sample a restricted choice set).

This sampling process may introduce variability in estimation results, as pointed

out by Frejinger et al. (2009). Moreover, it is unknown how to use these models

to obtain correct predictions, as further detailed in Section 3.2. Link-based models

have the advantage of not requiring any sampling of paths. In fact, it was shown

that the RL model is equivalent to a path-based model with unrestricted choice set

(Fosgerau et al., 2013).

In this work, we propose a link-based bike route choice model which overcomes

these challenges. We adapt to the bike route choice problem the RL model formu-

lated by Fosgerau et al. (2013), based on the assumption of an unrestricted choice

set and not requiring any sampling of paths. Unlike previous studies, this work

addresses both the issues of estimation and prediction. More precisely, we make

the following empirical and theoretical contributions. First, we show how non-

link-additive attributes, such as slope, can be incorporated into the link utilities of

the RL model. Second, we provide estimation results based on GPS observations

in the network of Eugene, Oregon, which reveal cyclists’ preferences and quanti-

fies trade-offs between different network attributes. Third, we provide numerical

results which illustrate the advantages of the RL model over path-based models

in the context of prediction, in particular regarding gains in computational time.

Fourth, we study properties of the RL model and specifically discuss accessibility

measures. The analysis illustrates that the paradoxical results reported e.g. by

Nassir et al. (2014) obtained when path-based models predict accessibility are due

to the necessity to sample paths but can be avoided by the RL model.

The remainder of this paper is structured as follows. In Section 3.2, we start by

describing the state of the art in bike route choice modeling and we highlight gaps

in previous research. In Section 3.3, we review the RL model and in Section 3.4

we describe the data used for this application. We provide estimation results and

discuss their implications in terms of travel behavior in Section 3.5. Then Section
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3.6 focuses on prediction of link flows and accessibility. Finally, we conclude in

Section 3.7.

3.2 Literature review

In this section, we review the path-based modeling approach for the route choice

problem and highlight differences with the link-based approach. We then focus

specifically on bike route choice modeling and describe previous studies.

3.2.1 Path-based approach to route choice modeling

The path-based models are more commonly used than link-based ones. A well-

known issue associated with these models is that the set of all feasible paths is

intractable and the actual choice sets of paths are unknown to the analyst. In fact,

in a real-sized network, there is an unlimited number of paths connecting each

origin-destination pair if loops are permitted. In order to estimate such a model,

a restricted choice set has to be defined for each path observation. They can be

generated with some sort of path-generation algorithm, such as link elimination

(e.g. Menghini et al., 2010), or route labeling (e.g. Ben-Akiva et al., 1984). This

process can lead to two different hypotheses on the choice set. The classic approach

hypothesizes that the generated choice sets contain all the paths considered as

alternatives by travelers. As argued by Frejinger et al. (2009), the issue with this

approach is that parameter estimates may vary significantly with the definition of

choice sets. This led Frejinger et al. (2009) to propose a sampling approach. In

this approach, all feasible paths connecting an origin-destination pair are assumed

to belong to the choice set, denoted as the universal choice set, and the parameter

estimates are corrected for the bias induced by sampling a restricted set.

The issue of choice set generation has been mainly discussed in the context

of model estimation. However, the intractability of choice sets is also an issue

for prediction. Indeed, having access to the estimated path choice probabilities

requires to explicitly enumerate the choice set. In the literature, most route choice

models follow the classic approach, which counters the problem by assuming that

only a subset of alternatives is actually considered as relevant by travelers. The
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constructed choice set is assumed to contain all of them. However, as argued

by Prato (2009), an objective definition of relevant routes is currently missing.

Therefore, the correctness of path choice sets for prediction purposes cannot be

ascertained. This is an important issue since predictions vary depending on which

paths are assumed to be part of the choice set. When a route choice model is

estimated based on the hypothesis of an unrestricted choice set, any feasible path

is associated a non-zero choice probability. In this setting it is difficult to use the

model to forecast path choices. To the best of our knowledge, the only known

method to sample paths according to a given distribution without enumerating the

choice set is Metropolis-Hastings sampling of paths (Flötteröd and Bierlaire, 2013).

The method only requires to know the distribution up to a multiplicative constant,

which obviates the computation of the denominator in the logit function and avoids

path enumeration. However, Metropolis-Hastings sampling is time-consuming and

may be too costly to use in, for example, traffic simulation models.

3.2.2 Bike route choice modeling literature

Until recent years, the literature on bike route choice was exclusively based on

stated preference (SP) data. In the simplest case, individuals take part in a survey

in which they are asked to evaluate routes based on their main characteristic (e.g.

Winters et al., 2011). In other studies like that of Sener et al. (2009), surveys are

designed in a way that forces the respondent to make trade-offs between combina-

tions of attributes. Some studies based on SP methods are limited to performing

a descriptive analysis without estimating a formal model, while others use multi-

nomial logit or regression analysis methods, including Tilahun et al. (2007), Sener

et al. (2009), Hunt and Abraham (2007), and Stinson and Bhat (2003).

Although SP studies can be relatively inexpensively implemented and are able

to evaluate alternatives that are not yet available (e.g. nonexistent facilities), they

also have a number of well-known shortcomings. The limitations of SP studies arise

mostly from the difference between claimed and observed behavior, as described in

numerous works, for example by Sener et al. (2009). Indeed, it is difficult for SP

studies to put respondents in a setting where they can best reproduce the behavior

they exhibit in reality.

RP studies were enabled by the emergence of geographic information systems
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(GIS) which gave access to new types of data. Data was then still collected through

surveys, but instead of being put in hypothetical choice situations, participants had

to recall their actual commuting routes, which were subsequently analyzed with

GIS. While providing valid insights, these first attempts to analyze bike route choice

based on RP data never resulted in the estimation of a full route choice model, as

observed by Broach et al. (2012). In particular, the models lack a comprehensive

choice set of paths since the recalled route is compared mostly only to the shortest

path (e.g. Harvey et al., 2008). In addition, the models focus on predicting specific

aspects of route choice, such as the distance deviation from the shortest path or

the presence of bike facilities, but cannot be applied to predict path probabilities

for a large set of routes. In other words, they are certainly useful for behavioral

analysis, but not for trip distribution in a network.

The first RP study that overcame these various limitations was the work of

Menghini et al. (2010). Its main innovation was to exploit automatically processed

GPS-based observations. Car route choice models had already been estimated on

this kind of data (e.g. Ramming, 2001), since this area of research benefited from

a few years’ lead in data collecting efforts. However Menghini et al. (2010) were

the first to obtain a large scale GPS sample of cyclists trajectories matched to a

suitable network and to estimate a complete bike route choice model.

Some other noteworthy studies followed the steps of Menghini et al. (2010),

but overall the literature on bike route choice based on RP is still in its early

stages compared to its car counterpart. Notably, Hood et al. (2011) extended the

Zürich results of Menghini et al. (2010) to the US context, in a study based in

San Francisco. Broach et al. (2012) contributed as well to the state of the art by

estimating a model comprising a richer set of attributes.

The previously cited works are all based on the hypothesis that choice sets

contain the actual paths considered by cyclists. Part of the focus of their study

was then on the development of realistic choice set generation methods. A common

measure of the adequacy of choice sets is the coverage of observed routes (Ramming,

2001). In other words, path generation algorithms should be able to reproduce the

observed routes for a high proportion of origin-destination pairs. However, the

network density and the variety of attributes influencing cyclists’ choices make this

especially difficult for bike networks. As noted by Broach et al. (2012), common

algorithms for car routes based on shortest paths are often not directly applicable.
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Menghini et al. (2010) developed a choice set generation algorithm for high reso-

lution data (Rieser-Schüssler et al., 2013), deemed suitable for bike networks, and

Hood et al. (2011) and Broach et al. (2012) experimented with methods to account

for the diversity of attributes. Despite this progress, these studies highlight the

challenges raised by the restricted choice set hypothesis, especially for bike route

choice. Considered choice sets are rarely observed, thus even the quality measures

proposed in the literature have limitations (Frejinger, 2008). Moreover, even based

on these criteria the most recent algorithms fail to include all observed alternatives.

As pointed out by Horowitz and Louviere (1995), when there exists no observation

on choice sets, it is better to rely solely on the utility function to predict choices,

which is the assumption of the RL model.

3.3 Methodology

In this section, we present the link-based recursive models. We recall the for-

mulation of the RL model and we review subsequent works which relax its IIA

property.

3.3.1 The recursive logit model

The RL model (Fosgerau et al., 2013) corresponds to a dynamic discrete choice

model and the choice of path is formulated as a sequence of link choices. At each

node in the network, an individual chooses the utility-maximizing link, where the

utility is the sum of the instantaneous link cost, the maximum expected utility to

the destination and i.i.d. extreme value type I error terms. Therefore, attributes

of the RL model are attributes of the links in the network and they are specified

to be link-additive, such that the utility of a path is the sum of the utility of each

link in the path.

Formally, the model can be described as follows (Fosgerau et al., 2013). The

road network is a directed connected graph G = (A,V), where A is the set of

links and V is the set of nodes. More precisely, a set of absorbing links without

successors, corresponding to the observed destinations, is added to A. We denote

links a, k ∈ A, and the set of outgoing links from k, A(k). Each link pair (k, a)
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where a ∈ A(k) then has a deterministic utility component v(a|k), based on the

attributes x(a|k) of the link pair. In the terminology of dynamic programming, k

is a state and a is an action given k, although in this context choosing an action

translates simply to choosing the next link in the path.

Consider now an individual n traveling in this network. The instantaneous

random utility for the individual n of a link a conditionally on being in state k can

then be defined as:

un(a|k) = vn(a|k) + µεn(a), (3.1)

where εn(a) are i.i.d extreme value type 1 error terms with zero mean and µ is a

fixed scale parameter. The full utility of link a conditionally on being in state k

is obtained by adding to the instantaneous utility un(a|k) the maximum expected

utility to destination d, denoted the value function V d
n (a) and defined by the Bell-

man equation as follows

V d
n (k) = E

[
max
a∈A(k)

{
vn(a|k) + V d

n (a) + µεn(a)
}]

. (3.2)

Therefore, upon observing the random term εn(a), the individual chooses in

A(k) the link a which maximizes un(a|k) + V d
n (a).

The probability of choosing a link a given state k conditionally on going to

destination d is then given by the multinomial logit model

P d
n(a|k) =

e
1
µ
vn(a|k)+V dn (a)∑

a′∈A(k) e
1
µ
vn(a′|k)+V dn (a′)

. (3.3)

In this case the value function is the logsum

V d
n (k) = µ ln

∑
a∈A(k)

e
1
µ
vn(a|k)+V dn (a). (3.4)

We note that the denominator in (3.3) simplifies to e
1
µ
V dn (k). As a result, the

probability of choosing a path σ = {ki}li=0 where k0 is the origin and kl = d, given
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by the product of the link choice probabilities, also has a simple expression:

P d
n(σ) =

l−1∏
i=0

e
1
µ

(vn(ki+1|ki)+V dn (ki+1)−V dn (ki)) (3.5)

=
e

1
µ

∑l−1
i=0 vn(ki+1|ki)

e
1
µ
V dn (k0)

. (3.6)

Denoting
∑l−1

i=0 vn(ki+1|ki) as vn(σ), Equation (3.6) can be rewritten as:

P d
n(σ) =

e
1
µ
vn(σ)∑

σ′∈U e
1
µ
vn(σ′)

, (3.7)

where U is the universal set of all possible paths. Therefore, the RL model is

equivalent to a static model of multinomial logit form with an infinite choice set

(Fosgerau et al., 2013).

We also note that the hypotheses of the RL model, namely deterministic state

transitions and a discount factor equal to one, allow Bellman’s equation (3.2) to be

rewritten as

z = Mz + b, (3.8)

where zk = e
1
µ
V d(k), Mka = δ(a|k)e

1
µ
v(a|k) and bk = 0 if k 6= d and bd = 1 (Fosgerau

et al., 2013). Therefore, the value function for each destination can be obtained by

simply solving a system of linear equations.

3.3.2 Modeling correlated utilities

When discrete choice models are used to analyze path choice in a network, it is

well known that the IIA property may not hold for a given logit specification, e.g.,

due to overlapping paths in the network (Ben-Akiva and Bierlaire, 2003). Paths

sharing links in the network may share unobserved attributes and the route choice

model should account for this correlation in order to produce accurate predictions.

Several solutions, such as path size logit (Ben-Akiva and Bierlaire, 1999), have

been proposed in the literature to model correlated path utilities, as reported by

Frejinger and Bierlaire (2007).

Similarly to the path size logit model, Fosgerau et al. (2013) propose a so-called

Link Size (LS) attribute that can be used in combination with the RL model. It
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heuristically corrects the utility of overlapping paths and relaxes IIA while keeping

the logit structure.

Mai et al. (2015) relax the IIA property in the RL model by allowing scale pa-

rameters of random terms to be link-specific. The model contains scale parameters

µk for each link k ∈ A and the utility function becomes

un(a|k) = vn(a|k) + µkεn(a). (3.9)

The resulting model is called the nested recursive logit (NRL) and it allows path

utilities to be correlated in a fashion similar to the nested logit (McFadden, 1978).

The path probabilities are in this case defined by

P d
n(σ) =

l−1∏
i=0

e
1
µki

(vn(ki+1|ki)+V dn (ki+1)−V dn (ki))
. (3.10)

The scales µk are parameters of the model to be estimated, similarly to the pa-

rameters β associated with the attributes of the instantaneous utilities. Due to the

impossibility to estimate a scale parameter for each link in a real network, it is

assumed that scale parameters are a function µk(βscale) of parameters βscale to be

estimated.

There is a trade-off between modeling correlated utilities and being able to

estimate the models in a reasonable amount of time. The RL model requires to solve

the systems of linear equations in (3.8). Thanks to a decomposition (DeC) method

for RL proposed by Mai et al. (2016), it is sufficient to solve one system for all

destinations in order to evaluate path choice probabilities. This is not the case for

RL with the LS attribute which requires to solve one system per origin-destination

pair. The DeC method is not compatible with NRL either. The destination specific

value functions corresponding to the NRL model are solutions to a system of non-

linear equations. They can be computed by value iteration as described in Mai

et al. (2015) which is more time consuming than solving a linear system.
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Figure 3.1 – Map of the region of study. Source: www.thempo.org

3.4 Data

This study is based on GPS observations of cyclists trajectories in the city

of Eugene, Oregon. The data was collected and processed by the Central Lane

Metropolitan Planning Organization as part of their ongoing research on bicycle

travel behavior in the area. Their goal was to collect the data in an inexpensive

manner in terms of time and money, which pointed towards the use of a smartphone

application instead of a bicycle-mounted GPS device. This led to the development

of the CycleLane smartphone application. CycleLane builds on code provided by

the San Francisco County Transportation Authority, who has previously developed

a similar application called CycleTracks (see Hood et al., 2011).

Upon downloading the CycleLane application, users are first asked about de-

mographics and cycling frequency. They may then voluntarily record any bike trip

they undertake by switching on the application. At the end of a trip, the user fills

in the purpose of the trip and the data is automatically sent to the CLMPO.

In total, 648 observations of bike trips were collected from 103 users, after the

CLMPO screened observations in order to remove trips not within the region, trips

not fully recorded, and duplicate trips. Most users were frequent cyclists (with 55%

of the sample riding several times per week or daily). There is also a bias towards

males, who represent 74% of participants, and surprisingly towards people older

51



than 26, who amount to 81%, despite the high number of university students in

the region (Roll, 2014).

The observations were matched to the route network of the Eugene Springfield

Metropolitan area (Figure 3.1). The network contains 16,352 nodes and 42,384

links. It was enlarged to include not only traditional car routes but also the many

minor alleys and multi-use paths bikes may take. The area comprises some 80

miles of off-street bicycle and pedestrian paths and over 140 miles of bike lanes and

bike boulevards, according to the CLMPO. As a result, we can analyze preferences

towards different types of bike facilities.

Several network characteristics are available to describe the network’s links,

such as length, average slope and upslope, estimated car traffic volume, one-way

restrictions, speed limits, presence of various types of bike facilities, traffic signals,

and stop signs. In contrast with previous path-based studies, the data does not

need to be processed in order to compute attribute levels of each generated path.

In the following section, we describe how to exploit the data in order to meet the

RL model’s assumptions.

3.5 Recursive bike route choice models

In this section, we use the recursive models of Section 3.3 to analyze the data

presented in Section 3.4. We present the specification of link utilities, estimation

and cross-validation results.

3.5.1 Link utilities

We specify four different models within the recursive framework: the RL model

with and without the LS attribute, and the NRL model, also with and without LS

attribute.

We start by noting that it is important to define link utilities as functions

of link-additive attributes. Indeed, the likelihood function is defined over path

observations. In the RL model, the probability of choosing a path is equal to the

product of the link choice probabilities, which results in an expression (3.6) that is
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based on the sum of link utilities. Link-additive attributes ensure that the sum of

link utilities can be interpreted as a path utility.

As a result of the link-additivity assumption, link characteristics such as slope

need to be carefully incorporated in the utility function. For example, it is not

possible to include slope as a continuous variable, since the average slope of a path

consisting of two links is not equal to the added average slopes of each link. In

our case, these inherently non-link-additive attributes are slope, traffic volume and

presence of bike facilities. The solution we adopt is to specify a dummy variable

δa for each of these attributes and let the dummy variables interact with the link

length attribute. On each link a, the variable δa takes the value 1 if the attribute

is present or greater than a chosen threshold in case of continuous attributes, and

0 else. The interaction term is simply the product of the two attribute values. Not

only does this specification allow us to include important characteristics in a way

that respects link additivity, but the interpretation is also simple and intuitive.

As an illustration, let us assume links are characterized by three attributes, link

length, slope, and the presence of a bike lane. Let us also assume a certain threshold

above which slope affects utility has been chosen. If we denote La the length of link

a, δSa and δBa the previously introduced dummy variables corresponding to slope

and presence of a bike lane respectively, βL the length parameter, and βL,S, βL,B the

parameters corresponding to the interaction terms, then the deterministic utility

component of a link a given a state k would be:

βL · La + βL,S · La · δSa + βL,B · La · δBa
= (βL + βL,S · δSa + βL,B · δBa )︸ ︷︷ ︸

βTL

La.

Implied is that length is associated to a total length parameter, referred in this

example as βTL, which may take different values across links. For example, for a

link a with a slope greater than the chosen threshold and with a bike lane, the

variables δSa and δBa would take the value 1. In this case, the parameters of the

interaction terms would add to βL, and βTL would be equal to βL + βL,S + βL,B.

Intuitively, the way individuals perceive length is influenced by other character-

istics of the link. In the illustrative example, if βL,B is positive, the fact that there

is a bike lane will increase the value of the total parameter βTL, making traveling
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a unit of distance on this link less unpleasant for the individual. Similarly, if βL,S

is negative, a link with a slope higher than the threshold will cost more per unit

of length, making it less attractive. The implied behavior is plausible, as travelers

might be willing to cope with negative attributes, but more so for relatively short

distances.

We summarize in Table 3.1 the network attributes x(a|k) of each link pair

(k, a) included in the deterministic utility specification of all four models. Non-

link-additive attributes which are included through the specification of one or sev-

eral dummy variables are traffic volume, average upslope, and three types of bike

facilities. Turn attributes are computed based on link orientation at each node.

Obtaining these link pair attributes from the network data is straightforward and

does not require extensive computations. This makes the model practical to esti-

mate compared to path-based models which require to compute path attributes for

each path in the choice set.

In order to account for the correlation due to overlap between paths, we follow

the methodology detailed in Section 3.3.2. In addition to the RL model, we specify

a RL model with LS attribute, a NRL model, and a NRL model with LS. The LS

attribute is specific to each pair of origin-destination (OD). It represents the ex-

pected link flow between each OD and is generated from the RL model with chosen

parameter values. The two NRL models include link-specific scale parameters µk

which are a function of a single parameter βscale.

3.5.2 Estimation results

We first make some remarks regarding the estimation algorithm and compu-

tational times. As described in Fosgerau et al. (2013) and Mai et al. (2015), the

optimization algorithm is a basic trust-region algorithm which uses the BFGS Hes-

sian approximation for the RL model, and the BHHH approximation for the NRL.

The systems of equations in (3.8) are computed using MATLAB’s solver for sparse

systems. The models are estimated with MATLAB 2016 1 based on the implemen-

tation of Mai et al. (2015). We have used an Intel(R) Xeon(R) X5675 @ 3.07GHz

machine. The machine has a multi-core processor but we only used one processor

to estimate the models. As expected, the computational time required to estimate

1. Code distributed on github: https://github.com/maitien86/RecursiveLogit.Bike
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Attribute Description

Length Link length (1/1000 feet)
Link Constant A constant equal to one for each link intended to penalize paths

with many crossings.
Length · Upslope Interaction between link length and average upslope > 4%.
Length · Medium Traffic Interaction between link length and medium traffic volume (be-

tween 8000 and 20000 vehicles/day).
Length · Heavy Traffic Interaction between link length and heavy traffic volume (greater

than 20000 vehicles/day).
Length · RMUP Interaction between link length and regional multi-use path.
Length · Bike Boulevard Interaction between link length and bike boulevard.
Length · Bike Lane Interaction between link length and bike lane.
Bridge Presence of bridge
Bridge · Bike Fac Interaction between presence of bridge and bike facilities.
No Turn Straight direction of travel (no turn ±5◦)
No Turn · Crossroad Straight direction of travel at a crossroad
Left Turn · Crossroad ·
Medium Traffic

Left turn through medium traffic at crossroad without traffic sig-
nal (at an angle between 60◦ and 179◦)

Left Turn · Crossroad · Heavy
Traffic

Left turn through heavy traffic at crossroad without traffic signal
(at an angle between 60◦ and 179◦).

Table 3.1 – Description of attribute variables

the NRL models (about 15 days) is much greater than that of the RL models (1h

without LS using the decomposition method, and 43h with LS).

Tables 3.2 and 3.3 display the estimation results for all four model structures

and for the chosen utility specification. All parameter estimates are significantly

different from zero and have their expected sign. The models with the LS attribute

have a significantly better in-sample fit than those without, and the NRL model

has a significantly better in-sample fit than the RL model. With the LS attribute,

the NRL model is the best of all four, but without it is outperformed by the RL

model with LS. The ratio between parameter estimates remain similar for the RL

and NRL models. Therefore, the interpretation of parameters is consistent with

all models considered. In the following discussion, we focus on the estimates of the

RL model without LS.

Consistent with the expectation that cyclists are highly put off by long dis-

tances, the link length parameter assumes a negative value. This was found to be

the attribute dominating the choices of cyclists by Menghini et al. (2010) and an

important factor in virtually all bike route choice research. However, as described

in Section 3.5.1, this parameter represents only part of a total length parameter, the

magnitude of which varies across links depending on other relevant characteristics

influencing length perception.
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Model RL RL-LS

Attribute β̂ σ̂ t-test β̂ σ̂ t-test

Length −2.25 0.13 −17.31 −2.28 0.14 −16.28
Link Constant −1.61 0.02 −80.50 −1.60 0.02 −80.00
Length · Upslope −3.24 0.55 −5.89 −3.15 0.50 −6.30
Length · Medium Traffic −0.81 0.08 −10.13 −0.82 0.08 −10.25
Length · Heavy Traffic −1.01 0.10 −10.10 −1.02 0.08 −12.75
Length · Bike Boulevard 0.74 0.08 9.25 0.76 0.07 10.86
Length · RMUP 1.80 0.07 25.71 1.81 0.07 25.86
Length · Bike Lane 0.92 0.06 15.33 0.87 0.06 14.50
Bridge −5.41 0.97 −5.58 −4.56 1.00 −4.56
Bridge · Bike Fac. 2.83 0.52 5.44 1.99 0.56 3.56
No Turn 1.37 0.03 45.67 1.33 0.03 44.33
No Turn · Crossroad −0.28 0.03 −9.33 −0.29 0.03 −9.67
Left Turn · Crossroad · Medium Traffic −0.28 0.09 3.11 −0.33 0.09 3.67
Left Turn · Crossroad · Heavy Traffic −1.84 0.33 −5.58 −1.86 0.34 −5.47
Link Size − − − −0.24 0.03 −8.00

Log likelihood at β̂ −12383 −12202

Table 3.2 – Estimation results: RL model

Model NRL NRL-LS

Attribute β̂ σ̂ t-test β̂ σ̂ t-test

Length −1.48 0.14 −10.57 −1.54 0.17 −9.06
Link Constant −1.07 0.05 −21.40 −1.09 0.06 −18.17
Length · Upslope −2.97 0.55 −5.40 −3.05 0.55 −5.55
Length · Medium Traffic −0.53 0.07 −7.57 −0.59 0.08 −7.38
Length · Heavy Traffic −0.66 0.08 −8.25 −0.70 0.08 −8.75
Length · Bike Boulevard 0.51 0.06 8.50 0.46 0.06 7.67
Length · RMUP 1.15 0.09 12.78 1.18 0.10 11.80
Length · Bike Lane 0.62 0.06 10.33 0.60 0.06 10.00
Bridge −2.83 0.56 −5.05 −2.08 0.47 −4.43
Bridge · Bike Fac. 0.86 0.29 2.97 0.19 0.33 −0.58
No Turn 0.89 0.05 17.80 0.88 0.06 14.67
No Turn · Crossroad −0.14 0.02 −7.00 −0.15 0.02 −7.50
Left Turn · Crossroad · Medium Traffic −0.05 0.05 1.00 0.03 0.05 0.60
Left Turn · Crossroad · Heavy Traffic −1.56 0.40 −3.90 −1.28 0.27 −4.74
Scale −0.11 0.01 −11.00 −0.11 0.02 −5.50
Link Size − − − −0.16 0.02 −8.00

Log likelihood at β̂ −12325 −12143

Table 3.3 – Estimation results: NRL model
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Characteristics related to slope were included in the form of a dummy variable

interacting with link length. We chose a threshold of an average link upslope higher

than 4%. The negative value of the slope parameter, about 1.5 times that of the

length parameter, shows that a large upslope considerably increases the magnitude

of the total length parameter. We tested a higher threshold of 6% in addition to a

4-6% threshold, but the difference between the estimates was not significant. A 2-

4% threshold was also investigated but the estimate was not significantly different

from 0. The most similar findings are those of Broach et al. (2012) whom included

as an attribute the proportion of route length within three categories of average

slope (2-4%, 4-6%, 6% and more). They found this specification to perform better

than the most common alternatives, such as maximum or average slope of the path,

found in Hood et al. (2011) and Menghini et al. (2010).

