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EXECUTIVE SUMMARY 

The objective of this study is to utilize data-driven analytics to assist current practices for 

work zone mobility impact measurement, prediction, and decision-making procedures. Work 

zones, or lane-closures, are defined as areas of highway with construction, rehabilitation, or utility 

work activities. The presence of work zones on freeways cause traffic congestion and create 

hazardous conditions for commuters and construction workers. Traffic congestion resulting from 

work zones causes negative impacts on traffic mobility (delay), the environment (vehicle 

emissions), and safety where stopped or slowed vehicles are vulnerable to traffic rear-end 

collisions. Work zone mobility management has been a challenge for transportation engineers 

due to its complex nature in which numerous factors are being involved.  

The Federal Highway Administration (FHWA) has emphasized the importance of 

improving the current practices in order to minimize the negative safety and mobility impacts 

associated with work zones. The FHWA recommends transportation agencies to develop 

systematic approaches to evaluate and improve their current mobility management strategies 

which highlight the importance of utilizing advanced and innovative methodologies in this area. 

Intelligent Transportation Systems (ITS) strive to utilize advanced technologies to provide 

efficient solutions to improve current mobility management strategies. Due to the recent 

enhancements in data collection methodologies using smartphones and navigation telematics, a 

tremendous amount of mobility data is currently available for historical work zones. This data 

facilitates applying advanced data-driven analytics in the area of work zone traffic management. 

Data from thousands of work zones on Michigan interstates were gathered and mined to achieve 

the following objectives: 

• Develop a systematic approach to measure and visualize the impact of work zones 

• Predict the impact future work zones will have on interstate’s mobility 

• Develop a decision-making support approach to better plan future work zones 
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To achieve these objectives, three analytic approaches including descriptive, predictive, 

and prescriptive methods were used. These approaches and their applicability for work zone 

management is discussed in the following sections. 

Descriptive approach: Work Zone Mobility Audit (WZMA) 

A scalable Work Zone Mobility Audit (WZMA) framework was developed to measure 

mobility performance of each work zone using a visual and quantitative methodology. This 

framework characterizes mobility using several metrics to quantify the user delay and traffic 

slowdowns in a two-page summary for each individual work zone. These metrics were defined to 

assess mobility in a spatiotemporal manner. The temporal analysis focused on identifying times 

that negative mobility impact happens while the spatial analysis was focused on characterizing 

freeway locations which experience severe slowdowns and queueing condition. A software was 

developed based on this framework to automate performing the WZMA process for a larger 

number of work zones which can be utilized for further diagnostics of mobility. 

Predictive approach: A machine learning framework to forecast work zone mobility 

A machine learning framework was developed to learn from historical projects and predict 

the spatio-temporal impact of future work zones on mobility. This method utilized historical work 

zone observations along with speed distributions for each highway segment to forecast the 

expected impact on mobility. This study extracted speed distribution from probe vehicle data, as 

a substitute for hourly traffic volume, to apply Random Forest, XGBoost, and Artificial Neural 

Network (ANN) classification algorithms. Various traffic data sources were collected from 1,160 

work zones which occurred on Michigan interstates between 2014 and 2017. The results showed 

that the ANN model outperformed the other models by reaching up to 85% accuracy. This study 

highlights how historical traffic speeds can be used as an alternative to hourly traffic volumes 

when identifying non-recurrent traffic congestion patterns as a result of interstate lane-closures. 
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Prescriptive approach: State-wide work zone mobility evaluation and management 

A high-level mobility assessment was performed to provide an overview of the overall 

impact work zones have on mobility in a state-wide level. In addition, a statistical analysis was 

performed to identify significant factors affecting work zone mobility.  The WZMA process was 

performed for more than 1,700 work zones that occurred on Michigan interstates which provided 

a rich data set for further assessment. A visual procedure was developed to characterize the 

impact based on interstates and work zone categories. In addition, a Pareto sort process was 

developed to identify significant projects which were accountant for a majority of the overall 

impact. The purpose of the Pareto sort was to highlight the most problematic and significant 

projects among all the case studies. Furthermore, a decision tree modeling approach was 

developed to provide decision-making rules using statistically significant factors affecting mobility 

performance. The decision-trees provided a tree like model of work zone projects and their 

possible negative impact on mobility. These decision-trees could be utilized to determine worst, 

best, and expected impact for different work zone strategies which could potentially enhance work 

zone planning policies. 
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CHAPTER 1 INTRODUCTION 

Problem Statement and Motivation 

The presence of work zones on freeways causes traffic congestion and creates hazardous 

conditions for commuters and construction workers. Traffic congestion resulting from work zones 

causes negative impacts on traffic mobility (delay), the environment (vehicle emissions), and 

safety where stopped or slowed vehicles are vulnerable to traffic rear-end collisions. According to 

the Federal Highway Administration (FHWA), approximately 24 percent of nonrecurring freeway 

delays are due to work zone projects; as a result 888 million hours and 310 million gallons of fuel 

were lost in 2014 (1). Furthermore, work zone presence resulted in approximately 96,000 crashes 

on US roadways, which was an increase of 42 percent from approximately 68,000 work zone 

crashes in 2013 (1). These negative effects are growing while numerous short-term work zone 

activities such as pothole patching, crack sealing, pavement resurfacing, and long-term work-

zones such as pavement reconstruction and bridge replacement are happening every day on the 

US interstate system. US highways are aging, and agencies are beginning to invest more 

resources for the maintenance and enhancement of roads, meaning more construction and repair 

projects will be required in the near future. In addition, the overall traffic congestion is increasing 

on US highways and the supply, or number of lane-miles, will not match the growth in demand.  

To alleviate work zone congestion and safety issues, transportation engineers have used 

various traffic simulation and analytical approaches to assess and forecast the impact of work 

zones. Traffic simulation approaches include both micro-simulation and macro-simulation in 

which work zone configurations are modeled in simulation digital environment. Although traffic 

simulation provides the flexibility to simulate new work zone strategies, this approach requires 

extensive effort for model preparation, calibration, and validation. Furthermore, analytical 

approaches have used both parametric and non-parametric methods to identify variables that 

affect work zone capacity. Practitioners will also use the predicted work zone capacity to identify 
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the work zone impact on queue formation and delay. For instance, the Highway Capacity Manual 

(HCM) proposes a linear correlation between work zone attributes and capacity (2). Parametric 

approaches are easy to use due to their simplistic nature; however, these approaches suffer from 

lack of adequate accuracy. The reason these simplistic models were used in the past has was 

due to a lack of data availability for more in-depth analysis. In the past, work zone data collection 

has been either labor intensive or expensive due to extensive infrastructure installation. 

Therefore, limited research has been done to study the impact of lane closures on traffic mobility 

using historical speed data from real world work zone projects.  

Work zone impact is dependent on numerous factors such as the work zone configuration, 

traffic condition, driver behavior, weather condition, and roadway characteristics. However, traffic 

simulation and analytical approaches only consider some of these factors. Therefore, the 

predicted impact using either of these approaches might be quite different than what actually 

happens on roadways. Recently, the advent of technology and viral use of smart phones have 

enabled third party vendors to provide detailed work zone traffic mobility data. The availability of 

comprehensive traffic data facilitates use of data driven analytical approaches to characterize a 

work zone’s impact on traffic mobility. In addition, advanced forecasting algorithms can then be 

applied to predict future work zone impacts using historical work zone traffic data. This data driven 

approach enables practitioners to utilize the historical work zone data to assess different work 

zone scenarios and optimize traffic mobility throughout their work zone activities.   

Work zone projects are causing enormous negative impact on traffic mobility and safety. 

This issue will continue to cost US citizens billions of dollars if this issue does not receive enough 

attention. In 2004, the FHWA initiated several efforts to address the impact of work zone on traffic 

mobility and safety (3,4,5,6). The FHWA published an update to the work zone regulations at 23 

CFR 630 Subpart J which is referred to as Work Zone safety and Mobility rule (3). The rule 

requires all transportation agencies to initially develop overall policies to systematically consider 
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and manage work zone impacts; thereafter, this rule requires agencies to stablish agency-level 

processes and procedures to implement and sustain formerly defined work zone management 

policies. Last but not least, the rule demands agencies develop project-level procedures to 

monitor and manage work zone projects individually (Figure 1). 

 

Figure 1. Implementing the rule on work zone safety and mobility (4) 
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Also, the rule encourages agencies to develop and implement Traffic Management Plans 

(TMPs) for work zone impact assessment specifically for “Significant Projects”. This rule defines 

significant projects as the projects that will cause a relatively high level of disruption and impact 

on traffic mobility and safety. The rule defines that developing a TMP for a significant work zone 

project contains an iterative process which attempts to revise the TMP as needed to optimize the 

work zone management strategy effectiveness. That is, assessing work zone impact starts in 

planning/design phase of the project, and practitioners initiate a preliminary work zone impact 

assessment along with developing a basic TMP. The developed TMP is then assessed more in 

detail based on the overall applicable policies and technical assessments; afterwards, the TMP 

is finalized and construction phase of the project starts. In the construction phase of the project, 

the rule requires agencies to monitor work zone impact using performance measures and revise 

the TMP as needed. After the project is completed, the rule requires agencies to conduct post-

project evaluation using performance measures to update and revise implemented policies and 

procedures. This iterative process is shown in Figure 2. 
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Figure 2. A process for TMP development (4) 
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The main rule implementation guide (4) provides guideline and sample approaches that 

can be applied by transportation agencies to improve safety and mobility in and around work 

zones. Figure 3 demonstrates policy development and implementation process of the rule for 

each significant project. These steps start with developing a policy and setting goals and 

objectives for the work zone projects. After policy development, it continues to apply the policy to 

program delivery stages. A crucial step in policy development process is performance 

assessment which provides the opportunity for agencies to refine and update their policies in 

future.  

 

Figure 3. Policy development and implementation process (4) 

Although previous studies have used different approaches to address work zone 

monitoring, data-driven approaches have not been studied and utilized adequately in the past due 

to lack of data availability. Agencies use different work zone operational strategies to conduct 

their work zone projects. However, there have not been adequate studies to assess and forecast 

the performance of each of these operational strategies. Data driven methods have been used in 

other practices extensively and have shown great applicability and reliability. This approach can 
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also be used in work zone management which facilitates this opportunity to characterize and 

forecast mobility impacts of different work zone strategies in the future. 

Research Objectives 

The overall objective of this study is to develop data-driven approaches to measure and 

predict mobility for freeway work zones along with an approach to provide useful information for 

work zone decision-makers. This includes the following specific objectives: 

1. Develop a systematic approach to measure and visualize the impact of work zones  

2. Predict the impact future work zones will have on interstate’s mobility 

3. Develop a decision-making support approach to better plan future work zones 

Research Scope and Contribution 

This study is devoted to the development of methodologies for performance 

measurement, prediction, and decision-making for interstate work zones in state of Michigan.  The 

work zones categories included in this study were from shoulder-lane to multiple-lane closures. 

