4 research outputs found

    Scheduling in Transactional Memory Systems: Models, Algorithms, and Evaluations

    Get PDF
    Transactional memory provides an alternative synchronization mechanism that removes many limitations of traditional lock-based synchronization so that concurrent program writing is easier than lock-based code in modern multicore architectures. The fundamental module in a transactional memory system is the transaction which represents a sequence of read and write operations that are performed atomically to a set of shared resources; transactions may conflict if they access the same shared resources. A transaction scheduling algorithm is used to handle these transaction conflicts and schedule appropriately the transactions. In this dissertation, we study transaction scheduling problem in several systems that differ through the variation of the intra-core communication cost in accessing shared resources. Symmetric communication costs imply tightly-coupled systems, asymmetric communication costs imply large-scale distributed systems, and partially asymmetric communication costs imply non-uniform memory access systems. We made several theoretical contributions providing tight, near-tight, and/or impossibility results on three different performance evaluation metrics: execution time, communication cost, and load, for any transaction scheduling algorithm. We then complement these theoretical results by experimental evaluations, whenever possible, showing their benefits in practical scenarios. To the best of our knowledge, the contributions of this dissertation are either the first of their kind or significant improvements over the best previously known results

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    A Data Tracking Scheme for General Networks

    No full text
    Consider an arbitrary distributed network in which large numbers of objects are continuously being created, replicated, and destroyed. A basic problem arising in such an environment is that of organizing a distributed directory service for locating object copies. In this paper, we present a new data tracking scheme for locating nearby copies of objects in arbitrary distributed environments. Our tracking scheme supports ecient accesses to data objects while keeping the local memory overhead low. In particular, our tracking scheme achieves an expected polylog(n)- approximation in the cost of any access operation, for an arbitrary network. The memory overhead incurred by our scheme is O(polylog(n)) times the maximum number of objects stored at any node, with high probability. We also show that our tracking scheme adapts well to dynamic changes in the network
    corecore