Traffic volumes also affect the way cyclists perceive distances, but less so than

slope. Medium (between 8000 and 20000 vehicles/day) and heavy (more than

20000 vehicles/day) traffic are both associated with negative parameters, however,

not significantly different. While the value of the total length parameter is −2.25

on a segment with low traffic, assuming no other link characteristics contribute

to its value, it becomes −3.06 on a segment with medium traffic volume (and

similarly −3.26 with heavy traffic volume). Thus the model did not identify a

significant difference between medium and heavy traffic. The ratio between both

values indicates that cycling 1 mile surrounded by heavy traffic would be perceived

equivalent to cycling 1.45 miles on a low traffic road.

Bike facilities are all associated with a positively signed parameter, indicating

that cyclists are willing to travel greater distances to use them. The regional multi-

use path is the bike facility with the largest parameter value. Bike lanes and bike

boulevards both have a significantly smaller parameter estimate, consistently with

the results of Broach et al. (2012). On a segment with a bike facility, the value of

the total length parameter increases and is equal to −1.51 if the facility is a bike

boulevard, −1.33 for a bike lane and −0.45 for a regional multi-use path. Thus,

traveling on a street with a bike boulevard is equivalent to a reduction in distance of

33%. This becomes a reduction of 41% for the bike lane and of 80% for the regional

multi-use path. The value placed on separate multi-use paths is surprisingly high,

and suggests that cyclists are willing to travel on roads more than 4 times longer

to use them. This result may be due to the relatively small number of observations
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available, many of which use regional multi-use paths. We also note that the bike

lane parameter is of a similar magnitude as the ones for traffic volume, which have

an opposite sign. This suggests that the presence of a bike lane counterbalances the

negative impact of heavy traffic on the utility of a road, however it has no residual

value. This last observation supports the conclusions of Broach et al. (2012), who

also stated that bike lanes are no more and no less attractive than a basic low

traffic street.

A bridge is in general an unattractive feature of a path for a cyclist, as the

negative value of the estimate shows. However, if the bridge has a separated bike

facility, the positive value associated to the bike facility in that case outweighs the

negative one, and the sum of both parameters is not significantly different from

zero, meaning that in this case bridges are not penalized compared to other links.

The link constant parameter has a negative sign, meaning that paths with many

crossings are less attractive to cyclists.

The coefficient associated to a straight direction of travel is significantly positive,

probably because many turns may cause detours or result in an intricate path.

Cyclists thus have a preference for simple routes. However, the model suggests that

at a crossroad (instead of another type of intersection with fewer outgoing links) the

incentive for going straight is slightly lowered. In this specification, left and right

turns at crossroads do not contribute to the utility, while being still less attractive

relative to a straight route. We expect in contrast difficult left turns which cause

delays to be especially inconvenient to cyclists. The model shows indeed that left

turns through heavy traffic at crossroads without signals are greatly penalized.

Cyclists are also sensitive to left turns through medium traffic, but less so.

3.5.3 Cross-validation

In this section, we compare the out-of-sample fit of the four models with a

cross-validation approach, in order to check for overfitting. The observations are

repeatedly and randomly split into a training set (80% of all observations) and a

test set (20%), until 20 different training sets and matching test sets have been

generated. The performance of the models is evaluated by computing the log-

likelihood loss on the test sets, after having estimated the models on the training
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Figure 3.2 – Moving average of erri across samples i = 1, ..., 18

sets. The log-likelihood loss of sample i is defined as:

erri = − 1

|Si|
∑
σ∈Si

lnP (σ, β̂i),

where Si denotes test set i, and β̂i the vector of estimated parameters on training

set i. Thus, the lowest the loss is, the best a model performs.

We performed the cross-validation on all four models. However, there were too

few observations in the training set for the estimation algorithm of the NRL model

with LS to converge and it was excluded from the comparison. The estimation

algorithm for the NRL model also did not converge for two training sets, therefore

we compare the RL, the RL with LS and the NRL on the 18 remaining sample

sets. Figure 5.5 plots the moving average of erri across sample sets i = 1, ..., 18.

The cross-validation is in line with in-sample fit and confirms that the RL model

with LS performs best of the three models, followed by the NRL model, and that

the RL model has the highest log-likelihood loss.
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3.6 Prediction

In this section, we extend the analysis beyond the interpretation of model pa-

rameters. We address the general issue of applying bike route choice models for

prediction. In a policy analysis perspective, important applications of the model are

i) predicting link-level bike volume and ii) measuring cyclist specific accessibility.

We aim with this section to contrast the path-based approach to prediction with

that of the link-based RL model. In both cases, we review the prediction methods

provided by all models. We enlighten the methodological issues associated with

path-based models, then explain how the RL model overcomes them. For link

flows, we provide in addition numerical results which highlight the potential gains

of time associated to the RL model.

3.6.1 Link flows

We start by stating that in the following, the methods we discuss are based on

the assumption of an uncongested network. This means that route choice proba-

bilities are independent of the amount of flow on each link, which is reasonable in

the case of many bike networks, in particular in North America. Link-level traffic

volume is predicted from route choice models by distributing a given travel demand

between each OD pair on the network. We assume that an OD matrix characteriz-

ing this demand exists. The recursive models offer two ways to distribute demand

in the network according to an estimated model: by simulation or by computing

link flows as solutions to systems of linear equations. Both ways make use of des-

tination specific link choice probabilities P d(a|k; β̂) given by (3.3) but with the

parameter estimates β̂. We denote Pd the matrix with elements P d(a|k; β̂).

The first way of distributing demand consists of simulating path choices for

each origin destination pair by sampling from Pd. There are different simulation

methods available with different computational cost. For the sake of illustration,

we use a simple approach in this paper that consists of drawing the same number

r of paths for each OD pair. The path choice probabilities are known for each

of these paths (3.6) and we normalize them so that the sum over the r simulated

paths for each OD equals one. We then distribute the demand given by the OD

matrix according to the path probabilities. While this simulation approach may

at a first glance seem similar to the classic way of distributing demand according
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to a path-based model, there is an important difference. Path-based models make

use of choice sets that are arbitrarily generated while the recursive model allows to

simulate according to the estimated model Pd without generating any choice sets.

The second way to distribute demand in the network is grounded in the link-

based structure of the RL model and was proposed by Baillon and Cominetti (2008).

It allows to compute link flows without resorting to simulation. The method con-

sists in solving a system of linear equations for each destination d in the network,

and to sum the resulting link flows over all destinations. Let us denote the demand

originating from each link a to destination link d as the vector Gd, the vector of

destination-specific link flows as Fd. Then, the vector of expected link flows Fd is

obtained by solving

(I−PdT )Fd = Gd, (3.11)

and the vector of link flows F resulting from demand with multiple destinations is

equal to F =
∑

d Fd.

To the best of our knowledge, this second method has not been used with an

estimated model and a real network before. In the following we compare predictions

generated with both methods. The objective is to assess the potential gain in

computational time of avoiding simulation.

We applied both method to predict link flows in the Eugene bike network with

the RL model. Since we assumed an uncongested network, we did not iterate to find

a traffic equilibrium condition. The flows were predicted for a given demand matrix

consisting of 666 origins and destinations in the Eugene bike network which was

obtained from a mode choice model. Figure 3.3 plots the amount of flow on each

link according to each prediction method. The figure indicates that both methods

yield very similar results, even with a relatively small number of paths sampled

in the choice set. The average flow on each link amounts to 55.36 according to

the solution of (3.11). The average difference of flow on each link when comparing

these results with simulated link flows is 3.03 when 10 draws are used, and 2.95

when 20 draws are used. We conclude that it would take a very large number of

draws for the simulated flows to converge to the solution of the system of equations,

nevertheless the difference is very small. Furthermore, we note that the average

difference is inflated by a few links with a very large amount of flow, while for the

great majority of links this difference is comprised in the [−4; 4] interval and close

to 0, as seen in Figure 3.4.

61



A difference between both methods is that solving the linear system of equations

assumes that there is a non-zero probability of flow on each link. As a result, the

amount of flow on each link is strictly positive (although negligible for many links).

On the contrary, when link flows are simulated, there is only flow on links of paths

that were sampled. When 10 draws were used, we found that 30,205 links out of

43,050 had non-zero flow, and this became 31,039 when 20 draws were used. On

the other hand, by solving the system of equations, we obtain slightly higher flows:

27,077 links have a flow higher than 1, while this amounts to 25,583 (25,760) links

for simulation with 10 (20) draws.

In terms of computational time, solving the system of linear equations for all

destinations requires 6 minutes, while simulating link flows via sampling took about

25 hours for r = 10, and about 70 hours for r = 20 (non-parallelized MATLAB

code). Even though the code has not been optimized for simulation, the results

illustrate the potential gain associated with solving systems of linear equations as

opposed to simulation. Moreover, this approach has the advantage of producing

deterministic link flows and hence overcomes the issues associated with simulation

bias.

3.6.2 Accessibility measure

Accessibility is a widely studied notion in transportation, and in this context it

can be defined as information evaluating the attractiveness of a network (regardless

of activity participation, which is encompassed in a more general definition, e.g.

Bhat et al., 2000). Accessibility measures are useful in travel demand modeling, as

they provide input to higher-level models, such as mode choice, household location

choice or car ownership models. These measures are often OD-specific, in which

case they characterize the level of service of a network when traveling from an origin

O to a destination D.

In particular, bike accessibility encapsulates information regarding the suitabil-

ity of the network for cycling, and has been also denoted bikeability in other works

(Lowry et al., 2012). According to Hood et al. (2011), current bike accessibility

measures used in higher-level models are more predictive of automobile travel than

cycling, while Mesbah and Nassir (2014) asserts that traditional measures are only

based on shortest path computations between OD pairs and thus unsuitable for
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Figure 3.3 – Load profile of links

-4 -2 0 2 4

Difference between simulated and static flow

0

0.5

1

1.5

2

N
u
m

b
e
r 

o
f 
li
n
k
s

×10
4

(a) Simulation, r = 10

-4 -2 0 2 4

Difference between simulated and static flow

0

0.5

1

1.5

2

N
u

m
b

e
r 

o
f 

li
n

k
s

×10
4

(b) Simulation, r = 20

Figure 3.4 – Histogram of link flow difference

bike accessibility. As a result, recent works now recognize the importance of im-

proving two aspects of bike accessibility measurement, first to incorporate route

choice preferences of cyclists, and secondly to capture the diversity of suboptimal

available routes instead of the utility of the single best path.

Deriving an accessibility measure from a bike route choice model appropriately
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fits these two purposes and was recently investigated by Nassir et al. (2014). This

idea is not new and originates from the general concept of deriving an accessibility

measure from a random utility model, introduced by Ben-Akiva and Lerman (1979).

They defined accessibility as the logsum

E(max
i∈Cn

ui) = µ log
∑
i∈Cn

e
1
µ
vi . (3.12)

This measure guarantees that accessibility does not decrease if the systematic utility

of any alternative in the choice set increases, as proven by Ben-Akiva and Lerman

(1979). In other words, if an alternative becomes more attractive, for example,

as a result of infrastructure enhancements, the accessibility measure mirrors this

improvement.

However, with a route choice random utility model based on paths, we argue

that this important property no longer holds due to the intractable nature of the

choice set Cn in (3.12). Whether it is assumed that the true choice set consists of

all feasible paths or that only a subset of alternatives are in fact considered does

not affect the prediction method. In each case, it becomes necessary to define a

restricted set of paths in order to evaluate Equation (3.12). Similarly to the link

flow problem, in the absence of a clear methodology any choice set could be selected

and the ensuing accessibility measures vary.

It is straightforward to explain why this implies that the property of mono-

tonicity with respect to the systematic utility no longer holds. Indeed, the sampled

choice set Cn in (3.12) needs to be updated after network changes in order to account

for potential newly attractive paths that were not previously generated. Paths that

were sampled in the first choice set may not appear in the second one. However if

accessibility after network changes is computed based on a different choice set C̃n,

there is no basis for comparison. As such there can be no guarantee of monotonicity.

This has given rise to what Nassir et al. (2014) denote the Valencia paradox. This

paradox was observed when the predicted accessibility counter-intuitively decreased

for some origin-destination pairs after network improvements and is tangible proof

of the problematic consequences of this limitation.

In essence, we argue that this paradox is an artifact inherent to path-based

models and arises from the necessity to explicitly generate a restricted choice set

for prediction. The RL model allows to predict accessibility according to the true
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model with the hypothesis of an unrestricted choice set. The ensuing measure

prevents paradoxical predictions. In order to illustrate this assertion, we first derive

the accessibility measure resulting from the RL model.

In the RL model, the accessibility of an origin-destination pair as defined previ-

ously by the logsum formula is simply equivalent to the value function to destination

d at the origin link k (Fosgerau et al., 2013):

V d(k) = E

[
max
a∈A(k)

(
v(a|k) + V d(a) + µε(a)

)]
= µ ln

∑
a∈A(k)

e
1
µ

(v(a|k)+V d(a)). (3.13)

The value function from an origin to a destination encompasses the expected max-

imum utility of all paths connecting them. This becomes clear when recalling that

the RL model is equivalent to a path-based multinomial logit model over the set of

all possible paths (see Section 3.3). This property is what allows the value function

to be rewritten in an equivalent non-recursive form:

V d(k) = µ ln
∑
σ∈U

e
1
µ
v(σ) (3.14)

where U is the set of all paths between origin k and destination d, and v(σ) is

the deterministic utility component of path σ. It is then apparent that the value

functions of the RL model are of the form in (3.12), and consequently they retain

the property of monotonicity with respect to the deterministic part of utilities. The

fundamental point here is that, to the difference of path-based models, the value

functions of the RL model can be conveniently computed by solving systems of

linear equations and do not rely on enumerating the set U .

Naturally, accessibility in (3.14) could also be approximated with Monte Carlo

techniques by generating a subset of paths Cn from U , just as link flows may be

predicted by sampling from the true model. Intuitively, as more paths are sampled

and added to Cn, the value obtained converges towards an asymptotic value which

is given by the value function. Finally, this means that path-based models can only

provide an approximation of accessibility based on the entire network. Whether it

is judicious from a behavioral perspective to assume that any feasible path should

enter the choice set is yet another much-debated question. Nevertheless, this work,

along with others (e.g. Horowitz and Louviere, 1995), provide evidence that for

mathematical reasons, it is pragmatic to do so.
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3.7 Conclusion

We outlined the development of several versions of a bike route choice model

based on the recursive logit framework of Fosgerau et al. (2013), with and without

relaxing the IIA property through nesting, as proposed by Mai et al. (2015). We

estimated the models on 648 GPS-based observations of paths collected in Eugene,

Oregon, and matched to a network of 16’352 nodes and 42’384 links. Our utility

specification successfully incorporates fundamental attributes impacting cyclists’

route choice while respecting link additivity. To do so, we let inherently non-link

additives such as slope interact with link length.

Estimation results emphasize the sensibility of cyclists to distance, traffic vol-

ume, slope, crossings and presence of bike facilities. The preferred facilities are

separate multi-use paths, followed by bike lanes and then by bike boulevards. Our

results confirm the findings of previous studies, in particular the strong preference

for separate paths and the small residual value of bike lanes after compensating

the negative effect of high traffic volumes, as highlighted by Broach et al. (2012).

Our model did not identify as many distinct categories of slope or traffic volume

as the one of Broach et al. (2012), distinguishing only between average slope above

or below 4%, and traffic volume above or below 8000 vehicles per day.

The RL model is fast to estimate when applying the decomposition method of

Mai et al. (2016). However, the method is not applicable when including a link size

attribute or when relaxing the IIA property via nesting. Since models accounting

for correlated utilities performed better than the simple RL models, a trade-off has

to be made between accuracy and computational time.

In addition to analyzing cyclists’ route choice preferences, this paper makes

valuable contributions, both theoretical and empirical, in the field of prediction.

We experimented two methods to predict traffic flows, simulation and solving a

system of linear equations (Baillon and Cominetti, 2008). We find that solving the

system requires shorter computational time than sampling paths while resulting

in similar link flows. We also highlighted a theoretical property of the RL model,

namely that its value function corresponds to the accessibility measure obtained

asymptotically from a path-based model, if the sampled choice set grows towards

including all paths. The implication of this result is that the RL model yields an

accessibility measure which is monotonous with respect to deterministic utilities,

66



and can be consistently incorporated in higher-level models, such as mode choice

models. Thus, the result discussed at length in Nassir et al. (2014) and dubbed a

paradox is an artifact of the hypothesis of a restricted choice set.
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4

Multi-modal route choice
modeling in a dynamic
schedule-based transit
network

Prologue

Context

The previous chapter applied the recursive logit framework to GPS-based tra-

jectories of cyclists. This short chapter is an extension of the previous work to

model path choice behavior for public transportation (PT) modes. The additional

challenge posed by transit networks is that individuals may transfer between differ-

ent lines of public transport services, the availability of which depends on time. In

general, studies on transit path choice may make the assumption that transit lines

run according to a given schedule for the day, or assume a constant headway across

time. In this work, we have available data on the exact schedule of the full transit

network of the city of Zürich, therefore we chose the schedule-based approach.

Article Details

This work was jointly performed with Emma Frejinger and Kay Axhausen, and

presented at the 15th International Conference on Travel Behavior Research, Santa

Barbara, California, July 15-20, 2018.

Related Work

A related article was published as:

De Freitas, L. M., Becker, H., Zimmermann, M., Axhausen, K. W.

(2019). Modelling intermodal travel in Switzerland: A recursive logit

approach. Transportation Research Part A: Policy and Practice, 119,

200-213.
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In that paper, the “frequency-based” approach is used to model transit route

choice, i.e., a constant headway is assumed. This allows to consider only a static

version of the PT network, thus limiting the size of the problem. On the other

hand, information on trade-offs made by individuals regarding the waiting/transfer

times of different itineraries is less precise, as the actual wait depends on the time

at which the trip is made.

4.1 Introduction

Route choice behavior has predominantly been analyzed from the angle of a

single mode, most often the car. Considering route choice in the broader context

of multi-modal networks yet opens the way to more complex policy analysis and

wider applications. In particular, multi-modal traffic assignment models (Lo et al.,

2004) and advanced traveler information systems (Zhang et al., 2011) can analyze

the effect of fares on congestion or answer routing queries involving several modes.

Their mechanisms rely on sound knowledge of traveler’s preferences for attributes

of multi-modal trips, such as travel time, waiting time or number of transfers.

On many levels, the behavior of travelers in multi-modal networks is more com-

plex to model than that of car drivers. Traditional models of route choice analysis

in traffic networks are not directly applicable in this context. To represent a multi-

modal trip as a path, it is necessary to combine the networks of available modes via

transfer, waiting and/or access links into a so-called supernetwork (Sheffi, 1985).

An additional difficulty is the limited availability of public transport services. In-

deed transit lines are subject to a frequency or a schedule, which imposes constraints

on the route choice and calls for an appropriate treatment of time. To get around

this problem, some studies have attempted to simplify the network representation

or the level of detail, focusing on schematic networks (e.g. Raveau et al., 2011).

Another challenge is related to the definition of alternatives to the observed path.

Not only is it more complex to generate realistic path alternatives in a multi-modal

network, but there may be a bias in parameter estimates induced by the selection

of a restricted choice set (Frejinger et al., 2009).

This paper tackles these challenges by applying the recursive logit to model

the choice of transit modes and route in a real network. The model is based
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on the assumption of a full available schedule. The approach presents numerous

advantages. First, route choice preferences can be consistently estimated without

generating choice sets of paths. Second, the model can be used to predict fast and

accurately path choices in real network by sampling from estimated link choice

probabilities. Although the network is much larger than previous applications

of the RL model with over 1 million links, we obtain reasonable computational

times. Third, the approach allows to include all transit services without restriction

in one large-scale network, providing the possibility to estimate realistic rates of

substitution between different attributes.

4.2 Literature review

There is a large body of literature which reports route choice preferences of

travelers in a multi-modal network, most of which are based on stated preference

(SP) data (e.g. Vrtic et al., 2010; Arentze and Molin, 2013; Fosgerau et al., 2007).

Such studies are simpler to implement as the modeler can entirely define the choice

situation and its alternatives according to convenience. However SP data has no-

table disadvantages, in particular the potential disparity between answers given

to hypothetical choice situations and behavior exhibited in reality. In addition,

although such studies can provide an interpretation of estimated parameters in

terms of policy implications, the models cannot directly be applied to predict route

choices in a real network.

Route choice models based on revealed preference (RP) data are congruent

with observed behavior in actual choice situations, but face other challenges. The

modeler must define a restricted set of path choice alternatives for each observation,

as the many possibilities to connect an origin-destination pair are too numerous

to enumerate in a real network. In multi-modal networks, there is not only a

large number of paths confined to each single mode, but also nearly unlimited

transfer possibilities as well as different runs of parallel lines, resulting in a very

large number of alternatives. Most studies avoid dealing with the full inherent

complexity of the problem. For example, Bovy and Hoogendoorn-Lanser (2005)

consider a multi-modal interurban corridor between two Dutch cities which is a

schematic network of small size, where some modes only serve as access or egress
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modes to train. Raveau et al. (2011) restricts the number of modes by considering

only the Santiago metro network, a schematic public transport network with no

time dimension.

While other studies examine larger and more realistic networks with several

modes (e.g. Eluru et al., 2012; Anderson et al., 2014, in Montreal and Copenhagen

respectively), there also exists limitations regarding how the issue of choice sets

is addressed. In Eluru et al. (2012) the observed trip is compared only with few

alternatives (between one and six) generated via Google Maps. Anderson et al.

(2014) and Bovy and Hoogendoorn-Lanser (2005) generate more alternatives us-

ing respectively doubly stochastic and constraint enumeration algorithms, however

treat the generated choice sets as the actual alternatives. This implies that the

validity of estimation results is questionable due to the bias induced by choice set

selection (Frejinger et al., 2009). Finally we also note that there is ongoing research

from Montini et al. (2016) to estimate mode and route choice models from a sample

of GPS traces collected in Zürich.

The current study fills a gap in the literature by estimating a multimodal transit

route choice model with unrestricted choice sets based on RP data collected in a

complex network. The approach has the advantage of yielding consistent estimates

and can also be used for prediction in a real network without generating choice sets

of paths.

4.3 Model

We assume that the transit system can be described by a static and deterministic

network representing the transit lines of each mode, and a timetable which lists

the arrival and departure time of each run at each station for a whole day. The

complete set of available transit services can be represented as a time-expanded

network G = (A,V) in which each node v ∈ V corresponds to a transit stop

location l and a time t, and links move through time and/or space. Links belong

to one of the following categories:

Transit arc: The arc corresponds to an in-vehicle trip on a transit line (e.g. a

bus or a metro line) between two consecutive stations at a specific time.
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Waiting arc: The arc corresponds to waiting at the same station for the arrival

of another vehicle.

Walking arc: The arc corresponds to a walking trip between two geographi-

cally close stations.

Contrarily to other time-expanded networks (e.g. Hamdouch and Lawphongpanich,

2008), we do not discretize the day into equally spaced points in time. Instead,

time is continuous and the nodes of the static network are expanded according to

the schedule. In other words, the nodes v = (l, t) in the time-expanded network are

defined only for times t corresponding to the arrival or departure of a transit line.

This network representation is similar to what has been called a diachronic graph

in the literature (Nuzzolo et al., 2012) and it is at the core of several assignment

models.

The network must be extended to include absorbing links without successors

to represent destinations. In the model, we assume that travelers have a fixed

departure time and must arrive to the destination stop l within a certain time

interval T . To represent the destination of an individual traveling in this network,

we must define absorbing links outgoing from node (l, t) for all valid times t within

the time window T for arrival. Thus in this model the destination of an individual

n is represented as a set of absorbing links Dn.

The RL model can be used for the multimodal transit route choice problem by

defining states and actions as links k, a ∈ A in the dynamic network previously

defined. From a state k, the traveler reaches the next state by choosing an action

a in the set of outgoing links A(k) in order to maximize instantaneous link utility

u(a|k) = v(a|k) +µε(a) and expected maximum utility to destination Vn(a), which

is the solution of a dynamic programming problem given by the Bellman equation.

The value function Vn is defined for the set of links Dn corresponding to the arrival

stop and time window of individual n and is given as follows

Vn(k) =

{
µ ln

∑
a∈A(k) e

1
µ
vn(a|k)+Vn(a) ∀k ∈ A

0 ∀k ∈ Dn

(4.1)

The random terms ε(a) are assumed i.i.d. Gumbel with scale parameter µ,

resulting in the multinomial logit model’s conditional probability of choosing action
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a in state k:

Pn(a|k) =
eun(a|k)+Vn(a)∑

a′∈A(k) e
un(a′|k)+Vn(a′)

(4.2)

The model can be estimated using an approach similar to the nested fixed point

algorithm and link choice probabilities in (5.3) can be used to predict path choices

link by link without generating any choice sets.