Both spatial and temporal impact of work zones were considered to characterize mobility using 

several delay and queueing metrics. The methodology was performed for partial closures in which 

the traffic is restricted to use fewer lanes for travel and the traffic is not crossed over the median.  

Dissertation Organization 

Chapter 1: Description and significance of the problem, research objectives, tasks and 

contributions. 

Chapter 2: Review of existing literature on various approaches used in work zone mobility 

measurement and prediction.  

Chapter 3: Description of the methodology to use probe vehicle data to monitor and 

measure the work zone mobility along with a description of the mobility metrics used.  
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Chapter 4: Description of the methodology utilized to audit mobility for work zones using 

probe vehicle data along with case studies showing its applicability.  

Chapter 5: Description of the methodology to apply machine learning algorithms to predict 

spatiotemporal mobility for future work zones.  

Chapter 6: Description of the methodology to characterize work zone mobility in a state-

wide level. In addition, a discussion of the methodology to identify and rank significant projects 

which account for majority of the overall negative impact. Description of a statistical approach is 

discussed which can provide more actionable information for work zone mobility decision makers. 

Chapter 7: Conclusion and Recommendations   
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CHAPTER 2 LITERATURE REVIEW 

Work zone lane closures cause a restriction of highway capacity; therefore, commuters 

experience excessive delay specifically during peak hour periods. This review section firstly 

reviews parameters that impact work zone capacity. Thereafter, work zone impact assessment 

and prediction approaches are reviewed.  

Parameters Affecting Work Zone Performance Measures  

Work zone capacity has numerous parameters, and previous studies have identified the 

parameters which most impact work zone capacity. In 2012, Weng and Meng (7, 8) identified 16 

important parameters that impact work zone capacity (Figure 4). 

 

Figure 4. Sixteen factors affecting work zone capacity (7) 

These parameters are generally categorized into five groups: 1) work zone configuration, 

2) roadway geometry and location, 3) work activity characteristics, 4) environmental 

characteristics, 5).traffic characteristics (Figure 5).  
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Figure 5. Parameters affecting work zone performance measures 

In the following sections, each of these categories and studies which considered these 

parameters are reviewed separately. 

Work zone configuration 

Work zone configuration includes factors such as number of closed lanes, lane closure 

location, work zone length, lateral clearance, taper length, and merge control strategies (Figure 

6). In 1980s and 1990s, studies on freeway work zones in North Carolina (9) and Texas (10,11) 

illustrated that work zone capacity depends on both freeway number of lanes and number of lane 
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closures. Moreover, there have been other studies to determine impact of work zone length on 

work zone capacity. In 2001, Kim et al. (12) concluded that longer work zone length results in 

lower capacity. However, in 2009, Heaslip et al. (13) found that work zone length could not 

significantly affect the capacity  

 

Figure 6. Work zone configuration elements  

Roadway geometry and location condition  

Roadway geometry and location characteristics also impact work zone capacity. These 

parameters include number of freeway lanes, type of road (urban or rural), ramp proximity, lane 

width, roadway grade, and distance to lateral obstructions (Figure 7). In 1996, a study by Dixon 

et al. (9) compared work zone capacity in rural and urban roads in North Carolina and concluded 

that the capacity on an urban road is usually 20-30% more than that on rural roadways. In addition, 

presence of ramps near the work zone area can affect work zone capacity. HCM 2010 states that 

presence of entrance ramp in work zone area can create traffic turbulence and negatively impact 
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the capacity (2). Also, distance to lateral obstructions could disturb driver’s behavior in work zone 

area which results in capacity reduction. According to HCM 2010, lane width also impacts the 

capacity, and capacity reduction factor of up to 14% is suggested to account for the effect of lane 

width. In addition, roadway grade also affects work zone capacity. Kim et al. (12) concluded that 

roadway grade can negatively impact the capacity specifically with the presence of heavy 

vehicles.  

 

Figure 7. Roadway geometry and location elements 

Work activity characteristics 

Work activity characteristics include work intensity, work time, work zone duration, 

enforcement activities, and longitudinal separation tools from work activities (Figure 8).  
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Figure 8. Work activity characteristics 

Work intensity is defined as the type of construction activity. Construction activities can 

vary from guardrail installation, which requires a short-term lane closure, to bridge repair, which 

demand long-term lane closures with significant amounts of activities. HCM 2010 (2) recommends 

modification of work zone base capacity to account for work intensity, however it does not provide 

any guideline to define categories and their modification factors. Previous studies have classified 

work intensity into different categories subjectively. For instance, a study by Karim and Adeli (14) 

which used three categories (low, medium, and high) and another study by Adeli and Jiang (15) 

which used six categories (Figure 9). 
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Figure 9. Categories of work intensity in work zones (15) 

Another element of work zone activities is the time of work, which categorizes work zones 

into nighttime or daytime periods. In 2001, a study by Al-Kaisy and Hall (16) found that commuters 

pay less attention during nighttime periods which results in a reduction of nighttime work zone 

capacity compared to daytime periods. Another aspect of work zone activities is the temporal 

duration of a work zone which is categorized as short-term (less than a day), intermediate (one 

to three days), or long-term (longer than three days). For light activities such as guardrail repair, 

lane closure can be as short as 0.5 hours, while major construction projects may last numerous 

years. Generally, short-term work zones create more turbulence in traffic flow because 

commuters do not expect any construction activities and are not familiar with work zone setup. 

Long-term work zones allow frequent commuters to become familiar with the work zone 

configuration and adjust their driving behavior which results in greater average capacity for long-

term work zones compared to short-term work zones (7). Additionally, the speed limit is reduced 

within and adjacent to work zone areas to provide safe travel conditions for both the travelers and 

the workers. In 2003, a study by Adeli and Jiang (15) concluded that lower work zone speeds 

reduce work zone capacity. However, the compliance of travelers with reduced speed limit 

depends on driver’s behavior and police enforcement. In 2011, a study by Wasson et al. evaluated 

spatial and temporal speed limit compliance for highway work zones with and without police 

enforcement (17). They found that even though police enforcement reduced traveler’s space 
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mean speed by 5 mph, 75% of travelers exceeded speed limit in most of study segments even at 

the absolute peak of enforcement.  

The last element of work zone activities is material and tools that work zone crew use to 

longitudinally separate work zone area from the moving traffic. These tools vary from traffic cones 

for short-term lane closures to concrete barriers for long-term work zones. 

Environmental condition  

Different weather conditions such as rain and snow impact work zone capacity. A study 

by Hainen et al. used probe vehicle data to characterize road conditions associated with inclement 

weather (18). They illustrated that roadway space mean speed decreased by approximately 20 

mph during one of the winter storms they analyzed. HCM 2010 (2) recommends 10-20% capacity 

reduction to address inclement weather conditions without providing any specific guidelines.  

Traffic volume & driver condition   

Traffic volume consists of heavy vehicles and passenger cars. Generally, heavy vehicles 

travel slower than passenger cars and occupy more space. Heavy vehicles prevent passenger 

cars from accelerating and discharging a traffic queue since they have lower acceleration rates 

compared to passenger vehicles. These effects result in a reduction in work zone capacity for 

scenarios with high percentages of heavy vehicles (19,20). In addition, the traveling public 

consists of regular drivers who commute the route commonly, and visitors and tourists who are 

not familiar with the route. A study by Weng et al. concluded that the presence of visitors and non-

regular travelers in work zone area reduces work zone capacity (7). 

Current Work Zone Impact Analysis Approaches 

Previous studies which predicted work zone delay can be categorized into four main 

approaches: 1) parametric, 2) non-parametric, 3) traffic simulation, and 4) big data analytics. The 

literature regarding each of these categories is provided separately.  
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Parametric Capacity Analysis 

Parametric analysis of work zone delay generally is based on two theories: 1) deterministic 

queuing theory, and 2) shockwave theory. The deterministic queueing theory has been in practice 

for decades and widely used to predict work zone delay (8,10). This approach uses traffic volume, 

roadway capacity under normal and work zone conditions, and work zone duration as the main 

inputs to predict the work zone delay (8,21,22). This approach is suitable for work zone delay 

prediction in planning/design phase of work zone projects. However, it suffers from a lack of 

accuracy especially in fluctuating and congested traffic conditions (23). In addition, this approach 

has limited capability to assess work zone impact both spatially and temporally (24). Shockwave 

theory is another well-known approach used to predict work zone delay (25,26). This theory 

assumes that traffic flow is similar to fluid flow; as a result the flow-speed-density relationship is 

used to predict the traffic flow condition both spatially and temporally. This approach requires 

practitioners to identify several attributes of traffic such as jam density, roadway capacity, critical 

density, free-flow speed, and speed at capacity (27). However, collecting all of these features 

requires sufficient traffic volume and speed data which may not be available. Using these 

parametric approaches, researchers have conducted studies to identify work zone capacity. For 

instance, Krammes et al (19) recommended an updated capacity for short term freeway lane 

closures using data collected from 33 work zones in Texas between 1987 and 1991. A base 

capacity value of 1600 vehicle per hour per lane was recommended. They also proposed new 

adjustments for the effects of intensity of work activity, the percentage of heavy vehicles, and the 

presence of entrance ramps near the beginning of work zone lane closures. In addition, Dixon et 

al (9) proposed new work zone capacity values using an analysis of 24 work zones in North 

Carolina. They included speed-flow behavior analysis and evaluated work zones based on lane 

configuration and site location. They found that intensity of work activity and the type of study site 

(rural or urban) impacted work zone capacity significantly. For heavy work in a one to two-lane 
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work zone configuration, they recommended values of 1200 and 1500 vehicles per hour per lane 

for rural and urban areas, respectively. Also, Kim et al (28) used multiple regression modeling to 

investigate various independent factors that contribute to capacity reduction. They considered 

several primary factors which were the number of closed lanes, proportion of heavy vehicles, 

slope of the roadway, and intensity of work activity. They compared their proposed model with 

previously applied methods, and their model showed improvements in terms of model 

performance. 

Non-parametric Capacity Analysis  

Considering that numerous parameters affect work zone performance, a simple 

mathematical formula using parametric approaches is not adequate to predict both the spatial 

and temporal impact of work zone. Therefore, other studies have used non-parametric 

approaches such as Artificial Neural Network (ANN) and K-nearest neighbors methods 

(14,15,22,29). For instance, Adeli et al (15) applied an adaptive neuro-fuzzy logic model using 

seventeen factors to assess work zone capacity. They compared the new proposed model with 

two other previously proposed empirical models by Krammes and Lopez's (1994), and Kim et al 

(2001). The new model provides more accurate prediction of work zone capacity compared to the 

other two empirical models specifically when the data for parameters affecting work zone capacity 

are only partially available. In 2009, Castro-Neto et al (30) applied a supervised statistical learning 

technique called Online Support Vector machine, or OL-SVR, for the prediction of short-term 

freeway traffic flow under both typical and atypical traffic conditions. They found that OL-SVR has 

a better performance for non-recurring traffic conditions, such as work zones, compared to other 

well-known prediction models such as Gaussian maximum likelihood (GML), Holt exponential 

smoothing, and artificial neural net models.  
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Traffic Simulation 

Traffic simulation has been another approach widely used to predict the impact of work 

zones. Simulation models are based on different traffic flow theories. Several studies have used 

traffic simulation to assess the impact of work zones. For instance, software packages such as 

CORSIM (31), VISSIM (32,33), QUEWZ (34), QuickZone (35), and Paramics (36) have been used 

to assess work zone impact. Once simulation models are calibrated and validated, they are 

capable of measuring work zone performance under different configurations. However, 

developing a simulation model requires extensive efforts to collect origin-destination traffic volume 

and speed data, high computational resources, time consuming calibration processes, and long 

running times (37). Since traffic volume data are not available for historical work zone case studies 

in Michigan, this study attempts to apply data-driven approaches using speed data as a substitute 

for traffic volume data.  

