3,222 research outputs found

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Data integration in mediated service compositions

    Get PDF
    A major aim of the Web service platform is the integration of existing software and information systems. Data integration is a central aspect in this con- text. Traditional techniques for information and data transformation are, however, not sucient to provide exible and automatable data integration solutions for Web and Cloud service-enabled information systems. The diculties arise from a high degree of complexity in data structures in many applications and from the additional problem of heterogenity of data representation in applications that often cross organisational boundaries. We present an integration technique that embeds a declarative data transformation technique based on semantic data models as a mediator service into a Web service-oriented information system architecture. Automation through consistency-oriented semantic data models and exibility through modular declarative data transformations are the key enablers of the approach. Automation is needed to enable dynamic integration and composition. Modiability is another aim here that benets from consistency and modularity

    Investigating Decision Support Techniques for Automating Cloud Service Selection

    Full text link
    The compass of Cloud infrastructure services advances steadily leaving users in the agony of choice. To be able to select the best mix of service offering from an abundance of possibilities, users must consider complex dependencies and heterogeneous sets of criteria. Therefore, we present a PhD thesis proposal on investigating an intelligent decision support system for selecting Cloud based infrastructure services (e.g. storage, network, CPU).Comment: Accepted by IEEE Cloudcom 2012 - PhD consortium trac

    Architectural design rewriting as an architecture description language

    Get PDF
    Architectural Design Rewriting (ADR) is a declarative rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation of graph-based structures and the use of conditional rewrite rules. These features enable the modelling of, e.g. hierarchical design, inductively defined reconfigurations and ordinary computation. Here, we promote ADR as an Architectural Description Language

    Style-Based architectural reconfigurations

    Get PDF
    We introduce Architectural Design Rewriting (ADR), an approach to the design of reconfigurable software architectures whose key features are: (i) rule-based approach (over graphs); (ii) hierarchical design; (iii) algebraic presentation; and (iv) inductively-defined reconfigurations. Architectures are modelled by graphs whose edges and nodes represent components and connection ports. Architectures are designed hierarchically by a set of edge replacement rules that fix the architectural style. Depending on their reading, productions allow: (i) top-down design by refinement, (ii) bottom-up typing of actual architectures, and (iii) well-formed composition of architectures. The key idea is to encode style proofs as terms and to exploit such information at run-time for guiding reconfigurations. The main advantages of ADR are that: (i) instead of reasoning on flat architectures, ADR specifications provide a convenient hierarchical structure, by exploiting the architectural classes introduced by the style, (ii) complex reconfiguration schemes can be defined inductively, and (iii) style-preservation is guaranteed

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle
    corecore