4.4 Data

We use a real network in the city of Zürich and we estimate the model based

on GPS trajectories of travelers collected in that network by Montini et al. (2013).

There are 5’276 stop locations, 724 transit lines and 40’031 runs over a day, for

which the exact arrival and departure time at each station along the line is known.

Some lines have very frequent services while others are only available at sparse

times. Each transit lines corresponds to one of the 6 available modes (bus, train,

tram, boat, taxi, cable car). Representing the transit service for one day with a

time-expanded network requires over one million links.

We have 302 observations of trips in the transit network. The observations

are described as a sequence of stops, line IDs, and a departure time. Since we do

not have access to arrival and departure time at each stop, we reconstruct the trip

assuming that the first available vehicle matching the observed stops was taken (i.e.

individuals did not wait for a subsequent run of the same line). This is a realistic

assumption if the observed trips did not take place in a congested network. We

obtain a sequence of transit, waiting and/or transfer links in the time-expanded

network.

4.5 Results

We note that link utilities in the RL model must be defined as a function of

additive link attributes (Fosgerau et al., 2013). Therefore, dummy variables for link
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Model RL

Link attribute β̂ t-test

In-vehicle time [1/1000s] -12.57 -5.66
Waiting time [1/1000s] -8.57 -9.82
Transfer dummy -5.67 -5.84
Link constant -0.10 -4.16
Tram dummy · in-vehicle time [1/1000s] -6.24 -3.42
Bus dummy · in-vehicle time [1/1000s] -11.91 -5.41

Log likelihood at β̂ -783.87

Table 4.1 – Estimation results

types cannot be directly incorporated in the utility function, since their sum over

links in a path cannot be interpreted as a measure of path utility. As an example,

the number of tram links contained in a given path is not representative of how

much the tram was used, since some links have longer travel time than others.

Thus in this model we interact dummy variables for the mode of a link with the

travel time of that link.

We retain a model specification with 6 attributes, consisting of the in-vehicle

time, the waiting time, a dummy for a transfer between two stations, a link con-

stant, and the in-vehicle time attribute interacted with a dummy for the tram and

bus modes. Table 4.1 displays the estimations results of the chosen utility speci-

fication. Following Zimmermann et al. (2017), we note that we may interpret the

results as letting the value of the travel time coefficient depend on the mode. In-

deed, by adding the in-vehicle time coefficient with each interaction coefficient, we

obtain that the value of travel time is -18.81 on a tram and -24.48 on a bus. We

note that the observed trips only used the tram, bus and train modes, thus the

travel time coefficient on a train would be -12.57.

The model is expensive to estimate, since the state space is large and the value

function needs to be solved for each individual. In order to speed up computational

time, the value functions are only solved for a subset of links in the time-dependent

network. More precisely, for an individual n with observed departure time to and

latest possible arrival time td, we only compute the value function for links (l, t)

with t ∈ [to, td]. As a result, the linear systems which need to be solved to obtain

Vn for each observation n have a maximum size of 255,369 for this dataset. The

total estimation time is then less than a day.
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5

Capturing correlation with
a mixed recursive logit
model for activity-travel
scheduling

Prologue

Context

Compared to the previous chapters, where the recursive choice modeling frame-

work was applied in physical transportation networks, we consider in this article a

much larger and abstract supernetwork. As in Chapter 4, the network is expanded

in time; however it considers other additional dimensions, in order to link individ-

uals’ choice of daily trips to their intentions of pursuing out of home activities. In

the literature on so-called activity-based travel demand modeling, representing the

decision of what activities and travels to schedule during a day as path choice in

a supernetwork is a relatively novel perspective, first conceptualized by Karlström

(2005). Blom Västberg et al. (2016) provided the first implementation of such a

model, and this chapter introduces an extension of the latter which improves the

model’s predictions by capturing correlation across alternatives.

Contributions

The contribution of this article is mostly empirical. This paper is the first

publication to apply the recursive choice modeling framework to model jointly the

interrelated decisions which compose the activity-scheduling problem, i.e., choice

of mode, destination, departure time and activity participation. The article shows

that it is possible to capture complex correlation patterns across multi-dimensional

alternatives and to estimate the model in reasonable time despite its complex struc-

ture and the large network size.
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the collaboration of Oscar Blom Västberg, and the writing of the article is my own.

5.1 Introduction

Activity-based travel demand analysis consists in jointly modeling choices con-

cerning transportation and activity participation, based on the assumption that

individuals undertake trips with the intention to pursue activities. At the core

of activity-based modeling is the idea that trips result from scheduling decisions

within a continuous time interval: individuals dispose of a limited amount of time

(often, a day) to allocate to activities and subsequent trips (Pinjari and Bhat,

2011).

Activity-based travel demand has been the subject of various studies, attempt-

ing to predict choices primarily from utility maximization econometric models

(Habib, 2011) or using rule-based computational process models (e.g. Miller and

Roorda, 2003; Arentze and Timmermans, 2004). Most approaches require to define

utility functions, and the purpose of such studies varies between estimating param-

eters of a choice model and developing mechanisms for prediction. The challenge
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all models yet face is how to represent the immense number of possibilities to plan

a day. As seen in e.g. Bowman and Ben-Akiva (2001), Bhat et al. (2004), or Cirillo

and Axhausen (2010), a common approach is to decompose daily activity-travel

patterns into multinomial logit or nested logit layers, where each layer represents

the choice of a specific facet of the pattern, such as number and structure of tours,

tour mode and stop location. The main criticism of these models is the lack of

integrity among some of their choice dimensions, typically the independence of

secondary tours in Bowman and Ben-Akiva (2001), which results in an unrealistic

representation of time, or the restriction to a-priory defined patterns criticized by

Karlström (2005).

Overall, most models fail to fully represent activity-travel patterns and to con-

sider all components of individuals’ decisions in an integrated fashion. A different

approach has this potential and consists in associating activity-travel patterns to

paths in a dynamic network describing the state of the individual at different time

steps, also referred to as a multi-state network in other works (e.g. Liao et al., 2013;

Liao, 2016). Several variants of such networks are conceivable, such as the activity

network described in Danalet (2015). The core idea is that a link in such a network

represents a choice alternative across several dimensions, such as activity type, lo-

cation and transport mode. While network representations are promising, to the

best of our knowledge most previous works have focused on deriving optimal paths

from predefined utility functions and have not addressed the problem of estimating

a probabilistic choice model.

Karlström (2005) shows how dynamic discrete choice theory allows to formulate

such a model, where the choice of activity-travel pattern corresponds to a choice

of path in an appropriate network. In the framework, individuals make a sequence

of simultaneous choices of activity type, duration, mode of transport and location,

taking into consideration both the instantaneous utility of their actions (dependent

on previous actions through the current state) and the expected maximum future

utility. Implementing and estimating a full-sized version of the model proved to

be a computational challenge and only achieved recently by Blom Västberg et al.

(2016). The resulting model has the advantage of integrating all components of an

activity-travel pattern in one choice of path while avoiding restrictive assumptions

on choice sets. It is also straightforward to use for prediction as paths can be simply

sampled from the model using estimated link choice probabilities. This paper builds

77



on this work and the modeling framework is further detailed in Section 5.2.2.

Although the approach (Blom Västberg et al., 2016) has gained attention from

the state of practice (see e.g. Jonsson et al., 2014), the model still suffers from

major limitations. In particular, the earlier work is rather restrictive as the model

retains the property of independence from irrelevant alternatives (IIA). This as-

sumes the absence of any common unobserved factors across alternatives, which

may be an unrealistic hypothesis in this setting, as suggested by Mai et al. (2015).

A growing body of literature (Bhat, 1998; Hess et al., 2007) has signaled the need to

capture correlation in unobserved factors in order to be accurately used for policy

evaluation, especially in a multi-dimensional setting with a large choice space. Our

contribution consists in overcoming the identified limitations by proposing a flexi-

ble approach to relax the independence of error terms over alternatives which can

be implemented on a real size application, and showing that predictive accuracy is

improved.

In this paper, we propose a mixed recursive logit model which meets these expec-

tations. The method is appropriate to accommodate correlation across alternatives

in different dimensions and across repeated link choices. The challenge to estimate

such a model is that due to the combinatorial explosion of the number of possible

states and actions, approaches similar to Rust’s nested fixed point algorithm are

too computationally expensive to apply here. We propose to estimate the model

via sampling of alternatives, applying recent results by Guevara and Ben-Akiva

(2013) which show that mixed logit models can be consistently estimated using

sampled choice sets. The key advantage is that the recursive formulation allows

to use the model for prediction without sampling any choice sets of paths. The

methodology is illustrated with an application based on travel diary data, and we

provide an extensive empirical analysis of the results.

This paper is structured as follows. Section 5.2.1 reviews the literature, fo-

cusing first on activity-based modeling, while Section 5.2.2 details the modeling

framework of Blom Västberg et al. (2016) upon which we build in Section 5.3 by

relaxing the IIA property. In Section 5.4, we present extensive numerical results

based on a travel survey conducted in Stockholm. In addition to estimation re-

sults, we present in Section 5.5 i) an empirical analysis of activity-travel patterns

in predicted activity schedules and ii) illustrate substitution patterns iii) a cross-

validation study. Finally, we conclude in Section 5.6.
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5.2 Literature review

In this section, we first give an overview of activity-based travel demand mod-

eling approaches and in particular identify how sources of correlations are specified

in existing models. In a second part, we describe formally the approach based on

the recursive logit (RL) model formulated by Blom Västberg et al. (2016) on which

we base our work. Then we provide some background on existing extensions of the

RL model which relax the IIA property for other applications.

5.2.1 Activity-based models in the literature

Activity-based models emerged as an alternative to traditional four-step models

with the prospect of overcoming their most fundamental limitations. As argued

by Rasouli and Timmermans (2014), the most prominent criticisms surrounding

these models are related to lack of integrity and assumption of independence of

the four steps. Among the promises of activity-based modeling is an integrated

framework which would enable the appraisal of a wider set of policies. As a result,

applications of activity-based models to policy analysis have since been studied for

an increasingly large variety of transport policies such as peak period tolls (Dong

et al., 2006), land-use policies (Shiftan, 2008), parking policies (Habib et al., 2012)

and congestion pricing schemes (Vovsha et al., 2006).

There are several approaches to activity-based modeling, which are neither ex-

haustive nor exclusive. It is however common in the literature to group models

into one of two approaches: econometric models based on utility maximization,

and rule-based computational process models. We narrow down this review to

models based on the concept of random utility, which are the focus of this paper.

Such models assume that individuals choose between a large but limited number of

activity-travel patterns alternatives in order to maximize the utility derived from

the choice.

An inherent problem is the combinatorial nature of the choice space, arising

from the multiplicity of choice dimensions involved in the modeling of activity-

based travel demand: activity participation, timing, location and transport mode.

Not only is there in theory an intractable number of ways to schedule activities

and travel over a day, but given the multidimensional nature of the choice context,

the many alternatives in the choice set naturally share observed and unobserved
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characteristics. As argued in other works (e.g. Bhat, 1998), the IIA property re-

sulting from logit assumptions is untenable in such circumstances and the question

of how to accommodate correlation of error terms across alternatives must be ad-

dressed. Simple nesting is not sufficient to fully capture perceptual correlation

among alternatives, since the choice of schedule represents choices along multiple

dimensions at the same time. Most works in the literature address the issue by

defining a hierarchy in the decision process. The chosen decomposition structure

and hierarchy reflect assumptions about the relationships among choice compo-

nents and determine the correlation pattern between alternative schedules. As a

result, in most model systems found in the literature, the choice of a whole schedule

is decomposed into sequential nested or multinomial logit models linked through

conditionality and expected utility.

In the following, we review recent activity-based modeling systems and their

treatment of correlation between utilities of alternatives. A prime example of the

hierarchical layers approach is the daily activity schedule model proposed by Bow-

man and Ben-Akiva (2001). In order to reach a manageable size of alternatives,

the model relies on the concept of home-based tours to decompose the choice of

activity-travel pattern. This model served as groundwork for several further devel-

opments and proposed an over-arching choice among predefined daily tour patterns.

The alternatives are thus defined by a certain number of primary and secondary

tour in an upper nest. Four submodels are concerned with the choice of departure

time, mode and destination for both types of tour. The model is a sequentially

estimated nested logit system with five layers.

Several models developed for planning agencies follow the concepts proposed in

Bowman and Ben-Akiva (2001), such as the San Francisco (Jonnalagadda et al.,

2001) and the Sacramento DaySim (Bradley et al., 2010) models, however differ-

ences exist in the ordering of the levels of nesting. In Bowman and Ben-Akiva

(2001), there is a nest around the overarching daily pattern which conditions lower

dimensions, and the joint choice of mode and destination is conditioned by time of

day decisions. In DaySim, the hierarchy includes more layers and the model has a

nested structure which sequentially predicts tour destination, tour main mode and

departure time. In Jonnalagadda et al. (2001), there is a nested structure with a

mode choice nest under destination choice.

Deciding which multi-level structure to impose is complex and requires empir-
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ical analysis, which is why several studies focus exclusively on a restricted subset

of dimensions. Hess et al. (2007) discuss the ordering of nesting along the time

and mode dimensions. Other works have developed models that do not impose

a hierarchy and can accommodate correlation across several dimensions, applying

approaches such as cross-nested models or error components. Examples exist for

the joint mode and time of day choice (Hess et al., 2007; Bhat, 1998; De Jong

et al., 2003), or the joint activity and time of day choice (Wang, 1996). Few works

attempt to model interdependencies across more than 2 dimensions, to the notable

exception of Yang et al. (2013) who models joint choice of mode, time of day and

residential location. In each of these studies, the models relax the independence of

error terms over joint alternatives by creating nests in each dimension. Such models

dealing with only a partial facet of the daily activity schedule are promising, but

usually too complex to be integrated in a complete activity-based travel model.

We note that in addition to the nesting of choice dimensions, it is necessary to

model correlation across alternatives within each level. In the case of a hierarchical

nesting structure, the marginal submodels may thus be also formulated as nested

logit models. For example in the model of Bowman and Ben-Akiva (2001), the

first tier concerned with the choice of overall daily pattern is itself a nested logit

model with a nest around all patterns involving out of home travel (as opposed to

the alternative of staying at home all day). In Bradley et al. (2010), the location

choice model for work tour has a nest around all non-usual work locations nested

together under the conditioning choice between usual and non-usual. In addition,

the tour-level main mode choice model is also a nested logit with the upper level

grouping similar mode alternatives such as walk and bike. In De Jong et al. (2003),

the model accommodates correlation within time of day alternatives, assuming

that consecutive time periods likely have common unobserved effects. There also

exists studies dealing with location choice which accommodate correlation across

alternatives due to common unobserved spatial elements (Bhat and Guo, 2004),

but to the best of our knowledge, such approaches have not been incorporated in

full-scale activity-based demand models due to their complexity.

To summarize, most full-scale activity-based modeling approaches consist of a

system with a hierarchical structure which decomposes the choice of schedule from

activity pattern to trips, relying on deep nested models. A criticism of these models

is that they need to make some simplifications in the definition and construction of
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tours in order to limit the number of alternatives (Miller et al., 2005). Furthermore,

choices made in the context of activity-based modeling are very interrelated and

it is difficult to define a nesting hierarchy which corresponds to actual behavior.

The chosen structure imposes particular substitution patterns and cannot let data

analysis reveal what patterns occur. In addition, models with multi-level nested

structures are often complex to estimate, as noted by Pinjari et al. (2011).

5.2.2 Recursive logit for activity-based modeling

The approach of Karlström (2005) and Blom Västberg et al. (2016) possesses a

key advantage over the state of the art by integrating all components of an activity

pattern into one choice of path while avoiding restrictive assumptions on choice

sets through a recursive logit formulation.

Activity network

In this approach, the feasible activity schedules of an individual are represented

as paths in a directed connected graph G = (A,V) called activity network, where

A is the set of links and V the set of nodes. Nodes in the network are states in the

terminology of dynamic programming, providing information regarding the current

time of the day, activity and location of the individual among other variables. Time

is discretized in time steps of one minute. Figure 5.1 presents a simplified illustra-

tion of such an activity network where each node corresponds to a (time, location,

activity) triplet. A link between two nodes in the network is an action that an

individual can take in a given state, combining the choice of transport mode, next

activity and location, and resulting in a new state. The chosen mode and destina-

tion are associated with a travel time discretized in minutes which determines the

time of the resulting next state. Note that for the sake of convenience, the mode

choice of each action is not identified in Figure 5.1. The chosen activity is initially

conducted for 10 minutes and duration can be extended in the next action choice.

The choice to continue an activity corresponds to the horizontal links in the figure.

Note that since travel times are not a multiple of ten minutes, individuals may

arrive at work at e.g. 8.06. Individual time and space constraints limit available

actions. For example, work may have a fixed location and duration as illustrated

by the figure. Each path in this network consists of a sequence of such actions,
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Figure 5.1 – Illustration of an activity network

starting at home in the morning and ending back home in the evening. Thus, a

path can be interpreted as a daily schedule of trips and activities.

Modeling framework

The modeling framework is based on the RL model formulated by Fosgerau

et al. (2013). Each node in the activity network is a state xt and each link between

two states xt and xt+1 is an action at for time step t = 1, . . . , T . We denote

A(xt) the set of feasible actions in state xt. An activity schedule is represented

as a sequence of actions a = (a0, ..., aT−1) corresponding to a sequence of states

(x1, ..., xT ), such that at ∈ A(xt) and xt+1 is given deterministically by at. The state

variables are further detailed in Section 5.4.2. In order to find a utility maximizing

path, individuals choose at each time t the action at ∈ A(xt) that maximizes the

sum of the instantaneous utility of the outgoing link u(at|xt) = v(at|xt) + µε(at)

and the expected maximum downstream utility given recursively by the Bellman

equation

V (xt) = E

(
max

at∈A(xt)
{v(at|xt) + µε(at) + V (xt+1)}

)
, (5.1)

where ε(at) are independent and identically distributed (i.i.d.) extreme value error

terms with zero mean. For simplicity, we omit individual subscripts in this section.
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Using this assumption on error terms, the value function in (5.1) can be written as

V (xt) = µ log

 ∑
at∈A(xt)

e
1
µ

(v(at|xt)+V (xt+1))

 . (5.2)

The conditional probability for individual n of choosing action at in state xt is

given by the multinomial logit model:

Pn(at|xt) =
evn(at|xt)+Vn(xt+1)∑

kt∈A(xt)
evn(kt|xt)+Vn(xt+1)

. (5.3)

Using (5.1) and (5.3), this probability simplifies to

Pn(at|xt) = evn(at|xt)+Vn(xt+1)−Vn(xt). (5.4)

This formulation has many benefits, discussed at length in other works (e.g.

Fosgerau et al., 2013). In particular, the model can be straightforwardly used

for prediction once it has been estimated, by simulating choices from the Markov

chain transition probabilities in (5.3). Log-sums for policy assessment can be easily

obtained for the full day from the value function in (5.2), and can be used to analyze

how accessibility changes over time and space (see e.g. Jonsson et al., 2014). Also,

since decisions are carried out sequentially in time, it allows agents to reschedule

in case of unexpected events. However, the major limitation of the model is that it

exhibits the IIA property, since it is in fact equivalent to a multinomial logit model

over sequences of actions. Indeed, the probability of choosing a sequence of actions

a = {at}T−1
t=0 conditionally on the initial state x0 is given by (Fosgerau et al., 2013)

Pn(a|x0) =
T−1∏
t=0

evn(at|xt)+Vn(xt+1)−Vn(xt) (5.5)

=
evn(a|x0)

eVn(x0)
, (5.6)

where vn(a|x0) is the deterministic path utility, equal to
∑T−1

t=0 vn(at|xt).
A consequence of the IIA property is that the model is limited to proportional

substitution patterns between alternatives. As documented by a large body of

literature, the model’s predictions may therefore be significantly biased when eval-
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uating responses to transportation control measures, which compromises the overall

goal of policy sensitivity, one of the main motivations behind the development of

activity-based models.

Another concern is that the model cannot accommodate any correlation over

action choices made throughout the day by the same individual. Several studies

have found that patterns of repeated behavior empirically observed in travel diary

data (see e.g. Schlich and Axhausen, 2003) could be accounted for by incorporating

heterogeneity in preferences. For example, Cherchi and Cirillo (2008) demonstrate

that integrating correlation across tours performed on the same day by the same

individual significantly improved predictions. Capturing such tendencies would

prove especially relevant if the current model was extended over periods of several

days.

Combining the promising above framework for the choice of activity schedule

with a flexible approach to capture correlation of unobserved factors across time

and alternatives can potentially improve the prediction accuracy and consequently

achieve a more realistic modeling of activity-based travel behavior.

5.2.3 Extensions of recursive logit models in the literature

In the context of route choice, several studies have relaxed the IIA property of

the RL model. In Mai et al. (2015), Mai et al. (2016), Mai (2016b) and Zimmer-

mann et al. (2017) recursive models are introduced covering nested logit, MEV and

mixed logit versions of the RL model as well as an application to route choice for

cyclists. There also exists a deterministic attribute called link size (LS), which is

a deterministic correction for utilities of overlapping paths, thus not relaxing the

IIA property of the logit model.

The nested recursive logit (NRL) proposed by Mai et al. (2015) is an extension

of the RL model which allows error terms to be correlated by having link-specific

scale parameters. This is the first proposed method to relax the IIA property of the

RL model while allowing estimation without sampling choice sets. The systems of

equations characterizing the value function are however non-linear and thus more

difficult to solve, which makes the model cumbersome to use in practice for large-

scale networks, even sparse ones.

Mai (2016b) subsequently proposed a more general method to deal with cor-
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relation, in which the choice at each stage may be any member of the network

multivariate extreme value model. The resulting recursive cross-nested (RCNL)

model is more flexible but comes at the price of added complexity. In this case,

Bellman’s equation cannot be solved as a system of linear equations and requires

defining a contraction mapping and performing contraction iterations.

Mai et al. (2016) also proposed a mixed recursive logit (MRL) model. In this

case, Bellman’s equation can be solved as a system of linear equations, but the

log-likelihood must be numerically evaluated by Monte Carlo simulation. Several

specifications of mixed logit were tested. One specification included a random

travel time parameter, while another was based on Frejinger and Bierlaire (2007)’s

subnetwork components approach. In the latter, four subnetworks components

were defined, allowing non-overlapping paths to be correlated according to shared

subnetwork components.

All models were illustrated on the small network of Borlänge containing 7,459

links, with the exception of the NRL which was applied on a bike network of 40,000

links (in Zimmermann et al., 2017). Numerical results showed that extensions of

the RL model which relax the IIA property systematically have a better prediction

performance. Nevertheless, all models do so with a large increase in computational

time. Mai (2016a) reports that while the RL model with link size can be estimated

in 8 hours on the Borlänge network, the NRL extension requires 30 hours, the

RCNL 3 days, and the MRL 3 to 5 days.

In this paper, we consider a network considerably larger than state of the art

applications. This gives rise to major computational challenges, which we describe

further in the next section.

5.3 Methodology

In this section, we propose a mixed recursive logit approach to account for

correlation of error terms between alternatives and between repeated link choices

in the activity-based model described in Section 5.2.2. We illustrate our approach

by categorizing the obtainable correlation patterns, and subsequently explain how

we address the main challenge of model estimation.
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5.3.1 Challenges

While extensions of the RL model described in Section 5.2.3 accommodate to

some extent correlation of path utilities in a route choice context, they have lim-

itations in terms of applicability to the activity scheduling context. The main

challenges consist in proposing a method that can scale with a real size applica-

tion, is consistent with the interpretation of paths as activity schedules, and can

be estimated within reasonable time.

The first challenge is related to the size of the problem we model. In Fosgerau

et al. (2013), Mai et al. (2015) and Mai et al. (2016), the RL model and extensions

are estimated with the nested fixed point algorithm. This method consists in a

nested subroutine which computes value functions for the current trial value of

the parameters within a non linear optimization algorithm maximizing the log-

likelihood function. Thus at each iteration, value functions and their gradients need

to be solved for each state and each individual (if link utilities include individual-

specific attributes). Although this is not necessarily the case in route choice, we

note that the activity network is on the contrary defined for each individual with

specific space-time constraints. As each observation contains the choice of path of

a different individual, this algorithm takes a time that grows with the number of

observations, the number of parameters in the model and the number of links in

network.

In route choice modeling, the number of attributes included in a model rarely

exceeds 15. On the other hand, in activity-travel modeling, the number of esti-

mated parameters can easily reach 40 (Blom Västberg et al., 2016) or up to 70

(Bowman and Ben-Akiva, 2001). When applying the NRL model on a bike net-

work comprising 40,000 links and 15 attributes, Zimmermann et al. (2017) state

that estimation takes around two weeks. If we estimate in contrast the size of the

activity network, we observe that it is around 10,000 times bigger. Considering

a real application with 1,000 locations, 8 activities and 4 modes, in a single state

there are 32,000 outgoing links, as opposed to 2 or 3 in a physical road network.

Note that this is an approximation to provide an order of magnitude, since all

modes or activities may not be available in all states or for all individuals. Given

that locations are both actions and states in the framework, the total number of

links would be at least 32,000,000. Moreover, time is also a state variable, and

although approximations allow to consider only a discrete number of points (as
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explained in Section 5.4.2), there remains at least 60 time points when considering

the length of a typical work day. The scale of the activity network can thus reach

1,920,000,000 links. This means that previous works on relaxing the IIA property

described in Section 5.2.3 cannot be directly applied here.