Data Driven Analytics 

Work Zone Mobility Data 

In the past, collecting work zone mobility data was performed using manual labor-intensive 

data collection methods which typically involved personnel recording speed and queue length 

during preselected hours at work zone locations. Further developments in data collection 

technology introduced automated systems to collect mobility data (38). License plate recognition 

systems have been used to collect travel times of vehicles through work zones (39). Researchers 

at Texas A&M University developed an approach using Global Positioning System (GPS) devices 

to monitor work zone mobility (40). Using roof-mounted GPS devices, travel time runs were 

performed to collect travel time, delay, and queue length information as key mobility-based 

performance measures. Researchers at Purdue University used Bluetooth technology to measure 

the travel time of vehicles through work zones (41). With the improvement and penetration of GPS 

enabled cell phones and navigation devices, third-party vendors have begun providing ubiquitous 
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crowdsourced probe vehicle data, which provides a representative speed for roadway segments 

for continuous time intervals. Researchers at Purdue University used this crowdsourced data to 

collect mobility data and examine the impact of an unexpected bridge closure in southern Indiana 

(42). The Vehicle Probe Project (VPP) was initiated in 2008 by the I-95 Coalition with the goal of 

enabling a wide-variety of operational and planning applications that require this high-quality data 

source (43). Using probe vehicle data, Remias et al published a series of Interstate mobility 

reports to characterize the congestion trends of Indiana Interstate highways (44,45). In 2013, 

researchers at the University of Maryland conducted a pilot project for FHWA to examine the 

applications of probe data in work zone performance measurement (46). The authors found that 

this data is sufficient to support work zone performance measures. In 2013, the FHWA published 

guidance on data needs, availability, and opportunity for work zone performance measures (47). 

The guidance illustrates that probe vehicle data can be used to assess mobility-based 

performance measures such as travel time reliability, delay, and queue length.  

Big data analytics are relatively new techniques to assess work zone impact since work 

zone mobility data was not available in the past. However, several companies such as INRIX, 

HERE, and TomTom have recently started to provide speed datasets collected from GPS devices 

on roadways. A study by Du et al. (24) applied an ANN model to forecast spatial and temporal 

impacts of work zones incorporating probe vehicle data for the first time. They illustrated that this 

approach outperformed traditional deterministic modeling approaches. In their modeling 

approach, they used speed data instead of traffic volume data to train their model. Therefore, 

agencies that suffer from a lack of accurate traffic volume data can use this approach to predict 

their work zone impact. In another effort, Du et. al (48) developed a hybrid machine learning model 

incorporating road geometry, traffic volume, and probe vehicle data to forecast work zone delay. 

They used Support Vector Machine (SVM) to predict work zone capacity values based on HCM 

suggestions. Then, they used the capacity value as an input for the ANN model to predict the 
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work zone spatiotemporal impact. Their results showed that their new approach outperformed 

previous models in terms of in terms of the least root mean square error (RMSE).  

Work Zone Mobility Prediction 

Although these data have been used extensively in recurrent traffic congestion prediction, 

there has been limited usage to forecast non-recurrent traffic congestion resulting from highway 

lane-closures. Du et al. used probe vehicle data along with an ANN model for estimating temporal 

and spatial freeway work zone delay (102,24). Du et al also forecasted work zone delay and cost 

using a hybrid machine learning model consisting of an ANN model with one hidden layer coupled 

with a Support Vector Machine (SVM) model. The SVM was initially used to predict and feed 

capacity to the ANN model for traffic speed prediction (48). In an earlier attempt, classification 

modeling was applied to predict speed ranges for each highway segment using historical speed 

data which were used to represent traffic volume (54). In the absence of traffic volume, 

distributions of historical traffic speeds were used to provide a mobility baseline for a Random 

Forest and XGboost classification algorithms. Historical observations were used to train and 

evaluate these models’ performances when there were no traffic volumes in the data inputs. 

Although, these models showed a decent performance, there are various approaches that can 

improve the previous models including using additional parameters, applying resampling 

techniques, and applying different and more sophisticated modeling strategies. This study 

attempts to further previous studies by examining different resampling techniques to address 

imbalanced data set issues and applying a different mobility baseline. In addition, this study seeks 

to evaluate applicability of this approach with different work zone configurations in a larger scale. 
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CHAPTER 3  METHODOLOGY  

This study will use Probe Vehicle data as a source for traffic mobility data. This data 

provides continuous average space mean speed of vehicles passing over a predefined segment 

of roadway over time. Figure 10a illustrates the process that probe vehicle data is gathered and 

stored in database. Figure 10b shows a work zone location relative to a hypothetical corridor 

which contains five Traffic Message Channel (TMC) segments. Also, Table 1 illustrates a sample 

of probe vehicle speed data with one-minute time interval. 

 

a) Probe-vehicle data collection process 

 

b) Segmentation Scheme 

Figure 10. Probe vehicle data overview & work zone location. 
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Table 1. Probe vehicle data sample. 

Segment Timestamp Speed (mph) 

A 2/1/2015 14:00 56 

B 2/1/2015 14:00 50 

C 2/1/2015 14:00 45 

D 2/1/2015 14:00 53 

E 2/1/2015 14:00 65 

A 2/1/2015 14:01 59 

B 2/1/2015 14:01 53 

C 2/1/2015 14:01 48 

D 2/1/2015 14:01 56 

E 2/1/2015 14:01 68 

Segment-Based & Corridor-Based Approaches 

Two general approaches, segment-based and corridor-based, were applied to assess 

mobility for a work zone project. In the segment-based approach, mobility data were queried for 

each TMC segment and averaged for each five-minute interval. In the corridor-based approach, 

however, the average speed and travel time are calculated for the entire work zone corridor. Table 

2 illustrates the average speed and travel time values for a hypothetical corridor. In this table, four 

TMC segments constitute a corridor, and the average of the speed and travel time values 

represents the conditions for a five-minute interval between 1:15 PM and 1:20 PM. In this five-

minute interval, each TMC segment experiences different traffic conditions from near free flow 

(Segment A) to queue formation (Segment D). The aggregated corridor level speed is shown to 

be 27.7 mph. Corridor level metrics work well for key performance indices or summarizing high 

level trends. Segment level performance measures work well for locating exact problem areas 

and more in-depth analysis.  

Table 2. Segment-based vs. corridor-based approaches. 
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Mobility Performance Measures 

These performance measures are currently of interest to the FHWA due to the release of 

the MAP-21 National Performance Management Measures (NPRM). Performance measurement 

is an important aspect being used to transform the federal-aid highway program by providing a 

results-driven investment system. Expanding on the uses of these performance measure tools to 

incorporate work zones will provide numerous benefits to tax payers including:  

• Opportunities to assess and improve the mobility of existing and future work zones 

• Designing or adjusting traffic management plans to better suit individual work zones 

• Identification of flexible start times to improve work zone mobility 

• Reduction in costs by avoiding physical infrastructure 

• Opportunities to incentivize contractors based on performance data 

• Providing implementation-ready information 

Numerous types of performance measures can and have been chosen by various states, 

which were previously discussed. For the purpose of the work zone mobility audit tool which will 

be shown later in this document, Mobility performance measures are categorized into delay and 

queueing metrics. For the delay metrics, a corridor-based approach was used to assess travel 
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time throughout the work zone period. These metrics are then compared with the typical corridor 

travel time to capture the impact of the work zone on traffic mobility. For the queueing metrics, a 

segment-based approach was used to assess mobility for each individual TMC segment 

separately. These metrics are defined in the following sections using simple and intuitive 

visualizations. 

Delay Metrics 

Probe vehicle data provides a representative speed for each TMC segment for a 

predefined time period, typically 1-minute. Using the speed, travel time can be calculated for each 

TMC segment for each of the time bins. An average of those travel times over each 5-minute bin 

can then be used to represent a segment’s travel time. If all segments located in the work zone 

corridor had a representative travel time during each 5-minute bin, then these travel times were 

added together to calculate corridor’s travel time during each 5-minute bin. It is important to 

mention that if there is a missing travel time for one segment throughout the corridor, the travel 

time values cannot be added together to represent corridor’s travel time. After calculating work 

zone travel time, a typical travel time was required to assess the work zone impact on mobility. 

This typical travel time, also called mobility baseline, is defined as 50th percentile of travel times 

from the prior year of the work zone with the same season, day of week, hour of day, and 5-

minute bin.  
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Figure 13. Work zone travel time variation 

Figure 13 illustrates work zone travel time along with distribution of travel times from the 

prior year. The prior year travel times are pulled for the same season and day of week. For 

instance, for a work zone that happens this year during a summer month on a Monday afternoon, 

travel time values for all Mondays during the previous summer are queried first. Then, these travel 

times are aggregated together for each hour of day, and each 5-minute bin. Using these travel 

times, a distribution of travel time for each 5-minute been is captured. The gray band on the Figure 

13 shows the travel time variation for this corridor on a typical Monday. The blue line shows 25th 

percentile of travel times, and the green line shows 75th percentile of travel times as the lower 

and upper edge of the gray band, respectively. The 25th and 75th percentile of travel times were 

used to capture majority of travel times that were experienced in the prior year. Also, this 

approach, naturally, disregards outlier travel times which could be the result of a crash or another 

work zone from the prior year.  

Typical Travel Time Variation
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a) Delay Definition 

In this study, the 50th percentile of travel times was used as a representative typical travel 

time. Delay is defined when work zone travel time exceeds the typical travel time. The delay 

metrics such as total delay, average delay, and maximum delay are then calculated comparing 

work zone travel time with the defined typical travel time. 

b) Total Delay & maximum user delay 

Figure 14 shows work zone travel times (orange line) compared with typical travel times 

(red line). As shown, the gray area between red and orange line show the total delay caused by 

the work zone presence. It is worth to mention that if work zone travel time falls below the typical 

travel time, there is no delay accounted for the work zone. 

 

Figure 14. Work zone delay 

The total delay metric adds all the delay record to provide a cumulative delay that was 

caused by a work zone. This Total Delay metric is different than what is typically defined as the 

total delay. Volume is not considered in this calculation. Instead, total delay is calculated as if one 

Gray Area = Total Delay
Maximum Delay
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vehicle drove the corridor every five minutes throughout the life of the work zone. If accurate 

hourly counts were collected by a DOT, this could easily be considered in the calculation.  

