598 research outputs found

    A data driven method for congestion mining using big data analytic

    Get PDF
    Congestion detection is one of the key steps to reduce delays and associated costs in traffic management. With the increasing usage of GPS base navigation, promising speed data is now available. This study utilizes such extensive historical probe data to detect spatiotemporal congestion by mining historical speed data. The detected congestion were further classified as Recurrent and Non Recurrent Congestion (RC, NRC). This paper presents a big data driven expert system for identifying both recurrent and non-recurrent congestion and analyzing the delay and cost associated with them. For this purpose, first normal and anomalous days were classified based on travel rate distribution. Later, we utilized Bayesian change point detection to segment speed signal and detect temporal congestion. Finally according to the type of congestion summary statistics and performance measures including (delays, delay cost, and congestion hours) were analyzed. In this study, a statistical big data mining methodology is developed and the robustness of the proposed methodology is tested on probe data for 2016 calendar year, in Des Moines region, Iowa, US. The proposed framework is self adaptive because it does not rely on additional information for detecting spatio-temporal congestion. Therefore, it addresses the limits of prior work in NRC detection. The optimum value for congestion percentage threshold is identified by Elbow cut off method and speed values were temporally denoise

    Doctor of Philosophy

    Get PDF
    dissertationData-driven analytics has been successfully utilized in many experience-oriented areas, such as education, business, and medicine. With the profusion of traffic-related data from Internet of Things and development of data mining techniques, data-driven analytics is becoming increasingly popular in the transportation industry. The objective of this research is to explore the application of data-driven analytics in transportation research to improve the traffic management and operations. Three problems in the respective areas of transportation planning, traffic operation, and maintenance management have been addressed in this research, including exploring the impact of dynamic ridesharing system in a multimodal network, quantifying non-recurrent congestion impact on freeway corridors, and developing infrastructure sampling method for efficient maintenance activities. First, the impact of dynamic ridesharing in a multimodal network is studied with agent-based modeling. The competing mechanism between dynamic ridesharing system and public transit is analyzed. The model simulates the interaction between travelers and the environment and emulates travelers' decision making process with the presence of competing modes. The model is applicable to networks with varying demographics. Second, a systematic approach is proposed to quantify Incident-Induced Delay on freeway corridors. There are two particular highlights in the study of non-recurrent congestion quantification: secondary incident identification and K-Nearest Neighbor pattern matching. The proposed methodology is easily transferable to any traffic operation system that has access to sensor data at a corridor level. Lastly, a high-dimensional clustering-based stratified sampling method is developed for infrastructure sampling. The stratification process consists of two components: current condition estimation and high-dimensional cluster analysis. High-dimensional cluster analysis employs Locality-Sensitive Hashing algorithm and spectral sampling. The proposed method is a potentially useful tool for agencies to effectively conduct infrastructure inspection and can be easily adopted for choosing samples containing multiple features. These three examples showcase the application of data-driven analytics in transportation research, which can potentially transform the traffic management mindset into a model of data-driven, sensing, and smart urban systems. The analytic

    Data Driven Approach To Characterize And Forecast The Impact Of Freeway Work Zones On Mobility Using Probe Vehicle Data

    Get PDF
    The presence of work zones on freeways causes traffic congestion and creates hazardous conditions for commuters and construction workers. Traffic congestion resulting from work zones causes negative impacts on traffic mobility (delay), the environment (vehicle emissions), and safety when stopped or slowed vehicles become vulnerable to rear-end collisions. Addressing these concerns, a data-driven approach was utilized to develop methodologies to measure, predict, and characterize the impact work zones have on Michigan interstates. This study used probe vehicle data, collected from GPS devices in vehicles, as the primary source for mobility data. This data was used to fulfill three objectives: develop a systematic approach to characterize work zone mobility, predict the impact of future work zones, and develop a business intelligence support system to plan future work zones. Using probe vehicle data, a performance measurement framework was developed to characterize the spatiotemporal impact of work zones using various data visualization techniques. This framework also included summary statistics of mobility performance for each individual work zone. The result was a Work Zone Mobility Audit (WZMA) template which summarizes metrics into a two-page summary which can be utilized for further monitoring and diagnostics of the mobility impact. A machine learning framework was developed to learn from historical projects and predict the spatiotemporal impact of future work zones on mobility. This approach utilized Random Forest, XGBoost, and Artificial Neural Network classification algorithms to determine the traffic speed range for highway segments while having freeway lane-closures. This framework used a distribution of speed for each freeway segment, as a substitute for hourly traffic volume, and were able to predict speed ranges for future scenarios with up to 85% accuracy. The ANN model reached up to 88% accuracy predicting queueing condition (speed less than 20 mph), which could be utilized to enhance queue warning systems and improve the overall safety and mobility. Mobility data for more than 1,700 historical work zone projects in state of Michigan were assessed to provide a comprehensive overview of the overall impact and significant factors affecting the mobility. A Business Intelligence (BI) approach was utilized to analyze these work zones and present actionable information which helps work zone mobility executives make informed decisions while planning their future work zones. The Pareto principle was also utilized to identify significant projects which accounted for a majority of the overall impact. Chi-square Automatic Interaction Detector, CHAID, algorithm was also applied to discover the relationship between variables affecting the mobility. This statistical method built several decision-trees which could be utilized to determine best, worst, and expected consequence of different work zone strategies

    A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities

    Get PDF
    Transportation plays a key role in today’s economy. Hence, intelligent transportation systems have attracted a great deal of attention among research communities. There are a few review papers in this area. Most of them focus only on travel time prediction. Furthermore, these papers do not include recent research. To address these shortcomings, this study aims to examine the research on the arrival and travel time prediction on road-based on recently published articles. More specifically, this paper aims to (i) offer an extensive literature review of the field, provide a complete taxonomy of the existing methods, identify key challenges and limitations associated with the techniques; (ii) present various evaluation metrics, influence factors, exploited dataset as well as describe essential concepts based on a detailed analysis of the recent literature sources; (iii) provide significant information to researchers and transportation applications developer. As a result of a rigorous selection process and a comprehensive analysis, the findings provide a holistic picture of open issues and several important observations that can be considered as feasible opportunities for future research directions

    A hybrid model-based and memory-based short-term traffic prediction system

    Get PDF
    Short-term traffic forecasting capabilities on freeways and major arterials have received special attention in the past decade due primarily to their vital role in supporting various travelers\u27 trip decisions and traffic management functions. This research presents a hybrid model-based and memory-based methodology to improve freeway traffic prediction performance. The proposed methodology integrates both approaches to strengthen predictions under both recurrent and non-recurrent conditions. The model-based approach relies on a combination of static and dynamic neural network architectures to achieve optimal prediction performance under various input and traffic condition settings. Concurrently, the memory-based component is derived from the data archival system that encodes the commuters\u27 travel experience in the past. The outcomes of the two approaches are two prediction values for each query case. The two values are subsequently processed by a prediction query manager, which ultimately produces one final prediction value using an error-based decision algorithm. It was found that the hybrid approach produces speed estimates with smaller errors than if the two approaches employed separately. The proposed prediction approach could be used in deriving travel times more reliable as the Traffic Management Centers move towards implementing Advanced Traveler Information Systems (ATIS) applications
    corecore