The second concern arises from the fact that path choice in a real network

or in an activity network are choices of a different nature, because the second

involves multiple choice dimensions. In a route choice context, the IIA property

is violated by the overlapping of links, since paths are perceived to be correlated

when comprised of a same portion of the road network. In activity path choice

however, perceived correlation between alternatives does not necessarily emerge

from physical overlap, due to the fact that the network is dynamic and paths have

a time dimension. Rather, paths which correspond to schedules with identical

choices in one or several of the dimensions would be regarded as correlated. For

example, two paths defining two identical sequences of activities and trips, to the

difference that one starts 1 hour later than the other, might actually overlap little in

the network but would most likely have shared unobserved characteristics from the

common mode, activity and destination choices. The time dimension also indicates

that there is probably shared unobserved effects across link choices. Indeed, each

link choice situation in the activity network consists of a joint choice of activity,

location and mode among similar alternatives, made by the same individual only

in a different state. We also note that in contrast to a simple choice of outgoing

road segment, the choice of link in the activity network represents in itself a joint

decision, which also involves interdependencies between components which must

be addressed.

5.3.2 Mixed recursive logit for activity-travel choices

In this section, we propose a mixed recursive logit framework which relaxes the

IIA property such that utilities of activity paths that share common unobserved

effects are correlated through an error component approach. We introduce error

components in the link utilities u(at|xt) in the RL model. In the following, we

describe how the proposed framework allows both link and path utilities in the

activity network to exhibit correlated error terms.

In the activity-based model, link choice situations correspond to a joint choice
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of activity p, location l and mode m, as described in Section 5.4.2. For the sake

of illustration, we develop this framework in the context of mode choice. We note

that it is possible to accommodate correlation across multiple choice dimensions,

and following Bhat (1998) we explain how.

Let u(at|xt) be the instantaneous utility associated with action at = (p, l,m)

corresponding to activity p, location l and mode m, depending on current state

xt. For notational simplicity we omit an index for individuals. We assume that

u(at|xt) is the sum of a deterministic term v(at|xt), and a random term ζm(at) =

ν ′zm + ε(at), where ε(at) is an i.i.d extreme value distributed error term, ν is a

random vector and zm is a vector of dummy variables indicating mode choice.

Each component of zm is associated to a travel mode m′ ∈ {1, ...,M}, and zm′ = 1

if and only if m = m′. The random vector ν has dimension M and zero mean,

and is normally distributed with variance covariance matrix Σ. It is possible to

specify Σ to be diagonal, with coefficient σ2
m′ on row m′, such that the components

of ν are independently distributed, but it is also possible to incorporate covariance

parameters σm,m′ between modes m and m′. Thus, ε(at) is the i.i.d component

of the error term, while ν ′zm represents the heteroscedastic component, which is

correlated across link alternatives sharing the same mode.

Mixed logit models have an advantage over nested logit models in the case of

multidimensional joint choices, such as the joint choice of mode, activity and loca-

tion in the context of activity-based modeling: while in a bi-dimensional setting the

nested logit model requires to define a hierarchy and can only accommodate shared

unobserved attributes in the upper dimension (Bhat, 1998), the mixed logit can in-

corporate correlation of unobserved effects across alternatives along all dimensions.

In order to do so, it suffices to also introduce error components in the activity

and/or locations dimensions. As an example, we may define η and yk in a manner

similar to ν and zm, but in the context of another choice dimension with alterna-

tives k ∈ {1, ..., K}. The error term would then be ζmk(at) = ν ′zm + η′yk + ε(at)

and the random vector [ν; η] of dimension M + K would be normally distributed

with variance covariance matrix Σ. Note that in case of dimensions with many

alternatives, such as location choice, it is possible to limit the number of random

parameters by aggregating contiguous locations and letting each error component

correspond to a larger spatial unit. We refer the reader to Bhat and Guo (2004)

for more details on the treatment of spatial correlation with an error components
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approach.

We note that the error component model is equivalent and may be more eas-

ily understood as a random parameter specification. As outlined by e.g. Train

(2003), mixed logit models may either be derived from the need to accommodate

flexible substitution patterns across alternatives or the concept of allowing taste

parameters to vary randomly within the population. Indeed, under the second in-

terpretation the proposed formulation is equivalent to having normally distributed

random parameter vector βm ∼ N(β̄m,Σ) associated to dummy attribute zm. The

above-mentioned vector νn then corresponds to the individual deviation from the

mean of realization βm,n = β̄m + νn.

5.3.3 Mixing specifications

The mixed logit model with error components offers a great deal of flexibility

in terms of achievable correlation patterns. In the following, we provide guidance

on the specification of error components.

The model allows to relax the IIA property in a link choice situation, where

the individual faces numerous combinations of activity, location and mode alter-

natives. Defining a diagonal variance covariance matrix for error components in

the mode choice dimension only results in partitioning the link alternatives into

non-overlapping nests in a fashion similar to the nested logit, where two actions

with the same mode choice share unobserved attributes. Including off-diagonal

parameters σm,m′ between two distinct modes m,m′ allows to model more complex

correlation patterns, where similar modes have common unobserved effects.

Estimating a diagonal variance covariance matrix for error components in multi-

ple choice dimensions results in an intricate correlation structure, where each action

or link belongs to several nests, as the modeler may for instance specify nests for

specific modes and others for activities. Interaction between dimensions may be

incorporated through off-diagonal estimates. For instance, we may include a term

σm,p identifying the dependency between a mode m and an activity p within an ac-

tion. Thus the model is flexible and it is up to the modeler to control the modeling

complexity through the number of estimated variance covariance parameters.

The mixed recursive logit framework relaxes not only the IIA property over

link choice situations, but also over paths. The utility of an activity path a =
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(a0, ..., aT−1), denoted u(a|x0), is given by
∑T−1

t=0 v(at|xt) + ζ(at), to which an i.i.d

extreme value distributed error term ε is added. Thus, the random utility of path

a contains the term
∑T−1

t=0 ζ(at), which generates a covariance across alternatives

containing similar action choices shifted by a time interval (such as schedules with

the same mode choices at different times of day, or schedules containing the same

activities). We further exemplify the resulting correlation structure over paths in

Section 5.3.4.

Finally, specifying random components is also appropriate to deal with potential

correlation across repeated link choices by the same individual. For instance, it is

likely that unobserved sources of utility that impact mode choice at a specific time

remain present throughout the day. By ensuring that the same draw of the random

vector βn = β̄ + νn is used for all choices of an individual n, correlated error terms

between successive actions using the same mode arise from the common effect of

the ν ′nzm.

5.3.4 Illustrative example

The following example illustrates how the mixed recursive model allows to in-

corporate common error terms between schedules that share a common character-

istic, without necessarily overlapping in the network, as in Frejinger and Bierlaire

(2007)’s subnetwork component approach. In order to build such intuition, we

study the example in Figure 5.2: we consider four activity schedules a1, a2, a3,

a4. The first two schedules consist in making a round trip to spend 8 hours at

work and spending the remaining time home. The last two include a social activity

after the round trip to work. Schedules a1, a2 and a4 contain trips to and from

work by car, while in a3 all trips are performed by public transport, which takes

10 minutes longer. The departure to work in schedule a2 is delayed by 10 minutes.

We note that all paths have a large amount of overlap, corresponding to the time

spent at the work and home locations. Nevertheless, this overlap is the result of

space time constraints in the activity scheduling choice (work takes place at a fixed

location and has a mandatory duration) and characterizes all feasible alternatives.

Instead, perceptual correlation among schedules is attributed to the shared unob-

served attributes corresponding to the common mode in a1, a2 and a4, as well as

the common additional activity in a3 and a4.
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9.00 9.10 9.20

Home

Work

Social

17.10 17.20 17.30 18.30 18.40 18.50 20.40 20.50

PT

Car

Figure 5.2 – Illustration of 4 paths in the activity network

In order to capture this correlation, we define error components for the car

mode, the PT mode, and the social activity and specify a diagonal variance covari-

ance matrix. This is equivalent to letting alternative specific constants for modes

ASCcar, ASCPT and constant for starting a social activity csocial be randomly dis-

tributed with mean vector (β̄car, β̄PT , β̄social) with a variance covariance matrix of

random coefficients defined as

Σ =

 σ2
car 0 0

0 σ2
PT 0

0 0 σ2
social

 . (5.7)

We now compare link and path utilities for the four schedules with the mixed

logit specification described above. Let state x correspond to being home at 9:00

and let us consider the choice of subsequent actions. Let a1 represent the choice

of traveling to work by car, and a2 traveling to work by public transport. The

deterministic utilities of respective actions are

vn(a1|x) = βTXn(a1|x) + ASCcar,n = βTXn(a1|x) + β̄car + νcar,n,

vn(a2|x) = βTXn(a2|x) + ASCPT,n = βTXn(a1|x) + β̄PT + νPT,n,

where Xn(a|x) are the other attribute variables of action a dependent on state x.

Since the utility of a schedule is equal to the sum of the utilities of its consecutive

actions, and each schedule contains two trips, the random path utilities for this
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example are

un(a1|x0) = βTXn(a1|x0) + 2β̄car + 2νcar,n + εn,

un(a2|x0) = βTXn(a2|x0) + 2β̄car + 2νcar,n + εn,

un(a3|x0) = βTXn(a3|x0) + 4β̄PT + 4νPT,n + β̄social + νsocial,n + εn,

un(a3|x0) = βTXn(a3|x0) + 4β̄car + 4νcar,n + β̄social + νsocial,n + εn,

where νn is a draw from N(0,Σ).

In this example, schedules a1 and a2 obtain correlated utilities resulting from

the common component 2νcar,n in their error terms. Indeed for each choice of action

a corresponding to a car trip in the sequence, the component νcar,n appears in the

utility of the schedule. The variance-covariance matrix M of the error terms of the

four alternatives in this example is

M =


4σ2

car 4σ2
car 0 8σ2

car

4σ2
car 4σ2

car 0 8σ2
car

8σ2
car 0 16σ2

PT + σ2
social σ2

social

8σ2
car 0 σ2

social 16σ2
car + σ2

social

 .

5.3.5 Maximum likelihood estimation with sampling of al-

ternatives

The nested fixed point algorithm, in which an inner dynamic programming al-

gorithm solves value functions while an outer algorithm updates parameter values,

is not the only possible estimation technique for the RL model. The alternative

method we present here consists in using sampling of alternatives. Although Fos-

gerau et al. (2013) described this technique for the RL model, it has not been used

before in conjunction with a mixed logit extension. Guevara and Ben-Akiva (2013)

however proved that sampling of alternatives yields consistent estimated for logit

mixture models although the estimates loose efficiency. In the following, we recall

their results and adapt them to the path choice problem formulated as a mixed RL

model.

In the following, we define θ as the parameters of the mixing distribition f(β|θ).
More precisely, in this case θ represents the mean and standard deviation of the

normal distribution of β. The choice probability of a path a conditional on a
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sampled choice set C̃n parameters θ is given by

Pn(a|C̃n, θ) =

∫ (
q(C̃n|β)

q(C̃n|θ)

)
eu(a|β)+log(qn(C̃n|a))∑
j∈C̃n e

u(j|β)+log(qn(C̃n|j))
f(β|θ)dβ. (5.8)

Defining Wn as q(C̃n|β)

q(C̃n|θ)
, the log-likelihood function of a set of N observations of

paths {a}n=1...N in the mixed RL model therefore corresponds to

L =
N∑
n=1

log

∫
Wn

eu(an|β)+log(qn(C̃n|an))∑
a∈C̃n e

u(a|β)+log(qn(C̃n|a))
f(β|θ)dβ. (5.9)

However, (5.9) is not adapted to the problem of using sampling of alternatives

for logit mixture models since the term Wn still depends on the unknown full choice

set Cn

Wn =

∑
a∈C̃n Pn(a|β, Cn)q(C̃n|a)∑
a∈C̃n Pn(a|θ, Cn)q(C̃n|a)

. (5.10)

We use the approximation Wn = 1 proposed by Guevara and Ben-Akiva (2013),

resulting from approximating the probability Pn(a|β, Cn) with the probability Pn(a|θ, Cn);

in other words approximating the choice probability given a specific β by the mixed

logit probability given the set of parameters θ of the mixture distribution. Thus

the log-likelihood becomes

L =
N∑
n=1

log

∫
eu(an|β)+log(qn(C̃n|an))∑
a∈C̃n e

u(a|β)+log(qn(C̃n|a))
f(β|θ)dβ. (5.11)

The true value of the log-likelihood in (5.11) needs to be approximated via

Monte Carlo or quasi-Monte Carlo simulation, as described by, e.g., Revelt and

Train (1998). Formally, the method to approximate the choice probabilities of a

mixed logit model consists in averaging the value of the integrand over discrete

points βr. The values βr may be randomly chosen from the distribution f(β|θ)
or chosen cleverly to be evenly spaced on the integration domain. The resulting

pseudo log-likelihood SL for the proposed model is
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SL =
N∑
n=1

log

{
1

R

R∑
r=1

eu(an|βr)+log(qn(C̃n|an))∑
a∈C̃n e

u(a|βr)+log(qn(C̃n|a))

}
. (5.12)

For a proof that the maximization of the pseudo log-likelihood defined in (5.12)

yields consistent estimators of the model’s parameters, we refer the reader to Gue-

vara and Ben-Akiva (2013).

There exists a vast literature on Monte Carlo and quasi-Monte Carlo simula-

tion methods, for example Bhat (2001), Bhat (2003) and Bastin et al. (2006). In

this paper, the draws βr are constructed using quasi-random Halton sequences.

Although there are other approaches, this method was chosen because of its con-

ceptual simplicity and the low number of integration dimensions we face in the

application.

One of the advantages of the recursive logit formulation is that the model is

straightforward to use for prediction, as path choices can be simulated link by

link using equation (5.3) sequentially. It is important to note that estimating

the model via sampling of alternatives does not invalidate such advantages with

respect to prediction. Equation (5.3) can still be used to sample paths in short

computational time once the model is estimated. In the mixed recursive logit,

simulating path choices can be performed in the same way as in the RL model, to

the difference that several draws of β must be used. Finally, generating choice sets

C̃n for estimation is also very simple. Instead of using an arbitrary path generation

algorithm, we can simulating paths from the RL model also using (5.3) with some

initial parameter values.

5.4 Application

We apply the modeling framework presented in Section 5.3 to analyze activity-

travel demand in Stockholm from a 2004 travel survey. We compare estimation

results of both RL and mixed RL specifications.
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5.4.1 Data

The models are estimated on data from the Stockholm travel survey from 2004,

in which individuals were asked to describe their full travel diary between 6am and

11pm for one day. The dataset was restricted to individuals who go to work, return

home at the end of the day, and have work schedules not starting earlier than 6am

or ending later than 8pm. In addition only individuals who use the car for either

all or no trip of a tour are kept in the dataset. This leaves 3,150 observations of

individual activity schedules for the current analysis.

For each trip, the data reports (a) the start time, (b) the arrival time (c) the

mode of transport used (d) the activity pursued at destination (e) the location of

the activity (f) the duration of the activity.

Socio-demographic characteristics of the individual are reported in the survey

and Table 5.1 summarizes the socio-demographics characteristics of the data. In

particular, for each individual, the survey indicates level of income, gender, work

and home locations, whether the work schedule is fixed or flexible and the number

of working hours, whether the individual owns a car or public transport card and

whether the individual has children. We note that there are several methods to

include socio-demographic variables in the model. One option is to specify such

variables as attributes in the utility function, another is to make use of them in the

choice set definition. In this paper, we do both. First, socio-demographic variables

are used to restrict the choice set at specific times and thus impose temporal-

spatial constraints on the schedule. For example, household information is used

to determine whether picking up children is a mandatory activity to be performed

on that day, and information on the flexibility of an individual’s work schedule

limits the potential starting times for the work day. Second, we also incorporate

socio-demographic variables in the utilities, which we describe in Section 5.4.3.

5.4.2 States and actions

The state space is key to ensuring a certain level of consistency among the di-

verse components of the activity-travel pattern. In the choice of daily schedule,

there may be interdependencies between the different trips, tours and activities

initiated by an individual during the day. Such effects can be conveniently mod-

eled using conditionality, when one choice is model conditionally upon a known
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Age
(years) [%]

Income
(SEK) [%] Household [%]

Working
hours [%]

12-18 1.9 0-15000 1.8 Single 28.2 < 6 5.0
19-24 1.6 15001-25000 15.1 Couple 30.1 6-8 21.2

25-39 31.3 25001-40000 24.3
Single w.
child 2.6 8-10 66.0

40-64 63.8 40001-55000 44.1
Couple w.
child 39.2 > 10 7.8

> 64 1.3 > 55000 14.7

Gender [%] Owns car [%]
Owns PT
card [%]

Female 58.4 Yes 20.9 Yes 42
Male 42.6 No 79.1 No 58

Table 5.1 – Socio-demographic characteristics in the data

previous choice. Hence, an outcome can be explained not only by attributes of

the alternatives but by variables indicating other choices. In order to model such

dependencies, the model needs to keep track of past decisions made earlier in the

day through state variables. Following Blom Västberg et al. (2016), we assume

that a state xt in the activity network consists of the following variables:

Time t ∈
[5am,11pm]

Current time of day, discretized in time steps of one

minute.

Location l ∈ L Current location, one of the 1240 zones in the region of

Stockholm.

Activity p ∈ P Current activity type. The possible types are social,

recreational, shop small, shop medium, shop large,

home, work and escort children.

Errand indicator

e ∈ {0, 1, 2, 3}
Discrete state variable keeping track of the number of

finished mandatory activities, such as picking up chil-

dren.

Car availability

δcar ∈ {0, 1}
Dummy variable for car availability. The individual has

to travel with the car if δcar = 1 and he is out of home

(meaning that he used the car on a previous trip away

from home), and cannot travel with car if δcar = 0.

The state space contains current location and activity, which allows to establish

a relationship with the next activity and location, since the individual can choose
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to continue the activity for another time period. More precisely, in each state xt

the individual can choose between continuing the same activity or changing it,

which implies traveling (possibly within the same zone). In either case, an action

at consists of any feasible combination of activity p, location l and transport mode

m.

Activity p ∈ P New activity (possibly unchanged).

Location l ∈ L New location (possibly unchanged).

Mode m ∈M Transport mode for trip. Car, Public Transport, Walk

and Bike are the available modes of transportation. If

no trip takes place, the mode of the action is“no mode”.

Activity duration is discretized in time steps of 10 minutes. This means that

decisions to continue or change the current activity are taken every 10 minutes.

Since travel times are not divisible by this time step length, the state variable for

time is discretized in smaller time steps of one minute. The number of states for

which the value function in (5.1) can be computed is however limited by compu-

tational time. The value is hence only computed in a restricted number of states

corresponding to 10-minute time steps, and is interpolated in states between these

points, as explained by Blom Västberg et al. (2016).

Space-time constraints can be incorporated either by restricting the state space,

or a state specific actions choice set. For instance, some activities such as work

have a time constraint, e.g. arriving at 8am. To ensure that individuals go to

work, the value function of explicitly forbidden states at 8am is set to −∞. The

choice set at times before 8am is then restricted to actions that do not lead to an

implicitly infeasible state. Such states may be trivially found recursively, as the

value function of preceding states will also be set to −∞ if there are no actions

leading to a admissible state. As another example of constraint, an individual who

does not own a car will be prevented from doing any car trips by fixing δcar = 0.

For more details on time-space constraints, see Blom Västberg et al. (2016).

5.4.3 Utility specifications

The utility is specified as follows. For an individual n, the deterministic utility

vn(at|xt) of an action at = (p′, l′,m) given a state xt = (t, l, p, e, δcar) is the sum of
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the (dis)utility of traveling to the chosen destination l′ with the chosen mode m,

and the utility of participating in the chosen activity p′. Both depend on the current

time of the day and location given by the state xt. More precisely, the utility of

traveling with mode m for individual n can then be written as vn,m(l, l′, t), as it is

dependent on the individual n, the origin l, destination l′, time of day t and mode

m. For each mode it is specified as:

vn,car(l, l
′, t) = ASCcar + θt,carTcar(l

′, l, t) + θcCcar(l
′, l, t)

vn,PT (l, l′, t) = ASCPT + θt,PTTPT (l′, l, t) + θwait,PTTwait,PT (l′, l, t)

+ θcCPT (l′, l, t)

vn,bike(l, l
′, t) = ASCbike + θt,bikeTbike(l

′, l, t)

vn,walk(l, l
′, t) = ASCwalk + θt,walkTwalk(l

′, l, t) + θsamezoneδsamezone

where ASCm represents the constant associated to choosing mode m, Tm(l, l′, t) and

Cm(l, l′, t) denote the travel time and cost of going from origin l to destination l′

with mode m at time t. The variable Twait,PT is the waiting time when using public

transport. We also incorporate socio-demographic variables in the specification by

introducing additional constants and time parameters which depend on individual

characteristics, such as gender and age. These parameters are listed in Table 5.2.

Starting a new activity p at time t′ = t+Tm(l, l′, t) is associated to a time-of-day

dependent constant cp(t
′) for starting the activity, and a duration and time-of-day

dependent utility vn,p(t
′,∆tp). Choosing to continue with the same activity for

another time step is only associated to the duration utility vn,p(t
′,∆tp), to ensure

that individuals have an incentive to continue with the current activity. The utility

is given by time-of-day varying parameters θp,Tk and cp,Tk specified on discrete time

steps Tk. For example, the work activity has time-of-day specific constants cwork,Tk

for Tk ∈ {6AM, 7AM, 8AM, 9AM, 10AM}, as shown in Table 5.3. On the other

hand, starting other activities p has a time independent constant cp in order to limit

the number of parameters in the model. The marginal utility v(p, t) of activity

participation at time t is then given by linear interpolation of θp,Tk between the

closest discrete points Tj, Tj+1 where t ∈ (Tj, Tj+1), and the utility vn,p(t,∆tp) of an

activity episode of duration ∆tp at time t is defined as the integral
∫ t+∆tp

t
v(p, τ)dτ .

Note that we also include constants cp for starting activities dependent on socio-

demographic characteristics, in particular age and having children. All parameters
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related to activity choice are listed in Table 5.3.

A utility associated with choosing a location l is defined by size parameters

θp,LSM and γp,s representing the number of available opportunities for each activity

p at that location. This utility is given by

vn,p(l) = θp,LSM log

(
Sp∑
s=1

xp,l,se
γp,s

)

where Sp is the number of size variables for activity p, and the size variables xp,l,s

may be for instance the number of employees in a specific sector at location l. Table

5.4 gives the complete list of the variables included in the location choice utility.

5.4.4 Correlation structure

Although the mixed logit approach is flexible for reasons discussed in Section

5.3, for the sake of illustration we choose to incorporate in this specification shared

unobserved attributes along the mode dimension. Thus, we let alternative specific

constants associated to the mode choice dummy vector zm be randomly distributed.

More specifically, the parameter vector (ASCcar, ASCPT , ASCwalk, ASCbike) is ran-

domly distributed with mean vector (β̄car, β̄PT , β̄walk, β̄bike) and a variance covari-

ance matrix defined as

Σ =


σ2
car 0 0 0

0 σ2
PT σwalk,PT 0

0 σwalk,PT σ2
walk 0

0 0 0 0

 . (5.13)

We also test a specification in which parameters ASCcar, ASCPT and ASCwalk

are specified as independent random parameters following a distributionN(β̄car, σ
2
car),

N(β̄PT , σ
2
PT ) and N(β̄walk, σ

2
walk) respectively.

5.4.5 State space augmentation

Augmenting the state space allows to take into account more linkages and inter-

dependencies between successive activity/travel choices. It is however not trivial as

it results in an increased computational time required to compute value functions
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and therefore estimate the model. In this application, we exemplify how to capture

trip chaining tendencies, in particular the consistency of mode choices within a

tour. We present the models both with and without state space augmentation for

the sake of comparison.

The augmented state space we consider includes an additional variable δbike

indicating whether the bike mode was chosen on the first trip of the current tour

away from home.

Bike tour δbike ∈
{0, 1}

Dummy variable indicating whether the chosen mode on

the first trip of the current tour away from home was the

bike.

With this specification we aim to capture the fact that people who use the bike

to travel away from home have an incentive to bring the bike home, although this

behavior is not systematic. We therefore modify in consequence the utility of trav-

eling by introducing additional ASCs conditional on δbike:

ASCbike|δbike An alternative specific constant for bike conditional on

bike being the first chosen mode of the tour.

ASCPT |δbike An alternative specific constant for public transport con-

ditional on bike being the first chosen mode of the tour.

ASCwalk|δbike An alternative specific constant for walk conditional on

bike being the first chosen mode of the tour.

In the utility of traveling with a given mode m the term ASCm is replaced with

ASCm+ASCm|δbike ·δbike. This means that when δbike = 0, the utility is unchanged,

but when the bike was used on the first trip away from home, the additional term

ASCm|δbike is added to the utility associated to each mode. We emphasize here

the difference with the state variable δcar. If an individual used the car on a trip

away from home, all subsequent trips within that tour must be made by car. On

the other hand, the state variable δbike is not used to enforce that all subsequent

trips are made with bike, but merely to serve as an explanatory variable for future

mode choices within that tour.
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5.4.6 Estimation results

Five model specifications are estimated following the procedure described in

Section 5.3.5. Four models correspond to the standard multinomial logit (MNL)

and the simple mixed logit structure, with and without augmenting the state space.