Queue Metrics 

Queue metrics are among the most important mobility metrics since the presence of a 

queue creates dangerous traffic conditions for commuters. When a queue forms on a highway, 

commuters who are approaching the back of queue are facing a high risk of rear-end type crashes 

which may lead to additional secondary traffic congestion and crashes. 

Using the segment-based approach, the queueing condition is defined when at least one 

segment has a speed below 15 mph. The queueing metrics used in this study attempt to quantify 

different aspects of the queueing condition including maximum queue duration, total queue 

duration, maximum queue length, and number of queue events. These metrics are discussed in 

the following sections. All of these metrics are calculated using segment-based approach.  

a) Queue Identification Using Probe Data 

The severity of the traffic interruptions depends on the number of lanes and the traffic 

volume. When there is not enough capacity for traffic, vehicular speeds reduce and congestion 

propagates to upstream segments. As this congestion propagation continues, the upstream traffic 

segments experience lower traffic speeds. Using probe vehicle data, these speeds were available 

to investigate historical lane-closure projects. These traffic speeds ranged from zero miles per 

hour (mph), when vehicles are stopped in a queue, to greater than 70 mph when traffic was 

operating in free-flow conditions. Figure 11 illustrates how traffic congestion propagates to 

upstream segments over time and space. 
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Figure 11. Congestion propagation identification using probe vehicle data. 

b) Maximum Queue Length 

The maximum queue length metric uses cumulative length of segments that were 

experiencing a queueing condition at each time interval. Then it returns the highest value as the 

maximum queue length for a work zone.   

c) Maximum Queue Duration 

The maximum queue duration metric captures the longest duration (minutes) in which the 

queueing condition was present on a roadway. For example, if the maximum queue duration was 
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40 minutes, it means that at least one segment had a speed below 15 mph for 40 consecutive 

minutes. 

d) Total Queue Duration 

Total queueing duration metric captures and adds all the time durations that queueing 

condition was present on the roadway throughout the duration of the work zone.   

e) Number of Queueing  

Number of queueing event metric counts number of distinct times that a queue occurs on 

a roadway. In this metric, a 10 minute threshold was used to separate major queueing events 

from each other. For instance, if the gap between two queueing events was 5 minutes, those two 

queueing events were combined into one queueing event. 

Level of Travel Time Reliability 

The FHWA recommends agencies keep their transportation network reliable for users. 

The FHWA uses four time periods to quantify reliability metrics. These time periods are morning 

(06:00-10:00), mid-day (10:00-16:00), evening (16:00-20:00), and weekend (06:00-20:00). To 

measure travel time reliability, the Level of Travel Time Reliability (LOTTR) metric was used for 

each of the defined time periods. This metric is defined as follow: 

Work Zone LOTTR =
80th Percentile Travel Time

50th Percentile Travel Time
 

The FHWA recommends agencies use 1.5 as a threshold for the LOTTR metric. High 

variation in LOTTR not only causes user dissatisfaction but it can also create hazardous traffic 

conditions since commuters are facing an unexpected traffic condition.  
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CHAPTER 4 WORK ZONE MOBILITY AUDIT 

According to the FHWA (4), agencies are required to implement a procedure to mitigate 

safety and mobility issues caused by the presence of a work zone. Therefore, a Work Zone 

Mobility Audit (WZMA) framework was created to systematically assess work zone mobility. The 

WZMA is made up of four sections. The first section provides an overview, including a map of the 

work zone, location, dates of construction, AADT, and the type of work. The second section then 

provides visualizations that characterize the mobility of the work zone both spatially and 

temporally. A comments section is provided for contractors, engineers, and managers to note 

concerns or specific activities or anomalies that occurred during this work zone. The final section 

attempts to quantify the work zone impact on traffic mobility compared with the mobility baseline. 

A summary of mobility performance measures can assist agencies to assign a score for each of 

their work zone projects, compare it to similar cases, identify the projects that caused significant 

negative impact, and improve their future work zone management strategies.  

Temporal Monitoring 

In temporal monitoring, the focus was to monitor work zone mobility over time. Identifying 

certain days of a week or hours of a day when a work zone had a significant impact on traffic 

would help practitioners evaluate Traffic Management Plans (TMPs) used for work zone 

operation. Therefore, practitioners can revise the TMP and implement a new strategy to mitigate 

a work zone’s negative impacts. For example, Figure 12 shows representative speed and travel 

time measures for a week when a single-lane closure work zone was present on Interstate 75 in 

Oakland County, Michigan. Typical speed and travel time values are also shown on these graphs 

to provide an intuitive comparison for decision makers. Figure 2a shows travel times during a 

week in the middle of the work zone. Figure 12a callout ‘i’ shows a typically non-congested period 

during the mid-day where travel times exceeded 35 minutes through the work zone. Figure 12a 

callout ‘ii’ shows travel times in the PM peak period over double the travel time in the previous 
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year. These peaks can also be visualized as low speeds along the corridor in Figure 12b callout 

‘iii’ and callout ‘iv’, respectively. 

 

a) One week travel time 

 

b) One week speed 

Figure 12. Speed & travel time measures for a long-term work zone 

Scatter plots are suitable to show general mobility trends; however, they do not provide 

an indication of system reliability. The FHWA recommends that agencies keep their transportation 

network reliable by reducing the variation in traffic mobility measures such as speed or travel time. 

Therefore, cumulative distribution functions (CDF) are used to monitor traffic mobility variation 

caused by work zone presence. The CDF plots illustrate the distribution of travel time while the 

work zone is present relative to the previous year. Three CDFs are shown in Figure 13 for the 
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AM, Mid-day, and PM periods. The AM period (Figure 13a) shows a median travel time during 

the work zone time period of approximately 16 minutes (Figure 13a callout ‘i’), which is 3 minutes 

higher than the previous year. It is important to note that the slope of the CDF represents the 

reliability of the work zone. The typical conditions for the AM peak and Mid-day (Figure 13b callout 

‘ii’) are relatively reliable, while the PM peak (Figure 13a callout ‘iii’) shows less reliable travel 

times.  

   

a) AM Peak b) Mid-day c) PM Peak 

Figure 13. Work zone travel time CDF diagrams 

Another important factor when considering work zone planning is determining the 

appropriate hours of a day to close traffic lanes. Probe vehicle data provides an opportunity for 

practitioners to aggregate this data based on different hours of a day. As a result, it identifies the 

least problematic time periods to conduct work zone activities. Figure 14 uses a radar plot to 

summarize the queue and congestion mobility measures for an I-94 work zone based on each 

hour of day. These graphs aggregate data over the work zone into a 24-hour graphic. Hour of day 

is found on the outer edge (Figure 14a callout ‘i’) and the aggregated performance metric for that 

hour is shown by the bands on the circle (Figure 14a callout ‘ii’). These graphs show that the work 

zone corridor typically was experiencing minor congestion between 1600 and 1700 and negligible 

queueing. However, the work zone’s presence caused congestion starting from 0700 to 1900 
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(Figure 14a callout ‘iii’) and queueing between 1500 and 1800, with the most severe queuing 

occurring at 1700 (Figure 14b callout ‘iv’). These graphics are extremely helpful for agencies to 

determine if workers should be pulled off of a roadway at certain times. 

 

  

a) Congestion mile hours b) Queue mile hours 

Figure 14. Radar chart: temporal mobility evaluation 

Spatial Monitoring  

Probe vehicle data provides the opportunity for practitioners to identify segments that 

experienced the most severe impact as a result of the work zone. Mobility measures for each 

TMC segment can be aggregated over a period of time and then visualized using a stacked area 

chart or “volcano” diagram. Figure 15 visualizes increased congestion (Figure 15a) and queuing 

(Figure 15b) for TMC segments in the upstream of work zone corridor for two months, while the 

work zone was taking place. This figure shows that the segments within the first five miles 

upstream of the work zone experience a significant negative impact.  
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a) Congestion Mile-Hours b) Queue Mile-Hours 

Figure 15. Volcano plot: segment-based mobility performance 

Another way to visualize traffic mobility is to create a matrix of traffic speeds over time and 

space. Figure 16 shows a traffic speed heat-map in which the x-axis shows time and y-axis 

represents highway segments. This figure illustrates traffic speeds for each segment for a single-

lane closure on northbound I-75 in Oakland County. This lane-closure was in place on a Tuesday 

in September of 2014.Traffic speeds are shown with a spectrum of colors from green to red to 

represent low speed and high-speed records, respectively. The yellow and red areas on the figure 

show traffic congestion while green areas show that traffic was operating at higher speeds.  

 During morning and off-peak hours, highway segments were serving traffic with high 

speed since there was sufficient capacity for approaching traffic volumes. However, traffic 

congestion happened during PM peak hour due to overwhelming traffic volumes for the remaining 

two lanes. As highway segments reached their capacity, traffic congestion propagated in the 
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upstream segments and traffic jam stretched up to about 9 miles. From the temporal perspective, 

this traffic congestion and severe slowdowns were experienced for five hours from 3 PM to 8 PM. 

 

Figure 16. Speed heat-map for a double lane-closure event. 

Case Studies 

This section provides a series of WZMA sample case studies which were chosen based 

on different work zone traffic mobility scenarios. Each of these case studies shows the 

applicability of the WZMA in terms of identifying various traffic mobility impacts and highlights the 

impact in terms of duration, severity and frequency. These case studies are as follow: 

• Work zone with recurrent and severe traffic congestion 

• Weekend work zone with severe traffic congestion 

• Work zone with moderate impact on traffic congestion 

• Work zone with no impact on traffic congestion 
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A brief summary of these work zone impacts is provided prior to the WZMA of these case 

studies.  

Case 1: Work zone with recurrent and severe traffic congestion 

This case study provides an overview of a single lane closure on I-196 interstate highway 

which was conducted in August of 2016 between mile marker 68 and 70. Work zone activities 

lasted for 21 days including 5 weekend days and 16 weekdays. This corridor exhibited minor 

traffic congestion on typical weekdays and moderate traffic congestion on typical weekends based 

on travel time scatter plot. However, the presence of work zone caused severe traffic congestion 

during weekdays and moderate traffic congestion on weekends. 

Throughout this project, severe traffic congestion happened in both morning and evening 

peak hours on weekdays while there was minor traffic impact on weekends. This lane closure 

increased travel time the most during the AM and PM peak periods at 8:00 AM and 5:00 PM by 

almost eleven minutes on average. Also, commuters experienced severe delay up to 44 and 53 

minutes for AM and PM peaks respectively. In terms of travel time reliability, this work zone 

created an unreliable traffic condition throughout weekdays. Commuters experienced the worst 

unreliable traffic condition in AM peak with LOTTR of 1.6 which indicates 60% of increase in travel 

time compared to typical traffic condition. 