The last model is the more complex mixed logit model with covariance parame-

ter σwalk,PT and an augmented state space. In the models with the mixed logit

specification, we computed the simulated log likelihood (5.12) using 500 Halton

draws. The choice sets were sampled with initial parameter values given by the

model previously estimated in Blom Västberg et al. (2016). For each choice set,

we sample 600 alternatives and add the observed alternative. A correction term is

then added to the utility as described in Frejinger et al. (2009).

We display estimation results in Tables 5.2, 5.3 and 5.4. Almost all parameters

are significant and have the expected sign. We have fixed certain parameters to

zero, as well as certain size parameters γp,s which enter the utility as an exponent

eγp,s to -100. Note that in both cases this means that the associated variables have

no impact on the utility function.

We focus our analysis on mode-related parameters. In the mixed logit speci-

fications, the estimated standard deviation of the random ASC for the car, walk

and public transport modes are significantly different from zero. Their large values

indicate that the data displays heterogeneity in mode preference. However, in the

mixed logit models with state space augmentation and bike dummy, the standard

deviation of the public transport random parameter is not anymore significantly

different from zero. This could mean that the coefficient ASCPT |δbike captures

some of the variation in preference for that mode. In the model with covariance

between the walk and PT constants, the parameter σwalk,PT is negative, indicating

that a strong preference for one of these modes implies a weaker preference for the

other. It is likely that since individuals tend to have a single mode of predilec-

tion, covariance parameters estimated between any other two modes would be also

negative.

In the models with state space augmentation, all conditional ASCs are negative

except for ASCbike|δbike which is positive, consistently with expectation. If δbike

takes the value 1, the value of both ASCs are added for each mode. Consequently,

if the bike was used on the first trip of a tour, the utility of choosing another mode

decreases while the utility of choosing to travel by bike again increases. We note
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that the magnitude of ASCbike|δbike is small enough to ensure that the total Bike

ASC remains negative once both terms are added.

Socio-demographic attributes such as being female and aged above 24 have

a significant impact on the choice of traveling by bike or car, although not in

all models. Women are more sensitive to longer bike trips, yet tend to choose

the bike mode more often and the car mode less. It is interesting that while

socio-demographic help capture some of the variance in individual preferences, the

standard deviation of mode ASCs is still significant.

The in-sample fit of the mixed logit models can be compared to that of the

MNL models through the likelihood ratio test. The log-likelihood values reported

in Table 5.2 show that the model with the best in-sample fit is the mixed logit

model with covariance parameter and augmented state space. The statistic of the

likelihood ratio test when comparing this model to each of the other shows that

the increase in goodness of fit is significant.

Finally we make some comments about the computational time. We need about

half an hour to estimate the models with the MNL specification, while estimation

takes 3 hours for the mixed logit model when the pseudo log-likelihood is computed

with 500 draws on a Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHZ.
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MNL MNL

bike dummy

Mixed Mixed

bike dummy

Mixed

bike dummy

covariance

Parameter Est. t-test Est. t-test Est. t-test Est. t-test Est. t-test

Constants for choosing a specific mode of transport on a trip

Car ASC β̄ -2.498 -22.897 -2.532 -24.588 -2.756 -19.745 -2.746 -23.832 -2.743 -23.564

σ 0 - 0 - 1.228 13.523 0.869 15.305 0.873 15.165

PT ASC β̄ -3.691 -36.802 -3.502 -37.620 -4.231 -25.391 -3.568 -36.895 -3.637 -36.683

σ 0 - 0 - 0.969 9.096 0.006 0.394 0.002 0.244

Walk ASC β̄ -1.708 -15.651 -1.648 -16.185 -2.142 -15.772 -2.009 -16.818 -2.013 -17.155

σ 0 - 0 - 1.147 15.414 -0.898 -14.026 -0.901 -14.539

Bike ASC β̄ -3.267 -14.968 -7.176 -21.820 -4.337 -19.126 -7.231 -21.348 -7.220 -21.348

σWalk-PT 0 - 0 - 0 - 0 - 0.257 5.781

Additional constants for choosing a specific mode conditional on bike being the first trip on the tour

Bike ASC | δbike 0 - 5.120 17.521 0 - 4.364 13.924 4.362 13.949

PT ASC | δbike 0 - -2.031 -6.692 0 - -2.593 -7.937 -2.581 -7.846

Walk ASC | δbike 0 - -0.975 -3.608 0 - -1.500 -6.018 -1.635 -6.582

Additional constants for choosing a specific mode conditional on socio-demographics or same zone trips

Walk ASC | same zone -0.598 -4.517 -0.640 -5.162 -0.572 -4.865 -0.540 -4.854 -0.558 -4.949

Bike ASC | Female 0.143 0.574 0.455 2.922 0.326 1.263 0.415 2.414 0.431 2.513

Car ASC | Female -0.290 -6.173 -0.255 -5.955 -0.424 -5.473 -0.359 -6.235 -0.355 -6.134

Parameters for travel time, cost (car and PT) and wait time (PT)

Cost -0.017 -6.207 -0.018 -6.954 -0.002 -0.262 -0.019 -5.553 -0.017 -5.417

Car Time -0.080 -18.688 -0.079 -19.730 -0.111 -14.281 -0.082 -17.711 -0.085 -17.226

PT Time -0.040 -5.485 -0.044 -6.613 -0.081 -7.906 -0.059 -7.386 -0.060 -7.495

PT Wait Time 0.008 0.853 0.010 1.178 0.048 3.836 0.023 2.375 0.025 2.504

Walk Time -0.050 -23.171 -0.049 -24.691 -0.055 -23.755 -0.051 -25.588 -0.052 -25.702

Bike Time -0.050 -9.336 -0.035 -7.957 -0.057 -8.416 -0.041 -8.230 -0.042 -8.190

Bike Time | age ≥ 24 -0.016 -1.499 -0.008 -2.072 -0.017 -1.562 -0.008 -1.556 -0.009 -1.835

Bike Time | Female -0.024 -3.067 -0.026 -3.867 -0.030 -3.186 -0.025 -3.532 -0.026 -3.634

Log-likelihood -23671 -22091 -22564 -21865 -21855

Table 5.2 – Estimation results for parameters related to the utility of a specific mode choice
and log-likelihood for respective models
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MNL MNL

bike dummy

Mixed Mixed

bike dummy

Mixed

bike dummy

covariance

Parameter Est. t-test Est. t-test Est. t-test Est. t-test Est. t-test

Utility to arrive at work at specific time, linear between parameters

Work ASC 6AM 0.946 2.512 1.045 2.772 1.575 3.850 1.457 3.711 1.491 3.778

Work ASC 7AM 0.506 2.751 0.507 2.796 0.674 3.372 0.648 3.377 0.677 3.517

Work ASC 8AM 0 - 0 - 0 - 0 - 0 -

Work ASC 9AM -1.310 -8.144 -1.273 -8.099 -1.494 -8.344 -1.422 -8.383 -1.450 -8.464

Work ASC 10AM -5.092 -13.627 -5.008 -13.637 -5.573 -12.854 -5.344 -13.364 -5.416 -13.273

Constants for starting activities

Home ASC 0 - 0 - 0 - 0 - 0 -

Shop ASC -6.767 -41.591 -6.769 -42.708 -6.658 -37.692 -6.643 -39.807 -6.595 -39.251

Social ASC -9.046 -46.112 -9.091 -48.419 -8.935 -45.025 -8.946 -47.059 -8.901 -46.557

Recreative ASC -7.723 -51.624 -7.737 -53.690 -7.645 -47.022 -7.652 -50.457 -7.608 -49.783

Other ASC -7.191 -48.493 -7.191 -50.119 -7.121 -47.839 -7.107 -49.839 -7.056 -49.248

Additional constants for starting activities dependent on socio-demographics

Shop ASC | children -0.171 -1.786 -0.197 -2.206 -0.229 -2.199 -0.240 -2.504 -0.243 -2.535

Freetime ASC | age ≤ 30 0.211 1.649 0.235 1.895 0.161 1.190 0.162 1.324 0.170 1.387

Freetime ASC | age ≥ 60 -0.471 -3.308 -0.444 -3.243 -0.438 -2.814 -0.412 -2.861 -0.407 -2.863

Trip ASC | Own Car 0.081 1.348 0.085 1.552 -0.198 -2.675 -0.104 -1.679 -0.115 -1.861

Utility per minute of activity participation

Shop Time -0.021 -14.137 -0.021 -14.131 -0.021 -13.299 -0.021 -13.919 -0.021 -13.932

Social Time -0.000 -0.066 -0.000 -0.133 -0.000 -0.089 -0.000 -0.213 -0.000 -0.198

Recreative Time 0 - 0 - 0 - 0 - 0 -

Other Time -0.009 -6.108 -0.009 -6.436 -0.008 -5.919 -0.008 -6.424 -0.008 -6.393

Freetime Time | children -0.003 -3.511 -0.003 -3.488 -0.004 -3.989 -0.003 -3.963 -0.003 -3.971

Utility per minute of time spent at home, marginal utility is linear between the time periods specified

Home Time 6AM 0.042 8.397 0.044 8.971 0.047 8.173 0.047 8.850 0.048 8.812

Home Time 7AM 0.040 11.688 0.039 11.864 0.043 11.607 0.041 11.781 0.042 11.952

Home Time 8AM 0.019 6.006 0.018 5.977 0.020 5.783 0.020 6.092 0.021 6.202

Home Time 9AM 0.016 3.260 0.015 3.080 0.019 3.450 0.017 3.323 0.018 3.409

Home Time 1PM -0.012 -10.839 -0.012 -11.317 -0.013 -11.721 -0.012 -11.776 -0.012 -11.632

Home Time 5PM 0.003 3.503 0.003 3.326 0.002 2.065 0.002 2.696 0.003 2.878

Home Time 7PM 0.002 2.529 0.002 2.352 0.001 1.427 0.001 1.614 0.002 1.660

Home Time 9PM 0.018 12.858 0.018 13.482 0.019 12.761 0.019 13.298 0.018 13.248

Table 5.3 – Estimation results for parameters related to the utility obtained when starting a
new activity or performing an activity for a certain amount of time
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MNL MNL

bike dummy

Mixed Mixed

bike dummy

Mixed

bike dummy

covariance

Parameter Est. t-test Est. t-test Est. t-test Est. t-test Est. t-test

Log-sum parameters for size attributes. Enters utility as θLSM Size in θLSM Size · log
∑
s e
γs ·Ns,location

Social LSM Size 0.017 1.964 0.017 2.001 0.020 1.528 0.020 1.619 0.020 1.611

Recreative LSM Size 0.057 1.766 0.060 1.871 0.081 2.158 0.078 2.160 0.080 2.178

Other LSM Size 0.318 5.663 0.309 5.828 0.357 6.240 0.343 6.375 0.348 6.449

Shop LSM Size 0.485 33.491 0.484 33.392 0.487 14.299 0.486 17.289 0.487 17.227

Parameters for size attributes. Enters utility as γi in θLSM Size · log
∑
s e
γs ·Ns,location

Rec. Population -100 - -100 - -100 - -100 - -100 -

No Employed Rec. 5.907 9.819 5.809 9.154 6.154 11.715 6.028 10.881 6.030 10.999

Other No Employed OE -100 - -100 - -100 - -100 - -100 -

Shop Population -100 - -100 - -100 - -100 - -100 -

No Employed Shop 3.585 13.587 3.611 13.798 3.685 12.754 3.663 13.259 3.682 13.279

Social Population -100 - -100 - -100 - -100 - -100 -

Table 5.4 – Estimation results for size parameters related to the number of opportunities for a specific activity in a specific location and
added to the utility of starting an activity
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5.5 In-sample fit and predictions

In this section, we present in-sample and out-of-sample prediction results. Given

the multiple dimensions of the choice model, it would be possible to present various

kinds of analyses, but for the sake of conciseness we focus here on aspects of the

model dealing with correlation of activity schedules with respect to mode choice.

Therefore in this section we provide an empirical analysis of correlation and substi-

tution patterns in predicted activity schedules, and then present a cross-validation

study.

5.5.1 In-sample fit

In this section, we compare some characteristics of the observed choices with

model predictions. This experiment aims to empirically verify whether the esti-

mated models reproduce well the patterns observed in the data, in particular the

consistency in mode preference over time. We compare the observed activity sched-

ules of the 3,150 individuals with the set of predicted schedules from each model,

on the basis of certain aggregate characteristics related to mode choice.

This is an in-sample experiment, since we apply models estimated on the whole

data to predict chosen alternatives for the same data set. The pertinence of an

in-sample experiment may be unclear, since simple logit models which include

a constant for each alternative should in theory reproduce the observed shares of

alternatives in the estimation sample (e.g. Train, 1986). However, in the RL model,

mode-related constants correspond to alternatives in a link choice situation. When

considering the utility of a whole schedule, the constants of each link in the path

are added. Alternatives corresponding to the same combination of modes may have

a different overall constant once link-specific constants are added, for example if

the number of trips differ. Thus some aggregate characteristics over paths, such as

mode shares, are inaccurate in the RL model.

We first briefly explain how to predict from the models. For each individual, a

set of S = 1000 choices of schedules is simulated from each estimated model using

(5.3) sequentially. For the mixed logit recursive model, the method is in theory

more complex since the true value of the parameters for each individual is unknown.

Only the mean and variance of the parameters at the population level are estimated,

hence the individual link choice probabilities take the form of an integral which must
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Figure 5.3 – Number of different modes used during a day: histogram of observed and simulated
schedules for all models

be approximated by drawing several βr from the estimated mixing distribution. For

the sake of reducing computational time, we resort to a simplification and only use

one draw from the mixing distribution for each individual. However, since we

analyze prediction results aggregated over the N = 3150 individuals, we believe

the simplification to be reasonable.

In Figure 5.3, we analyze the number of distinct transport modes used in a

day through a histogram. The share of individuals who used 1, 2 , 3 or all 4

modes according to their observed schedule is reported. We compare with the

predicted number of individuals in each category, computed as an average over

the N · S = 3150 · 1000 sampled schedules. Figure 5.3 shows that according to

observations, individuals use on average 1 or 2 modes of transportation, but very

rarely choose to use 3 or all 4 modes (Car, Public Transport, Walk and Bike). This

reflects the fact that people have a preference for a certain mode, and that they

tend to choose repeatedly this mode to travel throughout the day. According to

Figure 5.3, the basic MNL model however predicts that individuals use on average

a higher number of distinct travel modes within a day than what is observed.

The mixed logit models empirically display a slightly better fit than the models

with the MNL specification and may capture some of the correlation over time of

unobserved factors in mode preference. However, the models with augmented state

space including additional ASCs are the ones which fit best the patterns displayed

in the observations.
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Figure 5.4 gives more details on the predicted mode shares over the full day. It

reports the share for the main possible combinations of modes in the daily chain of

trips. The figure compares the mode shares of the daily chain observed in the 3,150

activity schedules reported by the individuals, and the predicted mode shares from

each model. We observe in Figure 5.4 that mode shares are predicted incorrectly by

the original model. The number of people traveling with 2 or 3 different modes over

the day tends to be overestimated. In particular, the user share of the combination

of modes “PT + Bike” and “Walk + Bike” shown in Figure 5.4 are not accurately

predicted. As expected, we observe that including additional constants conditional

on the new state variable improves the mode share predictions, although the shares

of “PT” and “PT + Walk” are still flawed. We note that augmenting further the

state space to include dummy variables for these modes could adjust the shares.

On the other hand, the mixed logit makes no improvement of the predictions of

the MNL in this case.

This empirical analysis shows that augmenting the state space and estimating

additional constants improves the in-sample fit and corrects aggregate shares. This

is an expected result, since ASCs capture the mean effect of the unobserved fac-

tors for each alternative. Furthermore, it has been observed by Train (1986) that

including ASCs can mitigate inaccuracies due to the logit model’s IIA property, by

explicitly incorporating in the utility the source of the correlation in error terms.

The risk is that including too many constants may lead to an overspecification

of the model, an issue discussed by Bierlaire et al. (1997). For this reason, we

investigate out-of-sample predictions in Section 5.5.3.

Finally, this analysis demonstrates that the mixed logit model is not an effec-

tive method to correct mode shares, although it yields slightly better predictions

than the MNL model. Nevertheless, it has been observed that violating the logit

assumptions has less impact when the goal is to estimate average preferences rather

than forecasting substitution patterns, according to Train (2003). This is why we

also investigate in the following section the substitution patterns of both the mixed

and MNL models.
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Figure 5.4 – Histogram of the combinations of modes used during one day.

5.5.2 Substitution patterns

The aim of relaxing the IIA property is to suitably model substitution patterns

and hence improve predictions. Indeed, the model must be able to predict accu-

rately how choice probabilities will vary in a given scenario. For example, transport

demand models can be used to assess how people react to policy or infrastructure

changes. Problematically, the IIA property exhibited by the MNL model implies

that when the utility of an alternative changes, the choice probabilities of all other

alternatives vary in the same proportion. As a result, the restricted substitution

patterns of the MNL model may yield inaccurate predictions when assessing sce-

narios.

In this section, we illustrate how the mixed logit specification accommodates

more flexible substitution patterns in the choice of daily schedule. We give the

example of a typical scenario forecast experiment for transport demand models,

a congestion charge on the price of public transport at specific times. We design

the experiment for an individual who has flexible working hours and whose re-

ported schedule features public transport trips. Then we analyze how the choice

probabilities of the individual change after the price increase.

Since the RL model has the property of not requiring to sample any choice set

in order to compute choice probabilities, we do not need to assume a restricted
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choice set for the purpose of the experiment. Instead, the choice set we consider

is the universal set of all feasible activity schedules for the individual, and the

choice probability of each alternative before and after the congestion charge can be

computed as a product of link choice probabilities.

The time period during which we apply the price increase is evening peak hour,

more specifically between 17:00 and 19:00. While the choice probabilities of all

feasible schedules are altered in the price increase scenario, we illustrate the result

of the experiment only with a limited number of alternatives, described in Table

5.5. We choose to display alternatives among the set of feasible activity schedules

which exhibit relevant characteristics. For each alternative, the change in choice

probability after the price increase (in %) is displayed according to three models

(MNL model with and without bike tour state variable, and the mixed logit model

with bike tour state variable and covariance).

The first alternative in Table 5.5 is the observed alternative, which uses public

transport during the peak hour period. Its choice probability has approximately

a 100% decrease after the price increase according to the models. The remaining

alternatives are chosen not to use public transport at these times and their utility

is unchanged. We expect in contrast their choice probability to increase. The

exact trips performed in each activity schedule with their chosen mode are listed

in the first column of Table 5.5. We note that the listed times correspond to the

start and end of each performed activity, and travel takes place between activities.

The results confirm that the IIA property holds in the models with the MNL

specification (with and without bike tour state variable), as the choice probabilities

for alternatives 2 to 8 rise in approximately the same proportion (a 35% and 27%

increase respectively). Admittedly, not all alternatives increase by exactly the same

percentage, however this is simply due to a small approximation of the model. The

value function is only solved for a discrete number of states corresponding to 10-

minute intervals and the model interpolates its value between these points. As a

result, the value functions in (5.6) do not exactly cancel out and the model is close

to but not formally equivalent to a MNL.

For the mixed logit model, the choice probabilities were computed with 500

Halton draws. The results reported in Table 5.5 show that the change in probabil-

ity is no longer proportional, as the mixed logit specification creates nests for all

alternatives using the same mode. Thus, schedules where all trips are performed
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with another mode (e.g. alternative 8) have a 34% increase, less than schedules

where public transport is used but departure time is shifted forward to avoid peak

hour (such as alternatives 2 and 7). Indeed, the choice probability of the latter

increases by as much as 41%. In alternative 3, where the morning trip is still per-

formed with public transport, but the mode is changed to bike in the afternoon, the

increase in probability takes an intermediate value of 36%. In addition, since the

model features a negative covariance between the walk and public transport modes,

alternatives which perform walk trips have a smaller increase in choice probability:

between 18% and 28% depending on the number of walk trips.

The substitution patterns of the mixed logit specification are consistent with the

assumption that individuals are more likely to substitute their chosen alternative

with one that uses the same mode when facing transportation control measures.

Accommodating this flexibility in substitution patterns is a necessity that has been

empirically verified by numerous studies, e.g. Bhat (1998), Yang et al. (2013) or

De Jong et al. (2003). All found that after a price increase on the observed travel

mode, individuals are willing to shift departure time to some extent in order to

maintain their mode choice. Naturally, substitutability may also exist in other

choice dimensions than travel mode, typically activity or location.
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Alternatives Change in choice probability (%)
MNL MNL with δbike Mixed logit with δbike

Alternative 1 -100.00 -100.00 -100.00
5:00 8:30 Home PT
8:44 17:10 Work PT
17:33 23:00 Home
Alternative 2 +35.05 +27.65 +39.03
5:00 7:40 Home PT
7:54 16:20 Work PT
16:43 23:00 Home
Alternative 3 +35.00 +27.51 +36.73
5:00 8:30 Home PT
8:44 17:10 Work Bike
17:33 23:00 Home
Alternative 4 +35.00 +27.51 +28.87
5:00 8:30 Home PT
8:44 17:10 Work Walk
18:18 23:00 Home
Alternative 5 +34.92 +27.44 +21.46
5:00 7:40 Home Walk
8:40 16:20 Work Walk
18:15 23:00 Home
Alternative 6 +34.79 +27.29 +18.83
5:00 7:50 Home PT
8:04 16:30 Work Walk
17:38 18:28 Home Walk
18:50 19:20 Shop Walk
19:42 23:00 Home
Alternative 7 +35.04 +27.61 +41.18
5:00 7:00 Home PT
7:14 15:40 Work PT
16:10 16:30 Other PT
16:44 23:00 Home
Alternative 8 +34.79 +27.30 +34.24
5:00 8:10 Home Bike
8:26 16:50 Work Bike
17:20 23:00 Home

Table 5.5 – Change in choice probability of alternatives after price increase

5.5.3 Cross-validation

In this section, we assess the out-of-sample prediction accuracy of the four

models estimated in Section 5.4.6 with a cross-validation approach. While Section

5.5.1 focused on comparing aggregate measures from the predicted patterns, the

aim of this analysis is to compare the predictive accuracy of the models based on

the log probability associated to each observed pattern.

The observations are randomly split into a training set (1700 observations) and

a validation set with the remaining observations. We generate 13 different pairs
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Figure 5.5 – Moving average of log-likelihood loss across sample sets

of training sets and matching validation sets. The performance of the models is

evaluated by computing the log-likelihood loss for each validation set, after having

estimated the models on the corresponding training set. The log-likelihood loss of

validation set i is denoted as

erri = − 1

|Ti|
∑
σ∈Ti

lnP (σ, β̂i)

where Ti denotes validation set i, and β̂i the vector of estimated parameters on

matching training set i.

We compute the moving average of erri across validation sets i = 1, ..., 13 as

follows:

errp =
1

p

p∑
i=1

erri ∀1 ≤ p ≤ 13.

Then the values of the average loss errp are plotted in Figure 5.5. The model which

performs best in terms of out-of-sample fit is the mixed logit model with bike tour

state variable. This confirms that relaxing the IIA property via the mixed logit

while capturing effects of consistent preference for mode over time with additional

constants allows to improve prediction performance.
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5.6 Conclusion

This work follows the approach of modeling participation in trips and activities

as a choice of path in an activity network, where a path represents a sequence of

activity episodes over a day. Detailed facets of activity schedules such as loca-

tions and transport modes are also included. This view of activity-based modeling

is emerging in the literature and a recursive logit model was formulated and esti-

mated by Blom Västberg et al. (2016). In this paper, we build on this methodology

and we relax the IIA property by allowing paths utilities to be correlated. The con-

tributions of this paper are: 1) combining sophisticated methods to accommodate

significant correlation patterns, while estimating the model within reasonable time

on a real-size application 2) showing that predictions are better than the state of

the art and analyzing in detail the effects of relaxing the IIA property on predicted

activity schedules and substitution patterns.

In order to relax the IIA property of the recursive logit model of Fosgerau et al.

(2013), we formulate a mixed recursive logit model. We base the estimation method

on sampled choice sets by applying the results of Guevara and Ben-Akiva (2013) on

sampling of alternatives in logit mixture models. We argue that this combination

of methods in the context of recursive models is new in the literature and provides a

suitable approach to the challenges raised in this paper. First, this combination of

methods is adapted to address the curse of dimensionality inherent to the problem.

The large size and density of the activity network (induced by the extensive number

of actions to choose from) makes previous works relaxing IIA in recursive models

computationally too expensive to apply here. However, the methods proposed in

this paper allow to estimate in reasonable time a model with correlation in error

terms. Secondly, the mixed logit explicitly accounts for correlation of unobserved

factors across both time and alternatives, which suits well the interpretation of

paths as activity schedules in this application.

We provide numerical results and an extensive analysis of the predictive power

of the model and its ability to account for correlation. We show that the mixed

RL model has a better out-of-sample fit than the model which does not relax the

IIA property. Moreover, the mixed RL model accommodates flexible substitution

patterns which are in line with what is expected according to previous studies.

Future work can be dedicated to extending the time-span of the model to several
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days. Indeed, several activities need not be performed on a daily basis, and it is

plausible that individuals consider a planning horizon longer than a day. Existing

data on multiple days travel diaries (e.g. Schlich and Axhausen, 2003) could be

used to estimate the model. In this case, the mixed logit would be appropriate

to model habit persistence over several days, since preferences for modes and/or

activities would be heterogeneous between individuals but constant over the plan-

ning horizon. Further work on the performance of sampling of alternatives for

mixed logit models with panel data would then be required. In addition, future

work could focus on applying the proposed travel demand model in conjunction

with a Dynamic Traffic Equilibrium (DTA) model, assuming that travel times in

the model are no longer exogenous but a function of link flows. Network repre-

sentations such as the one presented here offer a promising framework to integrate

traffic equilibrium models within the activity-based modeling paradigm, as seen in

e.g. Ma and Lebacque (2013) and Liu et al. (2015).
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6
A strategic Markovian
traffic equilibrium model for
capacitated networks

Prologue

Context

The previous chapters focused mainly on the problem of estimating choice mod-

els of travel demand. We also discussed prediction in Chapter 3, where we forecast

flows of cyclists in the Eugene network from the estimated route choice model and

the total demand given by an origin-destination matrix. Given that cycling lev-

els are usually too low to generate congestion, predicting flows in this case only

requires a network loading procedure (i.e., distributing the OD demand on the

network’s paths according to the fixed estimated costs). However, in the presence

of congestion, it is generally assumed that path costs depend on the number of

travelers on them. Traffic equilibrium models are used to predict network flow

patterns in this context. In this chapter, we focus on the specific case of networks

where the amount of flow on links may not exceed a certain capacity. While there

is some literature on capacity-constrained traffic assignment, existing approaches

either smooth capacity limits or fail to realistically model how user behavior adapts

to them.

Contributions

The core methodological contribution of this article is to propose a unified

modeling framework to model static traffic assignment on networks with strict

capacities on links. The strength of the proposed model is to incorporate two

sources of stochasticity, stemming respectively from the users’ imperfect knowledge

regarding link costs (represented as a recursive discrete choice model) as well as the

probability of not accessing overcrowded links. The latter is the result of a queuing

mechanism at each node which loads capacitated arcs. The resulting model builds
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on both the Markovian traffic equilibrium model of Baillon and Cominetti (2008)

and the strategic flow model of traffic assignment proposed by Marcotte et al.

(2004), and provides a simple and realistic model of how the risk that an arc

reaches its capacity affects user behavior strategically.

Author contributions
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6.1 Introduction

Traffic equilibrium models are fundamental tools for the design and planning of

transportation networks as well as the analysis of their performance. The traffic as-

signment problem consists in predicting arc flows over a network, given the known

travel demand for each origin-destination (OD) pair. Flows are then determined by

the interaction of two mechanisms, users’ travel decisions and congestion (Sheffi,

1985). Users’ route choice preferences are incorporated in a generalized travel cost

function that individual travelers aim to minimize, a primary component of which

being travel time. Congestion is generally modeled by letting travel impedance

functions depend on the usage of the network. As path costs increase with the

amount of flow, travelers are induced to reroute on cheaper, less congested paths.

The equilibrium assignment of travelers to routes is thus the result of a fixed point

problem which is usually solved in an iterative manner. However, the classical
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equilibrium principles do not hold any more when side constraints, such as arc ca-

pacities, are entered into the model. A solution to that issue, proposed in Marcotte

et al. (2004) is to embed within the users’ objective function the probability that

a link be unavailable, thus introducing a stochastic element that induces strategic

behavior.

The main contribution of this paper is to propose a unified model which en-

compasses two sources of stochasticity by incorporating both unobserved elements

and the risk of failure to access an arc in the cost of travel. To do so, we build

on existing static traffic assignment models in the following ways. We adopt the

framework of Markovian traffic equilibrium introduced by Baillon and Cominetti

(2008), where route choice is the outcome of a sequential process of selection of

arcs governed by arc choice probabilities (as in Fosgerau et al., 2013). Our model

however adds to the latter by proposing a solution to handle rigid arc capacities.

More specifically, we embed the concept of strategies governing travelers’ move-

ments under capacity constraints in a Markovian traffic equilibrium setting. The

key paradigm is to draw a parallel between route choice with recourse actions, ac-

cording to which travelers readjust their path when reaching a saturated arc, and

route choice behavior under imperfect information, similarly to Polychronopoulos

and Tsitsiklis (1996). In order to deal with partial information, we expand the

state space of the Markov Chain in Baillon and Cominetti (2008), such that a state

encompasses two variables: an arc and an information set. The latter enumerates

available arcs. User path choice behavior is then characterized by sequences of local

arc choices depending on the current state and the destination. To the difference

of Unnikrishnan and Waller (2009), who also model user equilibrium with recourse

based on realized network states, the probability that a user finds themselves in

a given state is flow-dependent. In fact, these probabilities are obtained from a

network loading algorithm and are akin to access probabilities in Marcotte et al.

(2004), while at the same time representing action-state transition probabilities

in the context of Markovian Decision Processes (MDPs). Thus our model borrows

algorithms emulating the queuing process to access capacitated arcs from Marcotte

et al. (2004). However, it also generalizes the former by proposing a formulation for

both deterministic and stochastic user equilibrium, while replacing the formulation

using hyperpaths with a simple arc-based model. As in Marcotte et al. (2004), we

restrict the model to the case of acyclic network.
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The rest of the paper is structured as follows. Section 6.2 presents traffic assign-

ment models and their underlying assumptions, helping to situate the two models

on which this work is based, which we describe in detail in Section 6.3. We then

introduce the proposed strategic Markovian traffic equilibrium model in Section

6.4. In Section 6.5, we describe algorithms related to those found in Marcotte et al.

(2004) to compute availability probabilities from choice probabilities, to compute

best response choice probability functions, and to determine an equilibrium. The

strategic Markovian traffic equilibrium model is then illustrated on a small network

in Section 6.6. We then show in Section 6.7 the amenability of our approach to

medium and large size networks, respectively corresponding to a simplified version

of the Sioux Falls network, and the time-expanded Springfield transit network. Fi-

nally, in the concluding Section 6.8, we provide a discussion on extending the model

to cyclic networks.

6.2 Review on traffic assignment models

Traffic assignment models aim at predicting flow patterns in a network, under

the assumption that travelers minimize some generalized cost, which itself may (or

not) depend on flow volumes along the links (or paths) of the network. The equilib-

rium is thus the result of the interaction between demand and supply. The first and

simplest traffic assignment model formulated under these hypotheses is credited to

Wardrop (1952), who posed the so-called user equilibrium principle. This states

that, at equilibrium, all users are assigned to paths with minimum current cost,

which implies that the cost of any unused path is greater or equal to the common

cost of paths with positive flow. Beckmann et al. (1956) were the first to translate

Wardrop’s first principle of optimality into a convex mathematical program in order

to obtain fast solution algorithms. A sufficient condition for this reformulation to

hold is that the function describing arc costs as a function of the total flow be sep-

arable. When this is not the case, the equilibrium problem is usually formulated as

a variational inequality or a nonlinear complementarity problem (Dafermos, 1980),

which are both a restatement of Wardrop’s user equilibrium principle. This basic

model has been extensively studied, with proofs of uniqueness and existence of the
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solution being developed, as well as efficient algorithms to reach it (Patriksson,

2004).

Several traffic equilibrium models extending Beckmann et al. (1956) were de-

veloped based on different assumptions regarding user behavior and congestion. In

general, hypotheses can be formulated concerning (i) the knowledge that users have

of the network and (ii) the effect of congestion on the network’s performance. We

explain below how relaxing the basic assumptions in each direction led to different

model developments.

The basic user equilibrium framework implies that users are able to minimize

costs based on perfect knowledge, and thus behave identically. This assumption is

however counter-intuitive and assignment models based on it are known to exhibit

unrealistic sensitivity to small changes in the network, as asserted by Dial (1971).

Distinguishing between perceived and actual travel cost allows to account for users’

lack of awareness, preference heterogeneity in the population, or the modeler’s fail-

ure to identify all attributes of the cost function, and offers a more realistic modeling

of route choice behavior. This spurred the development of another class of mod-

els based on stochastic user equilibrium conditions, which generalizes the previous

(deterministic) user equilibrium condition by introducing a source of uncertainty

in the model through random perceived costs. The equilibrium condition for this

class of models is that no user can unilaterally improve his/her perceived travel

time by changing routes (Daganzo and Sheffi, 1977). This implies that travelers

are distributed among several paths, according to the probability that each path

is perceived to be the shortest, and the travel cost on all used paths is no longer

equal. As with the deterministic case, a characterization of the equilibrium as the

solution of a minimization problem has been proposed (Sheffi, 1985), provided that

costs be a separable function of flows.

Link performance functions must be defined specifically by the modeler, but

under Beckmann et al. (1956)’s formulation, they are assumed to be positive, in-

creasing, and separable, meaning that a link cost depends on the amount of flow

on that link only. A lot of research has however dealt with extensions of the traffic

equilibrium model’s travel cost function (e.g., Larsson and Patriksson, 1999). Such

modifications allow to describe more realistic traffic conditions, such as interaction

between flows or traffic flow restrictions, the consequence being that the classical

Wardrop characterization as an optimization problem usually does not hold in part
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because the required cost functions are then non-separable, asymmetric and typi-

cally non integrable. For instance, Nagurney (2013) dedicated a large amount of

work on more general model formulations, often involving variational inequalities,

more adapted to characterize real-world congestion effects. A typical extension

consists in relaxing the hypothesis that links may carry an unlimited amount of

flow, thus associating a finite capacity to links.

The problem of finite arc capacities has especially been studied in the context

of transit assignment, where generalized networks include links representing public

transport lines between consecutive stops, which are assigned a capacity and travel

cost. The effect of congestion is then different than that in a vehicular road net-

work, as in-vehicle travel times are typically not affected by the number of users.

Instead, crowded transit vehicles may no longer be boarded once they are full, cre-

ating inherent uncertainty due to the potential unavailability of some network arcs.

Incidentally, transit is not the only setting where studying restricted capacity on

arcs may be helpful, see, e.g., the context of freight flows (Guélat et al., 1990).

In the context of capacity constraints, the classical Wardrop principle, which

does not hold any more, must be adapted. One approach is through the use of

asymptotic travel cost functions, meaning that as flow reaches capacity the cost

goes to infinity. This solution allows to keep the convex optimization model struc-

ture, but has been criticized for entailing numerical difficulties as well as yielding

unrealistic travel costs at equilibrium (Boyce et al., 1981; Larsson and Patriksson,

1995). Another solution is to add a well-defined extra cost interpreted as a queuing

delay to saturated arcs, leading to a so-called generalized Wardrop equilibrium, as

in, e.g., Larsson and Patriksson (1995) or Nie et al. (2004). In both cases, the

mechanism which increases travel costs as a result of capacity limits is somewhat

implicit and not based on sound behavioral arguments. Indeed, while flow con-

straints are respected, the equilibrium does not make much sense, since users do

not account for the risk to fail to access an arc in their path choice. Therefore,

a third approach to capacities was proposed by Marcotte et al. (2004), which we

describe below.

The fundamental notion in Marcotte et al. (2004) is the concept of strategy.

Originally, this concept was introduced in transit assignment modeling to describe

user behavior under uncertain outcomes. A strategy specifies for each node in the

network a set of desired outgoing links, but the exact physical itinerary on which
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the user following the strategy travels depends on the realization of the random

variables contained in the problem. In Spiess and Florian (1989), strategies are used

to characterize user itinerary choice with respect to random arrivals of vehicles from

several attractive lines. Marcotte et al. (2004) adapted the concept of strategy to

relate it to the uncertainty induced by limits on available capacity, as we further

explain in Section 6.3. This led to a theoretically appealing equilibrium model

where user behavior is characterized by strategies with recourse. The model does

not yield flows that may exceed arc capacities, in contrast to, e.g., De Cea and

Fernández (1993), and may be applied not only to transit but generally to any

acyclic network with capacities.

Strategies exist in an exponential number for each OD pair, as do paths in a

network. The optimization problem in Marcotte et al. (2004) is thus formulated in

a high dimensional space, which impedes its resolution. While there exists efficient

algorithms which circumvent the path enumeration problem (e.g., Dial, 1971), they

resort to restricting the routes which can be used by travelers. The drawbacks of

relying on path-based variables have also been abundantly emphasized in other

works of the user equilibrium and route choice modeling literature (Fosgerau et al.,

2013; Wie et al., 2002; Dial, 2006). A different approach was first provided by

Akamatsu (1996) in the context of stochastic user equilibrium, as an alternative to

Dial (1971)’s well known logit assignment model, which assigns travelers to paths

under logit choice probability assumptions. The primary insight of the work of

Akamatsu (1996) is to consider path choice probabilities as products of sequential

link choice probabilities, obviating explicit path variables. The link choice proba-

bility matrix is equivalent to the state transition probabilities of a Markov chain

on the network’s arcs with an absorbing state corresponding to the destination.

Baillon and Cominetti (2008) extended this earlier work by introducing the more

comprehensive Markovian traffic equilibrium (MTE) model for the congested case

with general probability distributions. Their work established the existence and

uniqueness of an equilibrium in the case of flow dependent arc costs, and showed

that the approach conveniently circumvents traditional path enumeration issues

and facilitates the operationalization of the model to large-scale networks. While

this avenue is promising, it has nevertheless not been formally extended to the case

of networks with rigid arc capacities.
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6.3 Two subsumed models

In this section, we introduce the models of Marcotte et al. (2004) and Baillon

and Cominetti (2008), on which we build in Section 6.4. Both models deal with

traffic equilibrium under entirely different assumptions regarding user behavior and

congestion. To describe each work, we assume some standard notation, i.e., the

network is represented by a graph G = (V ,A) with node set V and arc set A, and

each arc a ∈ A possesses a cost ca and possibly a finite capacity ua. We denote by

A+
i the set of outgoing arcs from node i ∈ V .

6.3.1 A strategic flow model of traffic assignment

In the model of Marcotte et al. (2004), it is assumed that users have a per-

fect knowledge of arc costs, which casts the model within the deterministic user

equilibrium framework. Regarding congestion, the model assumes that there exist

strict capacity constraints on some of the network’s arcs. Thus each arc a ∈ A is

associated to a cost ca and possibly a finite capacity ua. Finally, the network is

assumed to be acyclic.

The model provides an entirely different approach to capacities than previous

related works. Their solution consists in adopting strategies to describe user behav-

ior, expanding a concept which was first introduced by Spiess and Florian (1989)

for transit networks. In this case, users do not aim at minimizing path costs given

by the sum of arc costs, but rather strategic costs.

The general idea of a strategy is to model complex decision making under uncer-

tainty in the network service, providing travelers with the opportunity to readjust

or refine their path choice as information on the network is gained. In this model, a

strategy defines for each node a set of outgoing links ranked by order of preference,

thus providing a recourse in case the preferred options have reached capacity. Users

choose a strategy in advance, but do not know on which path they will eventually

travel.

The inherent uncertainty induced by limited arc availability is encompassed into

so-called access probabilities, which are conceptually similar to diversion probabil-

ities or failure to board probabilities in some transit assignment models (Kurauchi

et al., 2003). They allow the model to strictly enforce capacity constraints. Indi-

viduals’ travel decisions take into account the randomness embedded into access
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probabilities, and consequently users are assumed to minimize the expected cost of

each strategy s denoted Cs. This cost can be defined as the weighted sum of path

costs by path access probabilities. Extending Wardop’s principle to capacitated

networks, Marcotte et al. (2004) state that a strategic equilibrium occurs when all

users are assigned to strategies of minimum expected cost.

The complexity lies in the fact that the cost mapping C is not available in closed

form as a function of strategic flows x. Pricing out strategies requires to obtain first

the access probabilities π(x) corresponding to the current distribution of users into

strategies. It also depends on additional assumptions of the model, namely on the

queuing mechanism at each node. Marcotte et al. (2004) rely on two algorithms

to compute the expected price of strategies. Access probabilities naturally induces

nonlinearity and asymmetry in the cost mapping C, and Marcotte et al. (2004)

show that it is not integrable, which prevents it from being reformulated as a

standard optimization problem. Thus the equilibrium problem is expressed by the

variational inequality

〈C(x), x− y〉 ≤ 0, ∀x ∈ X,

where X is the set of feasible strategic flows.

6.3.2 A Markovian traffic equilibrium model

The underlying assumption in the model of Baillon and Cominetti (2008) is

that travelers do not have perfect knowledge of arc costs, which are thus modeled

as random variables representing how individuals perceive cost. In addition to

being random variables, costs are also assumed to be flow-dependent to account

for congestion.

Under these assumptions, the MTE model falls within the scope of stochastic

user equilibrium. Perceived cost is defined as c̃a = ca + εa, where ca is the real

arc cost and εa is an error term with zero mean. The model considers general

distributions for the error term, however its application has been largely restricted

to the logit case. Congestion is accounted for by letting the mean cost ca be a

function of the flow fa on the arc through known volume-delay functions.

What distinguishes Baillon and Cominetti (2008) from other stochastic equi-

librium models is that the approach is formulated in terms of arc-based variables,
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relying on dynamic programming. Travelers’ choice of path obeys a sequential

process in which a discrete choice model at each node i describes the choice prob-

abilities P d
ij of outgoing links (i, j) ∈ A+

i depending on the desired destination d.

The arc-based formulation requires to define the notion of perceived cost to desti-

nation d from the source node of a given arc a, denoted w̃da = wda + εa. The cost to

destination wda is the sum of the arc cost ca and a destination specific value function

defined recursively following Bellman equation of dynamic programming, i.e.

wda = ca + ϕdja(w
d),

where

ϕdi (w
d) = E

(
min
a∈A+

i

wda + εa

)
.

Thus the value function ϕdi (w
d) represents the expected minimum cost to go to

destination d from a node i in the network.

The model assumes that at a node i, individuals traveling towards d observe w̃da

for all outgoing arcs a ∈ A+
i and choose the link with the smallest perceived cost

to destination. When the variance of error terms is null, individuals choose identi-

cally, while they are distributed according to link choice probabilities P d
ij otherwise.

In fact, the MTE model encompasses both the deterministic and stochastic user

equilibrium case under the same formulation, and the former is a specific case of

the latter. Although the MTE model could be expressed as a variational inequal-

ity, it admits a characterization as a convex minimization problem, assuming that

congestion functions be integrable.

It is worth mentioning that the formulation in terms of link variables possesses

interesting properties. In particular, the link choice probability matrix P d may be

regarded as the transition probability matrix of an underlying Markov chain where

states are network links, meaning that expected arc flows can be easily computed

by matrix operations as the expected state visitation frequencies.

Finally, we note that Baillon and Cominetti (2008) mention the possibility of

extending the model to networks with arc capacities ua by considering bounded

volume-delay functions. However, doing so simply heuristically bounds predicted

flows without providing a realistic model of how the risk that an arc becomes
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inaccessible affects behavior strategically. Moreover, the solution obtained does

not satisfy Wardrop’s equilibrium conditions.

6.4 Strategic Markovian traffic equilibrium

model

In this section, we propose a strategic Markovian traffic equilibrium model for

capacitated networks that subsumes the principal advantages of both previously

described models. It incorporates two sources of stochasticity in user route choice

behavior, induced by variations in cost perception and the risk associated with the

failure to access an arc. We propose a model formulation in which the deterministic

user equilibrium (i.e., arc cost is identical across users) is a specific case of the

stochastic user equilibrium. While we do not propose a characterization as a convex

minimization problem and we restrict our model to the logit case, we retain the

main advantages of the MTE framework. For the sake of clarity, we first describe

the deterministic user equilibrium in Subsection 6.4.2 before deriving the more

general model in Subsection 6.4.3.

6.4.1 Notation and assumptions

We consider a directed acyclic connected graph G = (A,V), where A is the set

of arcs, or links, and V is the set of nodes. Links are denoted a = (ia, ja) and A+
i is

the set of outgoing links from node i ∈ V . We assume that every link a has a strict

capacity ua and an associated generalized cost ca. We add absorbing links without

successors to each destination node and call D this set of destination links. We let

gd characterize the vector of demand from each node to a destination d ∈ D.

We review below the assumptions made throughout the paper. First, as in

Marcotte et al. (2004) and Unnikrishnan and Waller (2009), we assume that the

network is acyclic. While this is a strong assumption, we believe it is suitable for

several applications of interest which possess time-expanded networks, as we illus-

trate in numerical experiments in Section 6.7. Adapting the algorithms proposed in

this paper for cyclic networks is not trivial, and we discuss the issue in more detail

in Section 6.8. Second, we also assume that the network has sufficient capacity to
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accommodate the whole demand. In particular, we assume that the subset of the

network consisting of uncapacitated arcs is strongly connected, i.e., there exists an

uncapacitated path between each pair of nodes in the network. This assumption

can be satisfied by creating direct artificial arcs with high cost between nodes and

destinations when necessary, which can be interpreted as walking arcs.

Users traveling in this network aim at finding the shortest path to their desti-

nation d ∈ D. However, because of limited network capacity, some arcs may be

saturated and thus inaccessible depending on route choices made by other travelers.

Similarly to Marcotte et al. (2004), we assume a realistic modeling of user behavior

in this context, dictating that travel decisions be strategic and include recourse ac-

tions, consisting of a set of subpaths in an order of preference, should a link in the

preferred itinerary turn out to be unavailable. In addition, we make the hypothesis

that travelers do not know in advance what arc will prove to be available, and

only observe the outcome when reaching the source node of each arc. Under these

assumptions, the problem bears similarities to the stochastic shortest path prob-

lem in a probabilistic network studied in, e.g., Andreatta and Romeo (1988). As

observed in Polychronopoulos and Tsitsiklis (1996), stochastic programming with

recourse can be viewed as a stochastic control problem with imperfect information,

and may be solved with dynamic programming methodology. Namely, instead of

defining recourse actions, user behavior may equivalently be characterized by an

optimal policy given the current state, where the state indicates the realization of

the random variables. Below, we explain how we formulate the model following

this paradigm.

We assume that the set of available outgoing arcs from node i is a random subset

of A+
i , and define the random vector Xi, which indicates whether each outgoing

arc is accessible and may take values in Ωi = {0, 1}|A+
i |. Consequently, we define

a state s = (i, xi) as a set of two variables, i.e., a node i and a realization xi of

random vector Xi. The set of states at node i is denoted Si, while the set of all

possible states is denoted S. A policy, or action, is then a choice of outgoing arc

among the set A(s) containing the Ns available links at the current state s = (i, xi),

as illustrated by Figure 6.1. Since we assume that there always exists at least one

uncapacitated outgoing link, there is no state in which no link is available. For an

unvisited node i, the random vector Xi follows the discrete availability probability

distribution πi, with support on {0, 1}|A+
i |. Upon arrival at node i, the user learns
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Figure 6.1 – Illustration of state expansion

the realization of Xi. Therefore, travelers choose their paths sequentially in a

dynamic fashion, choosing in each state an action that leads stochastically to a

new state.

Travelers’ route choice behavior is characterized by choice probabilities, which

describe in what proportion individuals choose each action conditionally on the

state and the destination. In particular, let P d
s,ij represent the proportion of in-

dividuals traveling to d ∈ D who choose action (i, j) ∈ A(s) in state s ∈ S. We

then denote P = {P d
s,ij}d∈D,s∈S,(i,j)∈A(s) the vector of choice probabilities. The role

of availability probabilities π = {πi,s}i∈V,s∈Si is analog to that of state transition

probabilities conditional on choices in a MDP. Given a state st = (i, xi) and an

action at = (i, j) ∈ A(st), the probability Pr(st+1|st, at) of reaching the new state

st+1 = (j, xj) is given by the distribution πj of random vector Xj. In other words,

the new state consists of the head node of the chosen available link and a realization

of the availability random vector at that node. We can here draw a parallel with

the model of Baillon and Cominetti (2008), where the choice of outgoing link may

also be viewed as a choice of action leading to a new state. While in Baillon and

Cominetti (2008) the new state is given with certainty once the action is selected,

and is equal to the chosen link, we obtain a more complex model with non de-

generate action-state transition probabilities. Therefore, in a capacitated network,

passengers’ motions are directed by an underlying Markov chain dependent on both

choice and availability probabilities.

The probability of accessing an arc naturally depends on the choices of all other

users of the network. Hence, availability probabilities π actually depend on both

capacities and choice probabilities P through a loading process similar to the one
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found in Marcotte et al. (2004), which we further explain in Section 6.5.

We observe that the probability vector P has a close tie to the strategic flow

vector in the model of Marcotte et al. (2004), since both specify the distribution of

travelers between different travel strategies or policies. The major difference in this

work is that we model behavior using local choices at each node instead of a choice

of strategy for the entire itinerary. Also, in Marcotte et al. (2004), the model

requires one strategic flow vector per OD pair, while P in our arc-based model

works implicitly with all strategies but is only destination specific. In addition,

the framework we propose lends itself to model both deterministic and stochastic

equilibrium. Indeed, although P is dubbed a vector of choice probabilities, it may

be degenerate as exemplified in Section 6.4.2. We summarize below the notation

used throughout the paper:

A set of arcs

V set of nodes

D set of dummy destination links

A+
i set of outgoing arcs from node i

S set of states

A(s) set of available outgoing arcs in state s = (i, xi)

Xi random vector indicating available outgoing arcs from i

gd demand vector to destination d

ca cost on arc a

V d(i, xi) minimum expected cost to destination from state (i, xi) to

destination d

wda expected cost of arc a with regard to destination d

ua capacity on arc a

fda expected arc flow on a to destination d

πi availability distribution of random vector Xi

P d
s link choice probabilities from state s to destination d

6.4.2 Deterministic user equilibrium

In this section, we focus on the deterministic user equilibrium case, assuming

that individuals have perfect knowledge of arc costs ca. We emphasize that perfect

knowledge does not refer to availability of outgoing arcs, which we still assume to

be unknown for downstream parts of the network.
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As in Baillon and Cominetti (2008), in each state s = (i, xi) individuals mini-

mize the expected cost to destination of actions a ∈ A(s) corresponding to avail-

able outgoing links, where the stochasticity is induced by availability probabilities

π. This quantity wda is the sum of two terms, the link cost ca associated to the

action, and the minimum expected cost to destination V d(j, xj) from the future

state (j, xj), weighted by the probability distribution πj of reaching each possible

state conditional on the action:

wda = ca + Exja∼πjaV
d(ja, xja). (6.1)

The minimum expected cost of traveling to destination d from state (i, xi) is

denoted the value function and defined recursively by the Bellman equation:

V d(i, xi) = min
a∈A(i,xi)

{
ca + Exja∼πjaV

d(ja, xja)
}
. (6.2)

Note that costs w = {wds,a}d∈D,s∈S,a∈A(s) explicitly depend on access probabili-

ties π, which themselves depend on users’ choices P through a loading mechanism

which mirrors the queuing mechanism taking place to access each capacitated link.