In addition, this lane closure resulted in 84 queueing events with maximum queue length 

of 4.7 miles. The longest queueing event lasted about 5 hours on this corridor. Throughout the 

lifetime of this project, there were 77 hours that the corridor’s traffic experienced queueing 

condition. 
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Figure 17. Case 1: Work zone with recurrent and severe traffic congestion, page 1. 
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Figure 18. Case 1: Work zone with recurrent and severe traffic congestion, page 2. 
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Case 2: Weekend Work zone with severe traffic congestion 

This case study shows a work zone project which was perform on eastbound of I-94 

interstate highway from mile marker 195 to mile marker 201. In this project two traffic lanes were 

closed over a weekend on August of 2016. This corridor expects no traffic congestion on typical 

weekends based on travel time scatter plot, however presence of work zone caused severe traffic 

congestion and queueing.  

Throughout this project, severe traffic congestion was experienced by commuters from 11 

AM to 5 PM. This lane closure caused an average delay of 7 minutes and maximum delay of 29 

minutes. In terms of travel time reliability, this work zone created an unreliable traffic condition 

throughout the weekend with LOTTR of 1.4 which indicates 40% of variation in travel time 

compared to typical traffic condition. 

The most problematic hours during this weekend were from 11 AM to 5 PM with 100% 

congested condition. In addition, this lane closure resulted in 8 queueing events with maximum 

queue length of 5 miles. The longest queueing event lasted about 10 hours on this corridor. 

Throughout the lifetime of this project, there were 20 hours that the corridor’s traffic experienced 

queueing condition. 
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Figure 19. Case 2: weekend work zone with severe traffic congestion, page 1. 
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Overview Information

Work Zone ID 104704

County Oakland County

Roadway I-94

Closure type Double Lane Closure

Direction Eastbound

Start Milemarker 195.4

End Milemarker 201

Workzone Start 2016-08-13 05:00

Workzone End 2016-08-14 18:49
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Figure 20. Case 2: weekend work zone with severe traffic congestion, page 2. 
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Stats AM Mid PM Weekend Total

Avg Delay NA NA NA 7.2 3.3

Max Delay -Inf -Inf -Inf 29.5 29.5

Total Delay 0.0 0.0 0.0 2547.3 2624.6

LOTTR NA NA NA 1.4 1.6

Stats Queue

Max Duration 575.0

Total Duration 1200.0

Max Length 5.0

# of Queues 8.0
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Case 3: Work zone with moderate impact on traffic congestion 

This case study shows a work zone project which was perform on northbound of I-75 

interstate highway from mile marker 73 to mile marker 76. In this project single traffic lanes were 

closed for more than two weeks during summer of 2016. This corridor expects moderate traffic 

congestion on typical weekends during peak hours based on travel time scatter plot, and minor 

traffic congestions on weekend. Presence of work zone on this corridor caused moderate increase 

in traffic congestion. 

Throughout this project, moderate increase in traffic congestion was experienced by 

commuters from during PM peak hours starting from 3 PM to 5 PM. This lane closure caused an 

average delay of 2.6 minutes and maximum delay of 20 minutes during PM peak hour. In terms 

of travel time reliability, this work zone created an unreliable traffic condition throughout the PM 

peak hours with LOTTR of 1.5 which indicates 50% of variation in travel time compared to typical 

traffic condition. 

The most problematic hours during this work zone were from 4 PM to 5 PM which were 

congested 80% of the time. In addition, this lane closure resulted in 39 queueing events with 

maximum queue length of 6.8 miles. The longest queueing event lasted about 3 hours on this 

corridor. Throughout the lifetime of this project, there were 38 hours that the corridor’s traffic 

experienced queueing condition. 
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Figure 21. Case 3: long-term work zone with moderate impact on traffic congestion, page 1. 
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Work Zone ID 104811

County Kent County

Roadway I-75

Closure type Single Lane Closure

Direction Northbound

Start Milemarker 73.4

End Milemarker 76.1

Workzone Start 2016-08-24 07:00

Workzone End 2016-09-13 10:00
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Figure 22. Case 3: long-term work zone with moderate impact on traffic congestion, page 2. 

Congestion Hours

M
ile

 M
ar

ke
r

Spatial Characterization

Delay & LOTTR Metrics Queueing Metrics

Congestion Delay

Temporal Characterization

Workzone duration Prior year

Congestion Hours

W
o

rk
 Z

o
n

e 
H

o
u

rs
Ty

p
ic

al
 T

ra
ff

ic

Stats AM Mid PM Weekend Total

Avg Delay 0.5 0.3 2.6 0.0 0.3

Max Delay 72.5 11.0 19.9 5.2 72.5

Total Delay 1338.8 1139.8 2841.9 243.1 6675.8

LOTTR 1.2 1.3 1.5 1.1 1.2

Stats Queue

Max Duration 185.0

Total Duration 2300.0

Max Length 6.8

# of Queues 39.0
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Case 4: Work zone with no impact on traffic congestion 

This case study shows a work zone project which was perform on eastbound of I-60 

interstate highway from mile marker 130 to mile marker 141. In this project single traffic lanes 

were closed for 10 days during summer of 2016. This corridor expected no traffic congestion on 

typical weekdays and weekends. The presence of a work zone on this corridor did not cause any 

increase in traffic congestion. 
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Figure 23. Case 4: work zone with no impact on traffic congestion, page 1. 
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Overview Information

Work Zone ID 103603_1

County Ottawa County

Roadway I-69

Closure type Single Lane Closure

Direction Eastbound

Start Milemarker 130.8

End Milemarker 141.8

Workzone Start 2016-08-22 06:00

Workzone End 2016-09-02 08:12
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Figure 24. Case 4: work zone with no impact on traffic congestion, page 2. 
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Stats AM Mid PM Weekend Total

Avg Delay 0.0 0.0 0.0 0.0 0.0

Max Delay 1.0 2.2 2.1 2.0 18.6

Total Delay 64.1 92.1 65.5 80.4 535.9

LOTTR 1.0 1.0 1.0 1.0 1.0

Stats Queue

Max Duration 10.0

Total Duration 30.0

Max Length 1.3

# of Queues 5.0
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The WZMA can be used for both short-term work zones and long-term work zone projects. 

The Manual on Uniform Traffic Control Devices (MUTCD) defines the following categories of work 

zone duration: 1) long-term: more than 3 days, 2) intermediate-term: between one and three days, 

and 3) short-term: less than one day (52). For each of these categories, practitioners can adjust 

the WZMA time granularity to monitor the traffic mobility. For instance, practitioners can adjust 

the temporal granularity to five minutes interval for a short-term work zone. Furthermore, larger 

granularity such as daily or monthly aggregations can be used to characterize the traffic mobility 

measures for a long-term work zone project. 
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CHAPTER 5 WORK ZONE TRAFFIC FORECASTING USING MACHINE LEARNING 

Introduction 

Traffic congestion prediction is a vital part of intelligent transportation systems (ITS) which 

provide traffic mobility information for both road users and transportation agencies. It helps traffic 

operation centers (TOCs) and state departments of transportation (DOTs) to proactively design 

their traffic management plans to minimize the mobility and safety concerns related to lane-

closures. In the era of big data, machine learning (ML) algorithms are capable of learning dynamic 

patterns from previous real-world examples and predicting future scenarios. These algorithms 

explore historical observations to capture underlying patterns. Although these algorithms have 

been widely used to predict recurring traffic congestion, there have been limited research efforts 

to examine their applicability to forecast non-recurrent traffic congestion. Currently, traffic mobility 

data from these non-recurrent traffic scenarios is available which provides this opportunity to 

further examine ML applications in this area. This paper seeks to apply supervised modeling 

techniques to forecast the spatio-temporal impact of lane-closures on traffic mobility using 

historical speed data as a substitute for hourly traffic volume. 

Methodology 

This study adopted a supervised machine learning approach to estimate traffic speeds for 

highway segments when lane-closures occur. The severity of the traffic interruptions depends on 

the number of lanes and the traffic volume. When there is not enough capacity for traffic, vehicular 

speeds reduce and congestion propagates to upstream segments. As this congestion propagation 

continues, the upstream traffic segments experience lower traffic speeds. Using probe vehicle 

data, these speeds were available to investigate historical lane-closure projects. These traffic 

speeds ranged from zero miles per hour (mph), when vehicles are stopped in a queue, to greater 

than 70 mph when traffic was operating in free-flow conditions. Figure 25 shows a traffic speed 
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heat-map in which the x-axis shows time and y-axis represents highway segments. This figure, 

illustrates traffic speeds for each segment for a single-lane closure on northbound I-75 in Oakland 

County. This lane-closure was in place on a Tuesday in September of 2014.Traffic speeds are 

shown with a spectrum of colors from green to red to represent low speed and high-speed records, 

respectively. The yellow and red areas on the figure show traffic congestion while green areas 

show that traffic was operating at higher speeds.  

 

Figure 25. Speed heat-map for a double lane-closure event. 

 During morning and off-peak hours, highway segments were serving traffic with high 

speed since there was sufficient capacity for approaching traffic volumes. However, traffic 

congestion happened during PM peak hour due to overwhelming traffic volumes for the remaining 

two lanes. As highway segments reached their capacity, traffic congestion propagated in the 

upstream segments and traffic jam stretched up to about 9 miles. From the temporal perspective, 

this traffic congestion and severe slowdowns were experienced for five hours from 3 PM to 8 PM. 
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Typical Traffic Mobility Baseline 

Probe-vehicle data provide an opportunity to observe historical trends in traffic and use 

those trends to understand future congestion risk on a segment of roadway. Historical speed data 

from the same day of week, hour of day, and 15-minute bin for each segment was queried from 

the year prior to the lane-closures.  Several percentile values were used to represent speed 

distributions (traffic behavior) for each segment. In statistics, a percentile measure is used to 

identify a value in a group of observations below which a given percentage of observations can 

be found. For instance, if 85th percentile of historical speeds for a highway segment is 65 mph, it 

means that 85 percent of traffic speeds observed for this segment are below 65 mph. Conversely, 

this also means that only 15 percent of the times speeds were above 65 mph. The 5th, 15th, 25th, 

50th, 75th, 85th, and 95th percentiles were calculated to quantify historical traffic.  

The objective of this study was to use these historical percentiles as a method to predict 

potential future congestion. Figure 26 illustrates several historic percentile heat-maps compared 

to an actual observation of traffic speeds during the same lane closure discussed in Figure 25. 

Figure 26a shows the 85th percentile speeds for each segment during all Tuesdays in the prior 

year. It shows that this corridor services traffic with speed of above 60 mph in 15 percent of times 

while having minor slowdowns in the PM period (callout i). Figure 26b shows that in 50 percent of 

times, this corridor operates with high speed except during PM period. It shows that in half of all 

Tuesdays in the prior year, this corridor experienced a traffic slowdown from MM 64 to 69 around 

6 PM (callout ii). Figure 26c also shows that in quarter of all Tuesdays, traffic congestion was 

experienced in the PM period (callout iii) while traffic was operating with high speed during the 

rest of day. Figure 26d illustrates that in rare situations (5 percent of times), these highway 

segments suffered from severe traffic jam throughout the corridor during PM peak (callout iv) 

while highlighting that no traffic congestion happened during AM or off-peak periods. Figure 

Figure 26e shows traffic speed for this corridor while right traffic lane was closed. A shown, similar 
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traffic congestion pattern with more severity (callout v) was shaped on this corridor during PM 

peak period. As we could expect from previous observations, no traffic congestion or slowdown 

was observed during rest of this Tuesday. 