An equilibrium is reached when, in each possible state, no user can reduce its

expected cost to destination by modifying his/her action choice. Hence, for each

state s = (i, xi) ∈ S and destination d ∈ D, all available actions a ∈ A(s) which

have a non null choice probability P d
s,a must have the same expected cost wds,a. If

a single action possesses the minimum cost, the probabilities are degenerate. Note

that in the deterministic case, the vector P is equivalent to splitting proportions

in other works (Boyles et al., 2015).

Let us define the set of feasible choice probability vectors

P =

P ∈ R|D|
∑
s∈S |A(s)|

+ :
∑

(i,j)∈A(s)

P d
s,ij = 1 ∀d ∈ D,∀s ∈ S

 . (6.3)

The equilibrium probabilities P ∗ must then satisfy the variational inequality

〈w(P ∗),P ∗ − P 〉 ≤ 0 ∀P ∈ P . (6.4)

Alternatively, the problem may be formulated as the nonlinear complementarity
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problem:

P ∗s,ij (ws,ij − Vs) = 0 ∀s ∈ S, (i, j) ∈ A(s), (6.5)

P ∗s,ij ≥ 0 ∀s ∈ S, (i, j) ∈ A(s). (6.6)

6.4.3 Stochastic user equilibrium

In this section, we propose an extension where perception of travel costs ca

varies across the population. We model perceived arc costs as random variables

c̃a = ca + µεa, letting the measured arc cost be disrupted by an error term with

E(εa) = 0. This source of randomness can be interpreted as users not being capable

of perfect discrimination, or the modeler failing to properly identify and measure

the cost function.

Under these assumptions, the expected cost of an action a to reach destination

d also becomes a random variable w̃da, which is the sum of both the error term εa

and the term wda:

w̃da = wda + µεa. (6.7)

On the other hand, the cost wda is still

wda = ca + Exja∼πjaV
d(ja, xja), (6.8)

however V d(ja, xja) is now the expected value function. Therefore, according to the

Bellman equation, we have

V d(i, xi) = Eεa

[
min

a∈A(i,xi)

{
ca + Exja∼πjaV

d(ja, xja) + µεa
}]

. (6.9)

In particular, we assume that εa is an Extreme Value Type I distributed error term.

Then, (6.9) can be rewritten as the following so-called logsum:

V d(i, xi) = µ ln

 ∑
a∈A(i,xi)

e
1
µ(ca+Exja∼πja V

d(ja,xja ))

 . (6.10)

Following the notation introduced in the previous section, we can formulate the

equilibrium problem as a similar variational inequality. We define w̄ds,a as the sum

wds,a+µ ln(P d
s,a). Then for each destination the equilibrium choice probabilities P ∗s,a
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are the solution of

〈w̄(P ∗),P ∗ − P 〉 ≤ 0 ∀P ∈ P . (6.11)

Equivalently, the nonlinear complementarity problem becomes

P ∗s,ij [w̄s,ij − Vs] = 0 ∀s ∈ S, (i, j) ∈ A(s), (6.12)

P ∗s,ij ≥ 0 ∀s ∈ S, (i, j) ∈ A(s). (6.13)

In this case all available outgoing arcs have some positive flow since probabilities

P d
s,ij are non null for all available actions (i, j) ∈ A(s). Thus we note that at

equilibrium V d
s is equal to w̄ds,ij for all arcs (i, j) ∈ A(s).

6.5 Algorithmic framework

In this section, we discuss the existence of solutions to the proposed equilibrium

models and propose an algorithmic framework to compute a solution. Applying

these models to networks with general topologies is not straightforward, and the

case of cyclic networks is more complex. In the following, we focus on the case

where the network admits a topological ordering and prove the existence of an

equilibrium solution in this context. We present three algorithms which are jointly

required to solve the problem. The first is a network loading algorithm to recover

arc flows f and availability probabilities π from choice probabilities P . The second

is an algorithm to compute the best response choice probabilities corresponding to

a given network loading. Finally, the third is an iterative outer algorithm for

determining an equilibrium solution, which is a heuristic since the cost function

lacks favorable properties (e.g., monotonicity). In Section 6.8, we provide a general

discussion regarding how the algorithms in this paper could be adapted to consider

general cyclic networks.

6.5.1 Network loading

We start by stating the flow conservation equations for the capacitated network.

For each link (i, j) ∈ A+
i , the incoming flow and demand en route to d at node i is
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split between the outgoing links according to the choice probabilities P d
s,ij weighted

by the availability probability πi,s of each state s ∈ Si. This gives

fdij =
∑
s∈Si

πi,sP
d
s,ij

gdi +
∑

(h,i)∈A−i

fdhi

 , ∀(i, j) ∈ A,∀d ∈ D. (6.14)

For destination links d ∈ D, we have a flow equivalent to the total demand

fdd =
∑
i∈V

gdi , ∀d ∈ D. (6.15)

Each intersection corresponds to one of the two following cases. If there is no

outgoing capacitated link, the availability probabilities are degenerate. The only

possible state corresponds to all outgoing links being available. In this case the

incoming flow is simply split according to the ratios given by P at that state.

On the other hand, if there is at least one capacitated outgoing link, a loading

mechanism at that node emulates the queuing process taking place when users

attempt to access outgoing arcs. The latter yields the availability probability of

each state and computes the corresponding outgoing flows.

Treatment of capacitated intersections

We make the following assumptions regarding this loading mechanism at ca-

pacitated intersections:

— Users of an arc which terminates at the current node have equal access

priority.

— The queuing discipline implemented is the single queue processing (SQP)

described in Marcotte et al. (2004), corresponding to users being randomly

and uniformly distributed in a single queue.

These assumptions uniquely determine the availability probabilities corresponding

to a total incoming flow at a given node. To illustrate this loading process, we

consider the intersection in Figure 6.2 with a single node i possessing two capaci-

tated outgoing links. In this example, the demand originating from i plus the flow

arriving to i from previous arcs represents the total incoming flow and amounts to

30. Table 6.1 gives the choice probabilities for each possible state at node i. While

there is a single destination in this example, this process generalizes to destination-
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Figure 6.2 – Loading example

specific incoming flows and is described in detail in Algorithm 1.

At the first iteration, users are assigned to links assuming that the initial state

is (1, 1, 1). Links fill up at a rate proportional to the ratio between capacity and

the number of individuals who want to access the link. In this case, since 10 and 20

users wish to access j1 and j2 respectively according to the choice probabilities given

in Table 6.1, the ratios are 8/10 and 10/20. Therefore, having the smallest ratio, the

arc leading to j2 is the one to reach capacity first. At this point, half the users have

been assigned, therefore the probability of a user reaching the state s1 = (1, 1, 1),

corresponding to all links being available, is 1/2. The 15 users that have not

been assigned and are in the remaining of the queue behave conditionally to state

s2 = (1, 0, 1). Before performing the next iteration, the capacity of remaining arcs

is replaced by the residual capacity, which is obtained by removing the number

of users who have successfully accessed the arc. Now, all 15 users want to access

j1. Since the residual capacity is 3, the ratio is 1/5. Therefore, the probability

that a user reaching the tail node finds themselves in state s2 = (1, 0, 1) is equal

to 1/2 · 1/5 = 1/10. The remaining users follow the behavior dictated by state

s3 = (0, 0, 1) and are all able to access the arc leading to j3. We conclude that the

probability of state s3 = (0, 0, 1) is 4/10.

Network loading algorithm

In this section, we seek to find the solution to the system of flow conservation

equations (6.14) and (6.15). If the network is acyclic, it possesses a topological

ordering of nodes. Then, the assumption that the subnetwork consisting of unca-

pacitated arcs is strongly connected is sufficient to guarantee that there exists a
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State j1 j2 j3

(1, 1, 1) 1/3 2/3 0
(0, 1, 1) 0 1 0
(1, 0, 1) 1 0 0
(0, 0, 1) 0 0 1

Table 6.1 – Probability of users choosing each outgoing link in each possible state for the loading
example

finite solution to the system. This solution can be constructed by pushing flows for-

wards with (6.14) in topological order of the nodes, and calling Algorithm 1 when

a considered intersection has capacitated outgoing links. This process is summa-

rized by Algorithm 2. As analyzed by Marcotte et al. (2004), each node is visited

exactly once, and at least one outgoing arc reaches capacity at each step of the

while loop in Algorithm 1, which is therefore executed at most |A+
i | times. Hence,

computational time is equal to
∑

i∈V |A
+
i | = |A|.

6.5.2 Solving value functions

This section aims at proposing an algorithm to compute the best response choice

probabilities P̄ (not to be mistaken for an equilibrium solution) after the loading of

choice probabilities P . Best response choice probabilities characterize the behavior

of individuals corresponding to updated expected travel costs after the network

loading. Therefore, at the heart of the algorithm lies the computation of the value

functions defined in equations (6.2) and (6.10) in the deterministic and stochastic

cases respectively. Note that π is fixed in both equations, and obtained from the

network loading phase. In the former case, (6.2) forms a system of piecewise linear

equations. On the other hand, the logit model combined with the expectation over

π gives rise to non-linearities in (6.10).

In an acyclic network, since there exists a topological ordering of the nodes, it is

possible to simply compute the value functions by backwards induction in inverse

topological order using (6.2) and (6.10) for the deterministic and stochastic models

respectively, as in Algorithm 3. Existence and uniqueness of the solution is then

trivially established.

Computing a best response policy is simple once the value function V is solved
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and the costs w are updated accordingly. In the deterministic case, the optimal

action αd(s) for an individual in state s = (i, xi) going to destination d consists in

choosing arc a ∈ A(s) such that

αd(s) = arg min
a∈A(s)

{
wda
}
. (6.16)

and a best response choice probability vector P̄ can be obtained by letting all users

choose the best action in each state, or split in equal proportions when several

actions attain the optimal cost:

P̄ d
s,a =

I{αd(s) = a}∑
a′∈Ai(k) I{αd(s) = a′}

, ∀d ∈ D, s ∈ S, a ∈ A(s). (6.17)

In the stochastic case, the optimal action αd(s) for an individual in state s

traveling to d is

αd(s) = arg min
a∈A(s)

{
wda + µε(a)

}
. (6.18)

Thus each arc a is associated to a probability of being the best action in each state,

and the best response choice probabilities P̄ distribute the demand on available

outgoing arcs according to this probability function, such that

P̄ d
s,a = Eεa

[
I{αd(s) = a}

]
, ∀d ∈ D, s ∈ S, a ∈ A(s) (6.19)

which, in the case of extreme value type I error terms, is equivalent to a multinomial

logit

P̄ d
s,a =

e
1
µ(wda)∑

a′∈A(s) e
1
µ(wda′)

, ∀d ∈ D, s ∈ S, a ∈ A(s). (6.20)

6.5.3 Heuristic solution algorithm

Finding an equilibrium solution comes down to solving (6.4) or (6.11) depending

on whether a deterministic or stochastic choice model is considered. In the follow-

ing, we discuss properties of these variational inequalities and propose a heuristic

to find an equilibrium solution.

In order to ensure the existence of a solution, it suffices that the set P be

compact and the cost mapping w(P ) continuous. We can affirm that the set P in
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(6.3) is indeed compact. Furthermore, under the SQP rule for accessing capacitated

arcs, the mapping w(P ) is continuously dependent on availability probabilities π,

which are continuous functions of choice probabilities P . In the stochastic case,

w̄(P ) contains in addition the term µ ln(P ), which is a continuous function of P

as well. Therefore, there exists at least one fixed point solution to each variational

inequality. However, we cannot prove the uniqueness of the solution, since the

mapping w(P ) lacks the property of monotonicity (see Marcotte et al., 2004, for a

counterexample).

To solve the problem, we propose a method of successive averages (MSA) which

iteratively loads the network, solves the value function, updates the cost mapping,

computes best response choice probabilities and finally updates P by taking a

convex combination of the current and best response choice probabilities. This

is a heuristic solution algorithm, since the non monotonicity of the cost function

w(P ) does not guarantee the convergence of the method to an equilibrium point.

Nevertheless, as we numerically demonstrate in the following sections, the method

is well-behaved. Algorithm 4 describes the MSA using a relevant stopping criterion.

We propose the choice of θn = 1/(n+ 1) for the value of the step size.

The gap between a vector P and an optimal solution can be measured at a

more or less aggregate level. We may define the gap associated to a specific state

s and destination d as

g(P d
s ) = max

R∈P
〈wds , P d

s −Rd
s〉,

and its scaled version as

gR(P d
s ) =

g(P d
s )

〈wds , P d
s 〉
.

The aggregate relative gap gR(P d) for a destination d ∈ D is a weighted average

of the state specific relative gaps by the flow on each state, i.e.,

gR(P d) =
∑
s∈S

pdsgR(P d
s ),

where the weights pds are given by fds∑
s∈S f

d
s
. Note in addition that we exclude from

the sum all states where only one outgoing arc is available, since the gap in such

states is trivially null.
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Figure 6.3 – Small capacitated network

State ID Node Availability of
outgoing links

1 1 (1,1)
2 1 (1,0)
3 2 (1,1)
4 3 (1,1)
5 3 (1,0)
6 4 (1)
7 5 (1)

Table 6.2 – Possible states in the example

Finally the aggregate relative gap gR(P ) for all destinations is given by

gR(P ) =
∑
d∈D

qdgR(P d),

where the weights qd correspond to the proportion of the total demand associated

to destination d. While the gap measure gR(P ) is used as a stopping criterion for

Algorithm 4, it remains interesting to analyze the gap at a more disaggregate level,

since there may be considerable variance in the state specific gaps.

6.6 An illustrative example

Let us consider the network in Figure 6.3, in which each link a is associated

with a cost ca and possibly a capacity ua (bracketed number) as illustrated. The
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State 1 2 3 4 5

1 - 0.50 0.50 - -
2 - 1.00 - - -
3 - - 0.75 - 0.25
4 - - - - 1.00
5 - - - 1.00 -
6 - - - - 1.00
7 - - - - 1.00

Table 6.3 – Initial choice probability of each available outgoing node in each state

Strategies 1 2 3 4 5

s1 [3, 2] [3] [5, 4] [5] -
s2 [3, 2] [5] [5, 4] [5] -
s3 [2] [3] [5, 4] [5] -

Table 6.4 – A set of strategies (Marcotte et al., 2004) for the small network

demand between origin node 1 and destination node 5 is set to 10 units. Since we

only consider one destination, we omit the destination index d in the following.

Since there is at most one outgoing arc with limited capacity, each network

node corresponds to at most two possible states. The 7 possible states for a user

traveling in this network are listed in Table 6.2. In addition, since there are at

most two outgoing links per node, in any state where an outgoing link has reached

its capacity, the only remaining choice is the other available link.

In the following, we compare the deterministic and stochastic strategic MTE

models to the model in Marcotte et al. (2004). We also analyze the performance

of the algorithm proposed in Section 6.5.3. We choose initial choice probabilities

P described in Table 6.3.

In their work, Marcotte et al. (2004) consider strategies represented as vectors

of size equal to the number of network nodes, prescribing for each an ordered list of

successor nodes. Three examples of such strategies are displayed in Table 6.4. For

instance, a user following strategy s1 would choose node 3 from node 1 if the link is

available, and node 2 otherwise. Other columns describe the preferences from other

nodes. There exists many such strategies, and their number grows exponentially

with the size of the network.

Choice probabilities P in this work can be matched to strategic flows x as
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State 1 2 3 4 5

1 - 0.00 1.00 - -
2 - 1.00 - - -
3 - - 0.50 - 0.50
4 - - - 0.00 1.00
5 - - - 1.00 -
6 - - - - 1.00
7 - - - - 1.00

Table 6.5 – Equilibrium choice probability of each available outgoing node in each state

defined in Marcotte et al. (2004). For instance, the link choice probabilities charac-

terized by the initial P are equivalent to a flow on strategies given by x = (1
4
, 1

4
, 1

2
),

when restricting the number of possible strategies to the three displayed in Table

6.4.

At equilibrium, Marcotte et al. (2004) state that demand is equally split between

strategies s1 and s2, of equal expected cost 185, and receiving each 5 units of flow.

In other words, the optimal flow on strategies is x∗ = (1
2
, 1

2
, 0). Both strategies differ

only at node 2, where s1 selects node 3 and s2 node 5. We can find an equivalent

deterministic equilibrium P ∗ in the space of choice probabilities, given by Table

6.5, as incoming flow splits in equal proportion between both outgoing arcs from

node 2.

6.6.1 Deterministic assignment

Table 6.6 displays the relevant values of P for successive iterations of the algo-

rithm. In particular we look at specific components of P and w corresponding to

states 1 and 3, since the other components of P are already at equilibrium. Finally,

the last columns displays aggregate and state-specific relative gap values.

The algorithm converges towards the solution P ∗ given above, which is equiv-

alent to the equilibrium solution found in Marcotte et al. (2004). In general, we

observe that the gap at specific states exceeds the aggregate gap, which is 0.01%

after 1000 iterations. This is because the latter is lowered by taking into account

some states where the gap is null.

In Marcotte et al. (2004), all used strategies have the same expected cost at

equilibrium. Similarly, we observe here that all chosen actions at a given state have

the same expected cost. When an equilibrium is reached, both outgoing links in
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Choice probabilities Costs Gap (%)

# Iter P1,2 P1,3 P3,3 P3,5 w1,2 w1,3 w3,4 w3,5 V1 gR(P1) gR(P3) gR(P )

0 0.5000 0.5000 0.7500 0.2500 200.00 156.25 181.25 150.00 182.50 12.28 13.51 9.25
1 0.2500 0.7500 0.3750 0.6250 175.00 100.00 125.00 150.00 155.00 15.79 11.11 8.36
2 0.1667 0.8333 0.5833 0.4167 200.00 137.50 162.50 150.00 185.00 7.04 4.64 3.51
3 0.1250 0.8750 0.4375 0.5625 188.64 113.64 138.64 150.00 171.49 7.62 4.41 3.45
4 0.1000 0.9000 0.5500 0.4500 200.00 132.81 157.81 150.00 185.07 4.82 2.78 2.17
5 0.0833 0.9167 0.4583 0.5417 192.65 117.65 142.65 150.00 176.28 5.04 2.72 2.16

10 0.0455 0.9545 0.5227 0.4773 200.00 128.68 153.68 150.00 185.06 2.46 1.26 1.01
20 0.0238 0.9762 0.5119 0.4881 200.00 126.95 151.95 150.00 185.03 1.35 0.66 0.54
50 0.0098 0.9902 0.5049 0.4951 200.00 125.81 150.81 150.00 185.02 0.57 0.27 0.22

100 0.0050 0.9950 0.5025 0.4975 200.00 125.41 150.41 150.00 185.01 0.29 0.14 0.11
200 0.0025 0.9975 0.5012 0.4988 200.00 125.21 150.21 150.00 185.00 0.15 0.07 0.06
500 0.0010 0.9990 0.5005 0.4995 200.00 125.08 150.08 150.00 185.00 0.06 0.03 0.02

1000 0.0005 0.9995 0.5002 0.4998 200.00 125.04 150.04 150.00 185.00 0.03 0.01 0.01

Table 6.6 – Iterations of the deterministic assignment algorithm

state 3 have a cost of 150, while in state 1 the only chosen outgoing link has a cost

of 125, which is less than the cost of the other link. Note that the expected cost

of the best strategy for the OD pair is equivalent to the value function V at the

origin state s = 1, as it represents the minimum expected cost to reach destination.

As expected, the latter indeed converges to 185.

6.6.2 Stochastic assignment

We next apply the stochastic version of the algorithm, assuming that arc costs

are random and given by ca + µεa. Table 6.7 gives the choice probabilities P and

value function V at origin state after 1000 iterations for different values of the scale

parameter µ.

As expected, when µ is small, the assignment is close to a deterministic one and

the equilibrium choice probabilities are close to the values in Table 6.6. On the

other hand, when µ becomes very large, we observe that the choice of arc is close to

a random draw. From arc 2, the flow splits between arcs 4 and arcs 5 in proportion
2
3

and 1
3

respectively. This is because there are two paths to the destination from

arc 4, and only one from arc 5. Similarly from arc 1, choice probabilities converge

towards 3
5

and 2
5

respectively. The expected minimum cost given by V at the origin

state is close to 185 when the value of µ is small, and decreases as µ tends to infinity

and the magnitude of the error term becomes large. Intuitively, the large variance

among perceived costs decreases the expected value of the minimum cost.
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µ P1,2 P1,3 P3,3 P3,5 V1

0.5 0.0005 0.9995 0.5000 0.5000 184.72
1 0.0005 0.9995 0.5000 0.5000 184.44
5 0.0005 0.9995 0.5000 0.5000 182.22

10 0.0016 0.9984 0.5000 0.5000 179.43
20 0.0454 0.9546 0.5003 0.4997 173.12
30 0.1406 0.8594 0.5035 0.4965 165.28
50 0.2996 0.7004 0.5224 0.4776 145.83

100 0.4495 0.5505 0.5789 0.4211 84.41
1000 0.5857 0.4143 0.6561 0.3439 −1125.60

10000 0.5985 0.4015 0.6656 0.3344 −13309.00

Table 6.7 – Choice probabilities P and expected minimum cost at origin state V1 for different
values of µ after 1000 iterations (common step size)

Choice probabilities Costs Gap (%)

# Iter P1,2 P1,3 P3,3 P3,5 w̄1,2 w̄1,3 w̄3,4 w̄3,5 V1 gR(P1) gR(P3) gR(P )

0 0.5000 0.5000 0.7500 0.2500 199.65 155.90 181.11 149.31 182.50 12.30 13.77 9.38
1 0.2500 0.7500 0.3750 0.6250 174.31 99.86 124.51 149.77 155.00 15.71 11.25 8.42
2 0.1667 0.8333 0.5833 0.4167 199.10 137.41 162.23 149.56 185.00 6.96 4.71 3.53
3 0.1250 0.8750 0.4375 0.5625 187.60 113.57 138.22 149.71 171.49 7.53 4.47 3.46
4 0.1000 0.9000 0.5500 0.4500 198.85 132.76 157.51 149.60 185.07 4.74 2.83 2.18
5 0.0833 0.9167 0.4583 0.5417 191.40 117.60 142.26 149.69 176.28 4.97 2.75 2.17

10 0.0455 0.9545 0.5227 0.4773 198.45 128.65 153.35 149.63 185.06 2.41 1.28 1.01
20 0.0238 0.9762 0.5116 0.4884 198.12 126.89 151.57 149.64 185.02 1.32 0.63 0.51
50 0.0098 0.9902 0.5002 0.4998 197.36 125.03 149.69 149.65 184.60 0.56 0.00 0.08

100 0.0050 0.9950 0.5000 0.5000 197.00 125.00 149.65 149.65 184.65 0.28 0.00 0.04
200 0.0025 0.9975 0.5000 0.5000 196.66 125.00 149.65 149.65 184.69 0.14 0.00 0.02
500 0.0010 0.9990 0.5000 0.5000 196.20 125.00 149.65 149.65 184.71 0.00 0.00 0.01

1000 0.0005 0.9995 0.5000 0.5000 195.85 125.00 149.65 149.65 184.72 0.00 0.00 0.00

Table 6.8 – Iterations of the stochastic assignment algorithm for µ = 0.5

In Table 6.8, we look in detail at the iterations of the algorithm for µ = 0.5.

We observe that the gap converges to zero faster than in the deterministic case.
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OD pair Notation Demand Destination index

(1,24) OD1 35 d1

(1,22) OD2 25 d2

(7,24) OD3 20 d1

(7,22) OD4 20 d2

Table 6.9 – OD pairs for Sioux Falls network

6.7 Numerical experiments

In the following we present two applications of the model. The first one is a

simplified and acyclic version of the Sioux Falls network, also used as a numer-

ical example in Marcotte et al. (2004). The network is more complex than the

illustrative example, but small enough to analyze in detail the solution of the as-

signment. The second one is a larger scale experiment involving a time-expanded

transit network of over 2000 links.

6.7.1 Sioux Falls network

The network is depicted in Figure 6.4 and contains 24 nodes and 41 links. It has

up to 4 outgoing arcs per node, up to three of which may have a limited capacity.

In total there are 14 capacitated arcs. We consider four OD pairs with demand

described in Table 6.9.

We first solve the deterministic equilibrium. Table 6.10 displays the value func-

tion V d at origin for each OD pair at equilibrium. The values can be interpreted

as the expected minimum cost to travel between each OD pair, and they are close

to the minimum strategic costs found in Marcotte et al. (2004). The aggregate

relative gap is well below 1%, at around 0.03%.

In contrast with Marcotte et al. (2004), it is not possible to analyze the number

of different strategies used at equilibrium, since we cannot recover strategic flows

from arc flows. Instead, we may observe for how many couples (s, d) there exist two

different outgoing arcs in A(s) with non null choice probabilities P d
s,a. Therefore in

Table 6.11, we display the nodes for which there exists outgoing links with equal

expected minimum cost, and display the value of corresponding choice probabilities

in the state where both links are available. We also analyze the specific relative

gap at the corresponding states. In all cases the value is small, illustrating that the
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Expected minimum cost V do Gap (%)

OD1 OD2 OD3 OD4 gR(P )

120.00 139.94 112.97 99.97 2.97 · 10−2

Table 6.10 – Expected minimum cost of OD pairs after 1000 iterations of the deterministic
assignment algorithm

Destination Node Tail node of Costs Choice probabilities Gap (%)
outgoing links wds,a P ds,a gR(P

d
s )

24 3 4,12 110.0122 110.0000 0.3263 0.6737 3.61 · 10−3

19 20,22 54.6733 55.0000 0.9222 0.0778 9.92 · 10−2

22 1 2,3 139.9361 139.9748 0.9980 0.0020 5.52 · 10−5

7 8,18 99.9748 100.0000 0.7176 0.2824 7.12 · 10−3

3 4,12 129.9361 130.0000 0.8812 0.1188 5.84 · 10−3

4 5,11 119.9392 119.9322 0.4880 0.5120 2.87 · 10−3

10 11,17 119.9322 119.4173 0.2834 0.7166 1.20 · 10−1

Table 6.11 – Outgoing links with equal strategic cost for each destination after 1000 iterations

aggregate gap value does not conceal large variance.

We then apply the stochastic user equilibrium algorithm on the network for

several values of µ. From the data diplayed in Table 6.12, we observe that for µ =

0.5 the expected minimum costs obtained are close to the deterministic solution,

while they decrease as µ increases.

Expected minimum cost V do Gap (%)

µ OD1 OD2 OD3 OD4 gR(P )

0.5 119.74 138.92 114.72 99.61 2.15 · 10−2

5 116.83 131.42 113.00 96.23 6.26 · 10−3

10 112.00 119.25 107.38 88.50 7.99 · 10−2

20 95.57 106.02 94.11 80.25 9.10 · 10−3

Table 6.12 – Expected minimum cost of OD pairs after 1000 iterations of the stochastic assign-
ment algorithm with different values of µ
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Figure 6.4 – Sioux Falls network
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6.7.2 Springfield network

The Springfield network is a 5-zone network that was developed as a generic

example for the fast trips Dynamic Transit Passenger Assignment tool (Khani,

2013). The network is composed of three transit lines, as displayed in Figure 6.5,

several walking links and a transfer link between transit stops B2 and R2. The

train line going through stops R1, R2 and R3 has a capacity of 16 units, and the

two bus lines have a capacity of 10.

In this example, we apply the strategic Markovian traffic equilibrium model

to the time-expanded version of the Springfield network. The transit schedule is

given between 3PM and 6PM and there are 152 runs of the transit lines. Demand

starts at 3:15 PM, ends at 5:15 PM and is characterized by a trip every ten seconds

between two of the five possible zones. Each trip has a latest desired arrival time

of 30 minutes after departure time.

We create an acyclic time-space network based on the static bidirectional net-

work in Figure 6.5 and the given schedule. To do so, we build four types of arcs:

transit arcs, corresponding to each run of a transit line between two consecutive

stops; transfer arcs, connecting two transit stops (here B2 and R2); walking arcs,

between zones and accessible transit stops; waiting arcs, connecting the same zone

or transit stop between two consecutive discrete points in time. Transfer and walk-

ing arcs are created not at regular time intervals but rather for each arrival or

departure of a transit line at the stop. Thus time in this approach is discretized

according to the transit schedule. We assume that the capacity of waiting, transfer

and walking arcs is infinite.

Artificial origin and destination links are also created to match the dynamic

OD information. For each trip in the OD table, an origin link is created at the

origin zone, so as to be connected with the first walking arc to leave the zone from

the stated departure time. Similarly, a destination link without successor is added

at the arrival zone and is connected to the link arriving at the zone at a time

closest to the latest desired arrival time. We ensure that the time interval between

earliest possible departure and latest possible arrival is at least 30 minutes. Note

that origin and destination links are also connected to waiting arcs. Therefore, the

demand may leave and arrive at any time between the stated departure time and

latest possible arrival time, and use waiting arcs in between. The total number of

arcs in the time-expanded network is 2961.
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The cost of transit, transfer and walking arcs displayed in Figure 6.5 correspond

to the travel time in minutes between nodes. The cost of waiting arcs is equal to the

waiting time, which can be inferred from the time index at the nodes of the time-

expanded network. However, the cost of waiting arcs at origin and destination

zones is upper bounded by a small value (20 seconds). Thus the cost provides

individuals with an incentive to arrive earlier at destination if possible and spend

less time traveling.

We assume that passengers are loaded randomly at each node. It is usual in

dynamic transit assignment to make more complex assumptions, typically that pas-

sengers arriving first at a node are loaded before those arriving at a later time step.

However, since boarding priorities and first-come first-serve loading is beyond the

scope of this paper, we illustrate the model on this example with the assumptions

described in Section 6.5.1.

We compute the deterministic and stochastic user equilibrium. We set µ to

the intermediate value of 5 for the stochastic case. Table 6.13 shows the value of

the aggregate gap for iterations of the deterministic and stochastic algorithms. We

observe that the algorithm follows the typical slow convergence rate where the gap

is roughly halved when the number of iterations double.

While the aggregate gap shows that choice probabilities globally tend towards

the equilibrium solution, it is not the only way to investigate the gap. For instance,

Table 6.14 displays disaggregate values of the gap for specific destinations and

states. In particular, for each destination d, we compare two different gap functions,

i.e., the maximum relative gap across all states maxs gR(P d
s ), and the average of

gR(P d
s ) over all states. We then show the lowest, highest and average values of these

measures across all destinations after 1000 iterations. For the worse destination

and state, there is still an 7.60% and 11.34% relative gap for the deterministic and

stochastic model respectively. Although it is unnecessarily demanding to require

the gap to reach a very low value in all states, this shows that there may be

significant variance in the gap across the network.
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Gap (%)

# Iter Deterministic Stochastic

0 1.70 2524.00
1 1.77 31.61
2 1.62 9.54
3 1.42 9.43 · 10−1

4 1.29 7.40 · 10−1

5 1.14 5.83 · 10−1

10 7.30 · 10−1 2.85 · 10−1

20 4.44 · 10−1 1.19 · 10−1

50 1.94 · 10−1 3.49 · 10−2

100 1.07 · 10−1 2.93 · 10−2

200 5.63 · 10−2 1.73 · 10−2

Table 6.13 – Values of aggregate gap at iterations of the deterministic and stochastic assignment
algorithm
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Maximum state specific gap (%)

Assignment mind maxs gR(P ds ) maxd maxs gR(P ds ) meand maxs gR(P ds )

Deterministic 2.92 · 10−2 7.60 0.33
Stochastic 6.98 · 10−4 11.34 0.44

Average state specific gap (%)

Assignment mind meansgR(P ds ) maxd meansgR(P ds ) meandmeansgR(P ds )

Deterministic 6.93 · 10−4 1.69 · 10−2 8.38 · 10−3

Stochastic 7.45 · 10−6 7.83 · 10−2 3.28 · 10−3

Table 6.14 – Different gap values after 1000 iterations for both the deterministic and stochastic
assignment algorithm

6.8 Discussion

We presented a strategic Markovian traffic equilibrium model for capacitated

networks, which provides a framework to compute both deterministic and stochastic

user equilibrium. The model builds on the work of Baillon and Cominetti (2008) on

Markovian traffic equilibrium by considering travel cost functions which instead of

bounding flows through exogenous volume-delay functions incorporate the risk of

failing to board an arc, thereby allowing users to behave strategically with respect

to the stochasticity induced by limits on capacity. The model possesses a travel cost

function which explicitly derives delay from an emulation of the queuing process to

access capacitated arcs. In that respect, the model is also an extension of the work

of Marcotte et al. (2004), who first proposed the concept of strategic equilibrium

in the context of deterministic arc costs.

Both approaches are relatively disconnected in the literature, and our contri-

bution consists in merging both models, through the main idea of connecting the

concept of strategies (or “hyperpaths”) to MDPs with stochastic state transitions.

The resulting model has the advantage of incorporating two sources of stochasticity

in user route choice behavior, induced by variations in cost perception and the risk

associated with the failure to access an arc. Through its arc-based formulation, the

model is tractable, requires neither path or hyperpath enumeration nor storage of

path-based variables, and can capture strategic user behavior with recourse using

relatively few parameters.

The main restriction of this paper is related to the assumption of acyclic net-
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works which underlies several models related to ours (Marcotte et al., 2004; Unnikr-

ishnan and Waller, 2009; Wong, 1999). Some issues require careful consideration

when extending the proposed framework to cyclic networks. The core of the chal-

lenge revolves around the two inner algorithms proposed in Section 6.5, which aim

to find a fixed point solution to the flow conservation equations and the value func-

tion respectively defined in this work. In the absence of a topological ordering

of nodes, these procedures need to be updated in order to iteratively construct a

solution. One straightforward method would consist of fixed point iterations mea-

suring the amount of imbalance between left-hand side and right-hand side of the

equation at each node, and treating nodes with the largest imbalance first until the

maximum error reaches a certain threshold. The open questions are then (i) under

which conditions there exists a unique solution to both equations in this context,

and (ii) whether the proposed algorithms can be proven to converge to it.

A critical issue is that there may be no finite solution to the flow conservation

equations for some choice probability vectors. Infinite arc flows are known to occur

in models which allows cyclic behavior if traveling is not sufficiently costly, resulting

in a share of the demand never reaching the destination (see, e.g., Akamatsu,

1996). In a network with limited capacity, this outcome is yet more difficult to

prevent. Intuitively, it happens when a too large proportion of users seeks to

gain access to capacitated arcs and fails to consider uncapacitated options as a

recourse, an issue well-documented in Boyles et al. (2015) in the context of a

parking search equilibrium model. They defined the notion of strong feasibility

in order to characterize choice probability vectors ensuring finite arc flows. In the

context of our modeling framework, we identify two practical issues compromising

the existence of finite arc flows throughout iterations of MSA, namely, (i) the set

of strongly feasible choice probability vectors may not be compact, i.e., the linear

combination of two strongly feasible solutions performed by MSA may deviate from

strong feasibility, and (ii) the best response choice probabilities may actually not

be strongly feasible. An example of the latter is when a proportion of flow which is

denied access to a cheap outgoing arc makes cycles to revisit the node in question.

While such behavior may seem contradictory, it is an inherent feature of the model.

Indeed observing the availability state of an arc does not affect travelers’ choice

probabilities at other intersections (which depend on expected costs computed at

the previous iteration).
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Besides existence is the question of uniqueness. Considering the example in

Figure 6.6 where link C−D is assumed to have capacity 1 and one unit of demand

travels between OD pair A − D, we observe that there is not always a unique

finite solution to flow conservation equations. Indeed, any value of x produces

valid arc flows with a probability 1/(1 + x) to access arc C −D, although x = 0 is

logical. Therefore, future work considering cyclic networks may require to introduce

a notion of minimal feasible flows in order to characterize natural solutions to flow

conservation equations. If a unique solution can be defined, converging to it might

be more difficult in the case of multiple destinations. A loading algorithm for cyclic

networks must be careful that the order in which nodes are visited still allows

destinations to compete fairly for available capacity. This may require designing

more complex algorithms which load capacitated links step by step, inspired from

dynamic traffic assignment.

Regarding the solution to Bellman’s equation, existence and uniqueness is also

not trivial to establish. Proofs of existence and uniqueness of a solution in the

literature do not apply when future costs are not discounted. This issue has been

discussed in several works, in particular in Fosgerau et al. (2013), Baillon and

Cominetti (2008) and Arıkan and Ahipasaoglu (2017), who stated that the existence

of a solution depends in particular on the balance between the number of paths in

the network and the magnitude of arc costs. If a solution exists, value iterations

should converge, however further numerical experiments are required to determine

the efficiency of the algorithm on cyclic networks.
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Algorithm 1 Capload

1: procedure Capload(π,P , g,f , i)
2: Initialization:
3: ζdi ← gdi +

∑
(h,i)∈A−i

fdhi . Initial incoming demand

4: xi ← {1}A
+
i . Initial availability: all arcs available

5: πi,x ← 1 if x = xi, 0 ∀x ∈ Xi 6= xi . Initial availability distributions
6: for (i, j) ∈ A+

i do
7: fdij ← 0 . Initial outgoing flow
8: vij ← uij . Initial capacity
9: end for

10: while not stop do
11: for (i, j) ∈ A+

i do
12: f̃dij ← P d

(i,xi),j
ζdi ∀d ∈ D . Distribute flows

13: f̃ij ←
∑

d∈D f̃
d
ij

14: end for
15: β ← min{1,min(i,j)∈A+

i
{vij/f̃ij}}

16: for (i, j) ∈ A+
i do

17: vij ← vij − βf̃ij . Update residual capacities
18: fdij ← fdij + βf̃dij ∀d ∈ D . Update outgoing flows
19: end for
20: if β < 1 then
21: p← πi,xi . Save probability of current state
22: πi,xi ← βp . Update probability of current state
23: b = arg min(i,j)∈A+

i
{uij/f̃ij} . New saturated arc

24: xi(b)← 0 . Update availability of b at i
25: πi,xi ← (1− β)p . Update probability of new state
26: ζdi ← (1− β)ζdi ∀d ∈ D . Update residual incoming flow
27: else
28: stop
29: end if
30: end while
31: return {fdij}(i,j)∈A+

i
, {πi, x}x∈Xi

32: end procedure
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Algorithm 2 Load acyclic network

1: procedure LoadNetwork(u,P , g)
2: Initialization:
3: for i ∈ V do
4: xi ← {1}A

+
i . Initial availability: all arcs available

5: πi,x ← 1 if x = xi, 0 ∀x ∈ Xi 6= xi . Initial availability distributions
6: end for
7: while Not all nodes visited do
8: i← next node in topological order
9: if uij =∞ ∀(i, j) ∈ A+

i then
10: Uncapacitated intersection:
11: for (i, j) ∈ A+

i do

12: fdij ← P d
(i,xi),j

(
gdi +

∑
(h,i)∈A−i

fdhi

)
∀d ∈ D . Distribute flows

13: end for
14: else
15: Capacitated intersection:
16: {fdij}(i,j)∈A+

i
, {πi, x}x∈Xi ← Capload(u,P , g,f , i)

17: end if
18: end while
19: return f ,π
20: end procedure

Algorithm 3 Solve value function in acyclic networks

1: procedure SolveValueFunction(π, µ)
2: Initialization:
3: V d(i, xi)← 0 ∀d ∈ D, i ∈ V , xi ∈ Ωi

4: for all nodes i in inverse topological order do
5: V d(i, xi)← RHS (6.2) or (6.10) ∀d ∈ D, xi ∈ Ωi

6: end for
7: return V
8: end procedure
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Algorithm 4 Method of successive averages

1: procedure MSA(P ,u, g, µ, ε)
2: Initialization:
3: n = 1
4: while gR(P ) > ε do
5: f ,π ← LoadNetwork(u,P , g)
6: V ← SolveValueFunction(π, µ)
7: Update w from (6.1)
8: Compute optimal P̄ from (6.17) or (6.20)
9: P ← P + θn(P̄ − P )

10: n← n+ 1
11: end while
12: end procedure
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7 Conclusion and outlook

This thesis presented four articles addressing a number of issues related to es-

timating models of travel demand behavior and predicting flows in transportation

networks. The first article is a tutorial on a state-of-the-art modeling framework

to analyze and predict the path choice behavior of network users, called recur-

sive route choice modeling, initially introduced by Fosgerau et al. (2013). Two

articles and an additional chapter can be categorized as applications of the latter

modeling framework to various problems of travel demand estimation, by framing

them as path choice in a supernetwork. Finally, the last article is a methodological

contribution to the field of traffic equilibrium modeling using a recursive approach.

The common thread to all the papers in this thesis is the methodology at their

core, namely recursive models of route choice behavior. This thesis pursues the

development and application of this methodology in the direction of modeling more

complex choice situations (involving several transportation modes, but also other

choice dimensions) and network settings (considering limited capacity of links).

Notwithstanding their similarities, each paper addresses specific issues related to

the over arching theme of multi-modal networks. Below, we review in detail the

contributions of each article.

7.1 Synthesis of work

Chapter 2 begins the thesis with a tutorial on recursive route choice models.

This work introduces the modeling framework in a didactic fashion, while taking

a new perspective on this research topic. We present the problem of route choice

analysis as one of inverse optimization with noisy data, which allows to establish

links between recursive route choice models (traditionally viewed as probabilistic
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demand models in the transportation research community), and works in inverse re-

inforcement learning and inverse optimization. We gain from this perspective some

intuition behind the biases of path-based discrete choice models and the advantage

of the recursive counterpart; we illustrate the latter with toy examples. The fol-

lowing chapters offer practical examples of the applicability of this methodological

framework.

In Chapter 3, we focus on cyclists’ route choice behavior, while in Chapter 4 we

consider the more complex case of public transportation networks involving several

modes (bus, tram, train). The findings in both these chapters are very relevant

for policy analysis and practice. While predicting bike flows in urban networks

does not necessitate to apply traffic assignment procedures, as it can usually be

assumed that there is no congestion on cycling lanes, it requires to consider a large

set of built environment attributes, such as slope or presence of bike facilities. The

utility specification we propose in Chapter 3 allows to precisely evaluate behavioral

trade-offs, such as what detours are cyclists willing to make to avoid heavy traffic

volumes or high slopes. In Chapter 4, we perform a similar analysis with respect to

attributes of transit trips, such as transfers and in-vehicle time for different modes.

We note here that this analysis is pursued at the scale of a full multi-modal network

combining both transit, bike and walk arcs in de Freitas et al. (2019).

In contrast to de Freitas et al. (2019), the transit network in Chapter 4 is

time-expanded. While greatly increasing its size, it allows to model decisions of

timing of trips, which are intrinsically linked to the choice of route when available

itineraries depend on a schedule. Understanding timing decisions is also crucial

for policy analysis, as several policies attempt to alleviate congestion by inciting

travelers to reschedule their trips before or after peak hours. The activity-based

approach to travel demand argues further that timing and mode choices of trips

are in fact part of an interrelated set of decisions including also what out-of-home

activity to perform, where and for how long. In Chapter 5, we follow this avenue

of research and consider an even larger supernetwork, expanded in time and other

dimensions. We specifically tackle the issues of correlation across alternatives and

model estimation in presence of the curse of dimensionality. Our results are im-

portant for policy analysis as well, in particular allowing for correctly predicting

how individuals substitute their chosen alternative for a different one in scenario

evaluations.
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The previously mentioned chapters focused primarily on the demand estimation

problem and the behavioral interpretation of results. However, route choice models

are also powerful tools in order to predict network flows, and, when congestion is

present, can be incorporated in a model of traffic assignment. A recursive link-based

model of traffic assignment (the so-called Markovian traffic equilibrium model)

was proposed by Baillon and Cominetti (2008). In Chapter 6, we address a main

limitation of the MTE model: when networks links have strict capacities, which may

typically but not exclusively occur in public transportation networks, the classical

equilibrium principle does not hold anymore. We propose a strategic Markovian

traffic equilibrium model which assigns flows to networks without exceeding link

capacities while realistically modeling how the risk of not being able to access an

arc affects route choice behavior.

7.2 Limitations and outlook

While this thesis makes progress in the direction of traffic modeling in large scale

multi-modal networks, it has its limitations. Ideally, the goal of future research

would be to accurately and efficiently predict traffic flow patterns at the scale of a

city, accounting for intermodal trip making and linking travel decisions to activity

scheduling ones. This would require to predict first daily activity-travel patterns

for the total population, then route choices for each mode and time-dependent

OD pair, and finally iterating while updating utilities until the model converges.

In a large city where a multi-modal network may reach millions of links, such a

task is not computationally feasible while retaining so many choice dimensions.

Nevertheless, one may imagine a number of directions for further research which

may help nearing this goal.

One of the key challenges when estimating recursive route choice problems is

to solve the embedded dynamic programming problem. Acyclic graphs, such as

time-expanded networks, allow by their structure to solve a simple backwards in-

duction problem to obtain the value function. Nevertheless, real-life cyclic net-

works, which may already be of considerable size before any time expansion, still

pose a challenge. By considering a large finite horizon instead of an infinite horizon

problem (essentially reducing the amount of cycles an individual may make in the
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network), similarly to Ziebart et al. (2008), one could obtain value function approx-

imations which could significantly reduce the computational time for large cyclic

networks. In addition, the literature on reinforcement learning also provides a va-

riety of methods specifically designed to approximate value functions in large state

spaces. It remains to investigate whether the maximum likelihood estimation algo-

rithm would then become unstable and perform poorly, and whether value function

approximations would need to be combined with other estimation algorithms. It

could be worthwhile (to speed up estimation) to consider machine learning inspired

optimization algorithms, such as the Stochastic Newton method (Lederrey et al.,

2018), which keeps second order information but provides faster convergence by

computing the Hessian on a limited number of observations.

In this thesis, the calibration of individuals’ path choice preferences and the

computation of a traffic assignment are modeled as two separate steps. One future

research objective would be to solve jointly the demand estimation and the traffic

assignment problem, i.e., estimating path choice preference parameters assuming

that observations correspond to a network equilibrium. There is relatively little

literature on this topic, aside from Bertsimas et al. (2015) and Aguirregabiria and

Mira (2010). This would be of interest in cities where it is difficult to observe

trajectories without the presence of congestion. In particular, it could be interesting

to apply the path choice model underlying the traffic assignment model of Chapter

6, which describes behavior under stochastic outcomes, to estimate models of path

choice in congested public transport networks.

Finally, the model developed in Chapter 6 has the potential to lend itself to

various other applications. Adapting the algorithms proposed in this chapter to

deal with general network topologies, including cyclic networks, would open the

door to many possibilities. In the perspective of emerging integrated transportation

systems, there are now unexpected ways in which capacity limits play a role in

network flows. For instance, electric vehicles might need to recharge at stations

with limited space at some point during their daily journey. Under a different

definition of the state space and an appropriate network representation, the model

could express strategic driving behavior in such circumstances. Addressing the

issues discussed in detail in the conclusion of Chapter 6 would therefore represent

an interesting research direction, and could as well widen the scope of applications

of this work.
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Kurauchi, F., M. G. Bell, and J.-D. Schmöcker (2003). Capacity constrained tran-

sit assignment with common lines. Journal of Mathematical modelling and algo-

rithms 2 (4), 309–327.

Larsson, T. and M. Patriksson (1995). An augmented lagrangean dual algorithm

for link capacity side constrained traffic assignment problems. Transportation

Research Part B: Methodological 29 (6), 433–455.

Larsson, T. and M. Patriksson (1999). Side constrained traffic equilibrium mod-

els, analysis, computation and applications. Transportation Research Part B:

Methodological 33 (4), 233–264.

Lederrey, G., V. Lurkin, and M. Bierlaire (2018). Snm: Stochastic newton method-

for optimization of discrete choice models. In 2018 21st International Conference

on Intelligent Transportation Systems (ITSC), pp. 3199–3204. IEEE.

Liao, F. (2016). Modeling duration choice in space–time multi-state supernet-

works for individual activity-travel scheduling. Transportation Research Part C:

Emerging Technologies 69, 16–35.

Liao, F., T. Arentze, and H. Timmermans (2013). Incorporating space–time con-

straints and activity-travel time profiles in a multi-state supernetwork approach

to individual activity-travel scheduling. Transportation Research Part B: Method-

ological 55, 41–58.

Liu, P., F. Liao, H.-J. Huang, and H. Timmermans (2015). Dynamic activity-travel

assignment in multi-state supernetworks. Transportation Research Procedia 7,

24–43.

Lo, H. K., C.-W. Yip, and Q. K. Wan (2004). Modeling competitive multi-

modal transit services: a nested logit approach. Transportation Research Part

C: Emerging Technologies 12 (3), 251–272.

Lowry, M., D. Callister, M. Gresham, and B. Moore (2012). Using bicycle level

of service to assess community-wide bikeability. In 91st Annual Meeting of

169



the Transportation Research Board, Washington, DC: Transportation Research

Board.

Ma, T.-Y. and J.-P. Lebacque (2013). A cross entropy based multiagent approach

for multiclass activity chain modeling and simulation. Transportation Research

Part C: Emerging Technologies 28, 116–129.

Mai, A. T. (2016a). Dynamic Programming Approaches for Estimating and Apply-

ing Large-scale Discrete Choice Models. Ph. D. thesis.

Mai, T. (2016b). A method of integrating correlation structures for a generalized

recursive route choice model. Transportation Research Part B: Methodological 93,

146–161.

Mai, T., F. Bastin, and E. Frejinger (2016). A decomposition method for estimating

recursive logit based route choice models. EURO Journal on Transportation and

Logistics, 1–23.

Mai, T., M. Fosgerau, and E. Frejinger (2015). A nested recursive logit model

for route choice analysis. Transportation Research Part B: Methodological 75,

100–112.

Mai, T., E. Frejinger, and F. Bastin (2015). A misspecification test for logit based

route choice models. Economics of Transportation 4 (4), 215–226.

Marcotte, P., S. Nguyen, and A. Schoeb (2004). A strategic flow model of traffic

assignment in static capacitated networks. Operations Research 52 (2), 191–212.

McFadden, D. (1978). Modelling the choice of residential location. In Spatial

Interaction Theory and Planning Models, pp. 75–96. North-Holland, Amsterdam:

A. Karqvist (Ed.).

Menghini, G., N. Carrasco, N. Schüssler, and K. W. Axhausen (2010). Route choice
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