 

Figure 26. Speed Heat-maps for historical and lane-closure scenarios. 

This figure illustrates the applicability of Greenshield’s theory (55) in which traffic speed 

and traffic volume are related. This was, indeed, the motivation behind this study to examine the 

applicability of using historical traffic speeds when hourly traffic volumes are not available. Modern 

technology provided this opportunity to gather historical samples for these non-recurrent traffic 

periods. Machine learning algorithms were used in this study to learn from these historical 

observations and predict future scenarios. This study used a supervised learning approach to 

predict speed ranges for each highway segment over time. Classification algorithms used in this 

study were Random Forest, XGboost, and Artificial Neural Network (ANN). The following section 

provides a brief explanation of these algorithms and their applicability for classification tasks. 

Model Selection 

Artificial Neural Network: 

An Artificial Neural Network (ANN) is a computational model based on the structure and 

functions of biological neural networks (56). The first computational model for ANN created by 
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Warren McCulloch and Walter Pitts (57) based on mathematics and algorithms. Neural network 

models contain at least one hidden layer between input (training data) and output layer 

(predictions) to transform the inputs into something that the output layer can use. In hidden layers, 

neurons take in a set of weighted inputs and produce an output through an activation function to 

minimize the prediction error. ANN models use large number of neurons to identify hidden 

patterns in previous occurrences. These models are capable of predicting complex scenarios (56) 

even though being computationally expensive. 

Random Forest: 

The first algorithm for random decision forests was created by Tin Kam Ho (58). Random 

forests or random decision forests are an ensemble learning method which were designed to 

construct multiple decision trees from previous observations, and predict future scenarios (58, 

59). Single decision trees are prone to over-fitting while Random Forest models use votes from 

several decision trees to reduce variance in prediction (60). This comes at the expense of a small 

increase in the bias and some loss of interpretability, but generally boosts the performance in the 

final model. In almost all cases, random forests are more accurate than decision trees but are 

more computationally expensive (58). 

XGBoost: 

Extreme Gradient Boosting (XGBoost) is a decision-tree-based ensemble algorithm that 

uses a gradient boosting framework technique for regression and classification problems. This 

algorithm was proposed by Tianqi Chen (61) back in 2016, and have been used by data scientist 

in various competition due to its fast running speed and high performance. The most important 

factor behind the success of XGBoost is its scalability in all scenarios which is due to several 

important systems and algorithmic optimizations. These innovations include: a novel tree learning 

algorithm for handling sparse data; a theoretically justified weighted quantile sketch procedure to 
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handle instance weights in approximate tree learning; and parallel and distributed computing 

feature which makes learning process faster. 

Data Collection 

Data was collected from 1,160 highway lane closure projects on Michigan interstates from 

2014 to 2017. These work zones contained both single and double lane closures with one to 

fifteen day durations. Lane closures of less than one day were not considered because there was 

not enough information to verify the exact times lanes were opened or closed. The physical 

lengths of the work zones ranged from 100 foot bridge repairs to seven mile pavement 

reconstruction. The information provided by the Michigan Lane Closure and Restrictions (LCAR) 

database did not include work zone configurations, such as barrel placement, taper lengths, and 

signage. This information would clearly be valuable for future model development.  

The probe vehicle data for each work zone was collected between five miles upstream of 

the starting point of the work zone and three miles downstream of the ending point of the work 

zone. Average Annual Daily Traffic (AADT) values were collected for each work zone form the 

Highway Performance Monitoring System (HPMS) database (62). These AADT values were 

spatially joined with the highway segments to approximate approaching traffic volumes. The 

Michigan Traffic Crash Facts (MTCF) website (63) was also used to query all traffic crashes that 

occurred during the lane closure periods. The MDOT lane mile inventory was used to collect 

geometric features of the roadway including number of lanes and functional road class.   

Historic traffic speeds were obtained using probe vehicle data, which was provided by a 

third-party vendor. The speeds were aggregated into 15-minute periods, for each unique day of 

week and hour of day. For instance, if the lane-closure was taking place on a Monday from 1:15 

PM to 1:30 PM, traffic speeds were queried for all Mondays in the previous year during the same 

time period (1:15 PM to 1:30 PM). Using this approach traffic speed distributions were able to be 
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created for each segment. This aggregation strategy also removed some of the noise in the speed 

data set to provide more stable historic traffic speeds.  

A panel data set was constructed for each of the lane closures occurring on different 

interstate highways in the state of Michigan. Panel data sets are defined as multidimensional data 

with a time component (64). The final data assembled has numerous variables that differ over 

time including traffic characteristics such as traffic volume, geometry, and traffic incidents, as well 

as lane closure information. The final data set is comprised of over one million records. 

Data Preprocessing 

The mobility data, which was aggregated into 15-minute bins, were paired with geometric 

information, temporal features, AADT, and spatial features. The speed records which were 

originally continuous speeds between 0 and 80 mph were converted into five categories: Class 1 

(0-20 mph), Class 2 (20-40 mph), Class 3 (40-60 mph), Class 4 (60-80 mph), and Class 5 (60-80 

mph). Categorical features were converted to binary features using one-hot encoding techniques. 

The final data set consisted of 83 features for each 15-minute speed.   

Traffic data are typically considered noisy. Sources that contribute to this noise are traffic 

incidents, inclement weather, lane-closures, and unexpected driving behaviors. It was necessary 

to clean problematic data records that could potentially confuse our algorithms. Traffic incidents 

were cross-checked for each case study to determine the number of crashes that occurred, 

throughout the study corridor, at the same day as lane-closure. Case studies that experienced a 

traffic incident were removed from the data set. 

Resampling Techniques 

After constructing the final data set for a multi-class classification task, the number of 

records for each class label showed that the data set was highly imbalanced. There were far more 

high speed records than low speed records since interstate highways typically operate at higher 
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speeds. Figure 27 illustrates the frequency of speed classes for both single-lane and double-lane 

case studies. 

 

Figure 27. Record count distribution for single and double-lane closures. 

To address this imbalanced data issue, several resampling techniques were applied using 

the imbalanced-learn (65) library in Python. The techniques used were the Random Under-

Sampling (66), Over-Sampling (67), and SMOTE resampling algorithms (68). The Random 

Under-Sampling approach under-sampled the majority classes by randomly picking samples from 

the majority class (high-speed records). Over-sampling approach generates new samples in the 

classes which are under-presented (low-speed records) with replacement.  The Synthetic Minority 

Over-sampling Technique (SMOTE) was also used to over-sample the minority classes and 

under-sample the majority classes. The augmented data sets were used along with the original 

data set to train the classifiers. 

Model Development 

Traffic data sets generated from the resampling methods and the original data set were 

used as an input for classification algorithms. 5-fold cross-validation was used to avoid over-fitting 

and selection bias. This cross-validation approach generated complementary subsets of data in 
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which a certain portion of data was used to train the algorithms and the remaining subset was 

used to evaluate the model’s generalization. Multiple rounds of cross-validation were performed 

to assess variability in the model’s predictive performance. An average of these results were used 

to represent the overall performance of the classification models. Hyper parameter tuning was 

performed using Grid Search and Randomized Cross Validation methods to further evaluate the 

models confidence and reliability (69). Grid search has been a widely used method for optimizing 

hyper-parameters while the Randomized method is a more recent method which requires less 

computational resources. Grid search requires more computational resources to create 

exhaustive combination of grid parameters to find optimized hyper parameters. However, the 

Randomized method randomly creates combinations of hyper parameters based on the 

distribution of these parameters. 

Model Evaluation 

Several measures were used to evaluate model's performance. Measures used to 

evaluate prediction for each class were precision, recall, and f1-score. Precision is the number of 

correct positive results divided by the number of positive results predicted by the classifier. Recall 

is the number of correct positive results divided by the number of all samples that should have 

been identified as positive. F1-score is the Harmonic Mean between precision and recall and tries 

to find the balance between precision and recall. In imbalanced data set cases, these metrics can 

be used to evaluate performance for each class, but they represent a misleading performance 

measure to evaluate overall performance. For example, when a training set consists of an 

unbalanced portion for each class label, the result can be biased towards the more frequent class. 

Consequently, by applying these metrics to test an imbalanced data set, the classifier may be 

prone to estimate higher accuracy which is not realistic.  
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Therefore, overall performance of these models were evaluated using Micro and Macro 

average of these metrics. Micro and macro averages represent two ways of interpreting prediction 

performance in multi-class settings. A macro average computes each of these metrics 

independently for each class and then takes the average (hence treating all classes equally). 

Whereas, a micro-average aggregates the contributions of all classes to compute the average 

metric (70). Overall model evaluation was performed using a balanced accuracy (Macro average 

of recalls) score to evaluate the generalization of the models (71). Mathematical formulas to 

calculate each of these measures are provided in the next section. In the following, we will use 

𝑇𝑃𝑖, 𝐹𝑃𝑖, 𝐹𝑁𝑖 to respectively indicate true positives, false positives, and false negatives in the 

confusion matrix associated with the 𝑖𝑡ℎ class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

=  2
𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝑀𝑖𝑐𝑟𝑜 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃_{𝑚𝑖𝑐𝑟𝑜} =  
∑ 𝑇𝑃𝑖

|𝐺|
𝑖=1

∑ 𝑇𝑃𝑖
|𝐺|
𝑖=1 + 𝐹𝑃𝑖

 

𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑅_{𝑚𝑖𝑐𝑟𝑜} =  
∑ 𝑇𝑃𝑖

|𝐺|
𝑖=1

∑ 𝑇𝑃𝑖
|𝐺|
𝑖=1 + 𝐹𝑁𝑖

 

𝑀𝑖𝑐𝑟𝑜 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 𝐹1𝑚𝑖𝑐𝑟𝑜 =  2
𝑃𝑚𝑖𝑐𝑟𝑜 × 𝑅𝑚𝑖𝑐𝑟𝑜

𝑃𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑚𝑖𝑐𝑟𝑜
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𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑚𝑎𝑐𝑟𝑜 =
1

|𝐺|
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

|𝐺|

𝑖=1

  =  
∑ 𝑃𝑖

|𝐺|
𝑖=1

|𝐺|
 

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑅𝑚𝑎𝑐𝑟𝑜 =
1

|𝐺|
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

|𝐺|

𝑖=1

  =  
∑ 𝑅𝑖

|𝐺|
𝑖=1

|𝐺|
 

𝑀𝑎𝑐𝑟𝑜 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 𝐹1𝑚𝑎𝑐𝑟𝑜 =  2
𝑃𝑚𝑎𝑐𝑟𝑜 × 𝑅𝑚𝑎𝑐𝑟𝑜

𝑃𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑚𝑎𝑐𝑟𝑜
 

A true positive is an outcome where the model correctly predicts the target class. A false 

positive is an outcome where the model incorrectly predicts the target class. And a false negative 

is an outcome where the model incorrectly predicts other than the target one. 𝐺 represents 

number of classes. Precision and recall are shown as 𝑃 and 𝑅, respectively. 

Example & Analysis 

To illustrate applicability of this approach, traffic speed heat-map was used to show 

predicted values compared to actual observations for the same work zone illustrated in 

methodology section. Figure 28 provides a visual comparison of the predicted traffic speeds and 

actual observations. Figure 28a shows actual traffic speeds for each segment during the lane-

closure. Figure 28b shows predicted speeds using ANN model. As shown, ANN model was able 

to capture the overall pattern of traffic congestion on this corridor. 
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Figure 28. Speed heat-maps from predicted and actual observations. 

Model Performance 

Table 3 provides classification report generated for each of the applied models. Precision, 

recall, and F1-score metrics are reported based on each class. Also, Micro and Macro average 

of this metrics are shown to provide overall performance comparison between these models. As 

discussed earlier, balanced accuracy score were chosen to compare these model's 

performances. Among these models, ANN outperformed Random Forest and XGBoost models 

by reaching up to 85\% balanced accuracy. ANN used in this study consisted of three hidden 

layers with 30, 40, and 50 nodes. Hyper-parameters were tuned using Grid search cross 

validation method. Data set used for training was an augmented data set created by SMOTE 

resampling technique. This resampling technique generated a better synthetic data set compared 

to both original and other augmented data sets created by Random Under-sampling and Over-

sampling methods. From each class perspective, the ANN model was able to predict queuing 

condition (0-20 mph) with 88\% accuracy compared to XGBoost and Random Forest models with 

84\% and 76\% accuracies, respectively. 

Table 3. Model performance results 

Model 
Speed range 

(mph) 

Evaluation Metrics 

Precision Recall F1-score 
Balanced 
Accuracy 

Random 
Forest 

0-20 0.8 0.76 0.78 

0.74 

20-40 0.67 0.67 0.67 

40-60 0.66 0.61 0.63 

60-80 0.94 0.95 0.94 

Macro 
average 

0.76 0.74 0.75 

Micro 
average 

0.87 0.87 0.87 

XGBoost 

0-20 0.78 0.84 0.81 

0.79 
20-40 0.69 0.74 0.71 

40-60 0.67 0.65 0.66 

60-80 0.94 0.94 0.94 
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Macro 
average 

0.77 0.79 0.78 

Micro 
average 

0.88 0.88 0.88 

ANN 

0-20 0.85 0.88 0.87 

0.85 

20-40 0.79 0.80 0.80 

40-60 0.77 0.73 0.75 

60-80 0.95 0.96 0.96 

Macro 
average 

0.85 0.85 0.85 

Micro 
average 

0.92 0.92 0.92 

 

A clean and unambiguous way to present the prediction results of a classifier is to use a 

confusion matrix. Figure 29 shows the confusion matrix for the ANN model. This figure shows 

predicted traffic speeds are clustered around the left to right diagonal which represents the 

conditions where predicted records are deviating less from actual observations. Due to recurrent 

fluctuation in traffic speed, it was expected to have low performance when traffic speeds were 

transitioning from high-speed to congestion stage. However, congested scenarios (queuing 

condition) were identified more consistently. 
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Figure 29. Confusion matrix-ANN model. 

Discussion and conclusions 

In this study, several supervised machine learning algorithms were applied to classify the 

speed range for each highway segment over time when lane-closures were present on interstate 

highways in state of Michigan. These models used work zone configuration, roadway geometry, 

AADT, and historical traffic speeds as inputs. 1,165 historical lane-closures which happened from 

2014 to 2017 were used to train and evaluate the classification models. The balanced accuracy 

score was used for overall model performance evaluation. The results suggested that ANN 

outperformed the other models in terms of balanced accuracy score. The key advantage of this 

modeling approach was to use historical traffic speed distribution in the absence of hourly traffic 
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volume counts to achieve a promising accuracy in predicting the spatio-temporal impact of lane-

closures on traffic mobility.  
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CHAPTER 6 STATE-WIDE WORK ZONE MOBILITY ASSESSMENT 

Introduction 

The state of Michigan has had more than 24,000 work zone projects in the past 10 years. 

This means that every year there are more than 2,000 work zones that need to be managed by 

traffic operation centers and transportation planning decision makers. FHWA requires 

transportation agencies to have an overall policy for the systematic consideration and 

management of these work zones. Mining historical work zone mobility data facilitates a 

quantitative approach to assess mobility performance of these lane-closures in a state-wide level. 

This approach utilizes mobility metrics, used in the WZMA to quantify and rank highway lane-

closures based on their impact. This chapter applies Business Intelligence to provide actionable 

information for decision makers in the area of work zone mobility and safety management (73, 

74). 

Methodology 

In order to derive more useful information regarding lane-closures impact on highways 

mobility, more than 1700 lane-closures were assessed using the WZMA process. These case 

studies included work zone projects in which shoulder to multiple lanes were closed throughout 

the project time. Also, these lane-closures lasted between one to 15 days on Michigan interstate 

highways from 2014 to 2018. After running the WZMA process on these cases, their information 

were gathered in a final data set to facilitate a large-scale assessment and a comparison between 

their impacts on traffic mobility. Figure 30 illustrates a quantitative summary of these case studies 

based on their work zone category (shoulder to multiple lane-closure) along with a visual 

representation of their location on Michigan interstates.   
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Figure 30. Summary statistics of work zone case studies 

As shown in Figure 30, shoulder and single lane closures were the most commonly applied 

work zone categories with 753 and 546 cases among these 1705 cases. In addition, Highways I-

Count of work zones for each 
category:

Count of work zones for each highway based on categories:

1,705 work zone case 
studies from 2014-2018
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75 and I-94 experienced the majority of these lane closures while highways I-275 and I-196 had 

the least number of cases.  

Another important factor regarding these cases were their duration which varied between 

one and 15 days. Figure 31 provides a visual representation of the duration in which each highway 

was experiencing these lane-closures. As shown in Figure 31, the average duration for these 

categories were as follow: 

• Shoulder-lane closures: 4-5 days, 

• Single-lane closures: 3-4 days, 

• Double-lane closures: 2-3 days, 

• Multiple-lane closures: 3-4 days. 

 

Figure 31. Work zones duration summary 
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Figure 31 also reveals that there were no double-lane closures on highway I-196, and no 

multiple-lane closures on highways I-69, I-196, and I-275.  

Mobility Metrics Summary 

Mobility metrics utilized in the WZMA were defined to quantify mobility impact from two 

major perspectives. Two metrics were defined to quantify user delay which was caused by lane-

closures. These metrics were the longest user delay and the total delay caused by a work zone. 

In addition, four metrics were defined to quantify severe traffic slowdowns on highways. The 

metrics used to quantify the queueing condition were aimed to measure frequency and duration 

of a queueing condition both from temporal and spatial perspectives. From temporal perspective, 

the longest time that a queueing condition was present was measured along with total duration in 

which at least one highway segment exhibited a queueing condition (severe slowdown). Also, the 

frequency of queueing conditions was measured to quantify how many times traffic slowdowns 

happened due to work zone presence. From the spatial perspective, the longest length of queue 

was measured to represent severity of traffic slowdown in the upstream segments of highway.  

Table 4 summarizes the applied performance measures and their objectives. 

 Table 4. Mobility metrics summary & objectives 

 Metric What does it Measure? 

User Delay 

Total Delay 
Cumulative travel time delay experienced by users 

throughout the lane-closure duration 

Longest User Delay Longest travel time delay experienced by users 

Presence of 
Queueing 
Condition 

Longest Queue Length 
(mile) 

Longest length of queue caused by lane-closure 

Longest Queue 
Duration (min) 

Longest time that at least one segment of highway 
was performing in queueing condition. 
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Interstate Mobility Ranking 

Managing traffic mobility for seven highway interstates while having different type of lane-

closures with varying duration has been a challenge for traffic operation centers and 

transportation planning organizations. This section provides a visual representation of the impact 

the case studies had on highway mobility from user delay and queueing condition perspectives. 

Knowing how previous lane-closures impacted traffic mobility provides this facility to rank and 

identify highways which experienced more negative mobility impacts. The following sections rank 

and summarize interstate highways mobility based on the impact they experienced while having 

lane-closures present.  

Ranking Based on Delay Metrics 

A quantitate summary of the total travel time delay, which was caused by these highway 

lane-closures, is provided in Figure 32. This figure shows cumulative delay caused by lane-

closures on x-axis while showing percentage of the total impact for each work zone category.  

Total Queue 
Duration(hours) 

Cumulative times that at least one segment of 
highway was performing in queueing condition. 

Number of Queues 
Number of times that queueing condition formed 

on the highway. 
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Figure 32. Quantitative summary for total work zone delay 

As shown, Highways I-75 and I-94 caused the majority of travel time delay for commuters 

with 44% and 26% of the total delay, respectively. Identifying highways which caused the most 

travel time delay for commuters highlights the importance of further considerations while planning 

future work zones. 

Another metric for assessing mobility performance was the longest delay that commuters 

experienced while a lane-closure was in place. This metric represents the additional time (in 

minutes) that commuters had to spend compared to their typical travel time. Figure 33 provides 

median of these longest user delay (x-axis) for each highway (y-axis) based on work zone 

category. Numbers on each bar show additional time commuters expected to travel (travel delay) 

while having different work zone category in place.     
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Figure 33. Quantitative summary for longest user delay 

As shown, highway I-696 experienced longest user delay while lane-closures on highway 

I-69 caused minor delay for commuters. Multiple lane-closure projects on I-696 and I-96 and 

double-lane closures on I-275 were the top categories that caused the highest travel delay for 

users.  

Ranking Based on Queue Metrics 

Characterizing traffic slowdowns and queues for these lane-closures were performed 

using four queueing performance metrics. Figure 34 provides a summary of total queue duration 

experienced by each highway for each lane-closure category. This figure shows cumulative hours 

of queueing condition on the x-axis while showing percentage of the overall impact caused by 

each category on the bars.     
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Figure 34. Quantitative summary for total queue duration 

As shown, Highway I-75 experienced majority of queueing condition with having almost 

3,300 hours while highway I-94 had the second rank with 1,700 hours. Also, double-lane closures 

on I-75 created 16.4% of the overall queueing condition. 

Another queueing metric used was the number of queue formations, which represent how 

many times queueing conditions were formed while having lane-closures in place. Figure 35 

illustrates the total number of queues that happened on each highway for each category of lane-

closures.  
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Figure 35. Quantitative summary for total number of queues 

This figure shows that highway I-75 experienced the most (almost 4,400) queueing events 

while I-94 experienced about 2,200 queueing events.   

Another queueing metric used was the longest queue length (miles) which was caused by 

these lane-closures. A median of this metric was calculated for each highway based on work zone 

category to highlight the severity of queue propagation while lane-closures reduce highway 

capacity. Figure 36 illustrates this metric (x-axis) for all highways (y-axis) while representing the 

median of longest queue lengths for each work zone category.   
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Figure 36. Quantitative summary for maximum queue length (miles) 

As shown, highway I-696 ranked the first among other interstates experiencing longest 

queue lengths considering all work zone categories. However, commuters on I-96 experienced 

longest queues while multiple-lane and double-lane closures were in place with 3.7 and 3.5 miles 

of queueing, respectively.  

Another queueing metric utilized was the duration of time in which a segment is performing 

under queueing condition consecutively. Figure 37 summarizes maximum queue durations for the 

case studies by having a median of these records on the x-axis while showing the values for each 

category on the bars.  
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Figure 37. Quantitative summary for maximum queue duration (minutes) 

As shown, I-696 experienced longest queue lengths (callout i) while considering all 

categories together, however, from a categorical perspective, double-lane closures on I-275 

(callout ii) had the longest queue duration with 160 minutes of consecutive queueing condition. 

This metric highlights the concept of queue formation and resiliency while assessing mobility in 

large-scale. For instance, Figure 37 shows that it takes about 140 minutes for queueing condition 

to start and resolve in case of having multiple-lane closures on interstate 696.   
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Identifying Significant projects 

According to the FHWA (4), agencies are required to implement a procedure to mitigate 

safety and mobility issues caused by the presence their significant work zone projects. FHWA 

defines significant projects as projects that disrupt traffic mobility significantly and create 

hazardous condition for users. However, FHWA does not provide a detailed definition of 

significant projects and allows agencies to define and identify their own significant projects. 

Mobility metrics introduced in the WZMA can assist agencies to rank their historical projects based 

on the negative impact they had on traffic. This section attempts to introduce an approach in which 

high impact projects are identified using delay and queueing metrics.  

Pareto principle, also known as 80/20 rule, is a well-known principle used in business and 

project management area (75, 76). In the case of assessing many events, this principle states 

that roughly 80% of the impact comes from 20% of the cases. Figure 38 illustrates a Pareto chart 

constructed using the total queue duration metric to rank high impact projects in a descending 

order.  

 

Figure 38. Ranking work zones using Pareto sort 

In this figure, the x-axis represents percentage of work zone projects with their impact 

illustrated on y-axis by orange bars. The blue line on this graph is the running total of the impacts, 
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and the right vertical axis shows the cumulative percentage of total impact. According to this 

principle, it is feasible to identify 20% of the lane-closures which account for roughly 80% of the 

overall mobility impact these work zone projects had on Interstate highways in state of Michigan. 

Figure 39 utilized the queue duration metric to rank “significant” projects which account for the 

majority (80%) of the total queueing condition. In this figure, work zone projects that are ordered 

on the left side of the 20% vertical line (callout i) cause almost 80% of the overall impact. Figure 

39c shows a Pareto sort with its top twenty percent of work zones being selected as significant 

projects. Figure 39a shows location of these high impact, or so called significant, lane-closures 

on map. Figure 39b ranks these problematic work zones based on a median of the impact (total 

queue duration) experienced by each highway. As shown, work zone projects on northbound of 

I-275 were performing in queueing condition for 18 hours (callout ii) which was highest among 

other highways. 
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Figure 39. Ranking significant projects using queue duration metric 

The graphical representation of these work zones shows clusters where work zones had 

severe impacts on mobility. Using the WZMA, more information can be evaluated from each of 

the work zones. Areas where work zones had high impacts can be archived and utilized by 

agencies in the future to adjust work zone management strategies. 
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Distribution of Work Zone impact using box-whisker chart 

Another way of considering significant projects was to use the longest queue length metric. 

In this approach, a box-whisker plot is utilized to visualize a distribution of this metric for each 

highway. Box-whisker plots divide the records into sections that each contain approximately 25% 

of the data in that set. Transportation agencies could focus on the cases that fall into the top 

quartile which could also be considered as significant projects. Figure 40 illustrates the longest 

queue lengths shaped on each highway based on their category. In this figure, callout i shows the 

top quartile of work zones which created the longest queue length. Callout ii also illustrates a point 

which is in the top 5 percent of work zones happened on westbound of I-696.  

 

Figure 40. Distribution of the longest queue length for each highway 

State-wide Work Zone Mobility Dashboard 

Another data analytic approach which could be used to manage and monitor work zones 

in a large-scale were using Business Intelligence (BI) approaches (798081). The BI approaches 

have merged as an important area of study for practitioners and researchers to reflect the 
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importance and applicability of data-driven analytics in addressing common management issues. 

This approach analyzes and represents actionable information which helps work zone executives 

make informed decisions. A dynamic dashboard was constructed for the work zone case studies 

in which work zone impacts are assessed using approaches discussed earlier in this chapter. 

Figure 41 illustrates this dashboard utilizing the total delay metric. In this dashboard, users could 

choose their preferable mobility metric to analyze state-wide or freeway level mobility 

performance. In addition, users could target specific category of work zones to compare the 

magnitude of impact while having certain work zone category being implemented.  

 

Figure 41. A dynamic BI dashboard for state-wide work zone management 

This dashboard is consisted of several sections which provide certain information 

regarding work zones impact. These sections and their objectives are: 

1. Overall impact: 



80 
 

 
 

• This section ranks freeways which experienced the highest impact based on the 

mobility metric used. 

2. Work zone mapping 

• This section presents location of work zones on Michigan interstates to highlight 

problematic freeway locations. 

3. Median impact 

• This section utilizes median of records for the mobility metric to provide an 

approximate expected impact for each freeway.  

4. Pareto sort 

• This chart is utilized to rank significant projects based on the mobility impact. The 

shape of Pareto chart illustrates the overall number of significant projects which 

needs to be prioritized. 

5. Relative impact 

• This section also compares relative impact for each freeway compared to other 

freeways based on the chosen mobility metric.  

6. Impact distribution 

• The distribution of impact for each highway highlight the variation of impact for 

each highway based on the chosen mobility metric. This approach assist decision 

makers to be aware of impact magnitude and plan accordingly.  

Statistical Analysis 

Statistical analysis was performed on the data set to provide more inferences regarding 

significant factors affecting mobility. In this approach, a decision tree model was applied to 

develop a classification system for decision makers to predict and classify their future projects 

based on a set of decision rules. This approach, also called as rule induction, provides a clear 

reasoning process by using decision trees which include only the factors that are important to 
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make decisions in future work zone planning. CHAID, or Chi-squared Automatic Interaction 

Detection, was used as classification method in which chi-squared statistics were used to identify 

optimal splits for the decision trees (77,78). In this approach, cross tabulation was examined 

between the dependent and independent variables to test for their significance using chi-square 

independent test.  Table 5 summarizes the dependent and independent variables used for this 

analysis.  

Table 5. Variables used for statistical analysis 

Mobility Metrics 
(dependent variables) 

Work Zone Characteristics 
(independent variables) 

• Total Work zone delay (normalized: 
hour per day) 

• Total Queue duration (normalized: 
percent of time performing in queue 
condition per day) 

• Number of queue (normalized: per 
day) 

• Work zone category (shoulder to 
multiple lane closure) 

• Roadway () 

• AADT 

• CAADT 

• Closure side (Left-closure or right-
closure 

• Duration (intermediate or long-term) 

• Day of week (work zone starts) 

• Day of week (work zone ends) 

• Month of year 

 

At each step, categories of data that were significantly different were separated using tree 

branches while categories that show no difference were grouped together. This category merging 

process stopped when all the remaining categories were different at significance level of 0.005.  

The first metric used to construct the decision tree was the total delay that lane-closures 

caused for commuters. This metric was normalized based on the duration of lane-closures to 

provide a comparison base. Figure 42 illustrates the constructed decision tree using the 

normalized delay metric. As shown, work zone categories had the highest significance to split 

work zones based on the delay they caused. For shoulder-lane closures, work zones were split 

based on interstates. Interstates 75 and 696 were categorized with mean of 2.3 delay hours per 
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day while other freeways experienced mean of 1.7 delay hours. For single-lane closures, 

freeways were categorized into three groups based on the previous impact these closures had 

on mobility. Also, double-lane and multiple-lane closures were not significantly different and were 

grouped together. For these groups, the side of closure were the most significant factor compared 

to other independent variables. As shown, closures on the left side of freeways caused more 

impact on mobility with having 9.7 delay hours per day compared to right side closures with 5.7 

delay hours. 

 

Figure 42. Decision tree based on delay metric 

Using number of queue metric, the most significant factor was freeways to split the 

observations into three groups. As shown in Figure 43, interstates 696, 75, and 196 experienced 

more queueing formation (two queues per day) while second split (I-275 and I-96) and third splits 

(I-69 and I-94) experienced 1.5 and 0.8 queues per day, respectively. In addition, work zone 

category was the next significant factor to split lane-closures on I-96 and I-275 freeways. 
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Furthermore, the AADT volume were the significant factor to split work zones on interstates I-196, 

I-75, and I-696. As shown, lane-closures on sections of these freeways with more than 10,866 

AADT experienced the highest frequency of queue formation with 2.4 crashes per day.  

 

Figure 43. Decision tree based on number of queues 

Another important variable for work zone traffic management decision makers is the queue 

spill back in the upstream segments. This longest queue metric was utilized to split work zone 

observations which were significantly different. Figure 44 represents expected queue length for 

each freeway based on the number of heavy vehicles traveling on these freeways. As shown, 
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interstate 69 experiences the shortest queue length of 0.9 miles while interstates 196 and 275 

experienced 1.6 miles of queue length. In addition, lane-closures on I-94 had queue lengths from 

1.2 miles to 3.1 miles depending on the CAADT volume. Interstates 696, 75, and 96 experienced 

queue lengths from 2.3 miles to 3.1 miles also depending on heavy vehicle traffic volume. 

 

Figure 44. Decision tree based on longest queue length 

A detailed statistic of CHAID analysis for these three metrics are provided in appendix B.  
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

The objectives of this study were to:  

• Develop a systematic approach to measure and visualize the impact of work zones 

• Predict the impact future work zones will have on interstate’s mobility 

• Develop a high-level decision-making process to better plan future work zones 

These objectives were achieved by developing three methodologies using probe vehicle data. 

According to the FHWA’s call for developing systematic approaches to improve current work zone 

mobility management strategies, three analytic approaches were developed including a 

performance measurement framework (WZMA), a machine learning framework for prediction 

purposes, and a high-level assessment to enhance work zone decision-making processes. 

Following sections discuss each of these approaches in further detail. 

Descriptive Analytics: Mobility Performance Measurement Using the WZMA 

The results of this study and reviewed literature showed that incorporating probe vehicle 

data can improve work zone management strategies. Using probe vehicle data, agencies can 

implement the work zone mobility audit procedure to characterize work zone mobility impacts. 

This study attempted to apply a segment-based analysis to characterize work zone mobility 

performance both spatially and temporally. This mobility characterization assists agencies to 

identify problematic highway lane-closures by visually assessing the impact that work zones had 

on traffic mobility. In addition, summary statistics of traffic mobility provided by the WZMA were 

used in a state-wide assessment of mobility. 

Predictive Analytics: Machine Learning Application 

In addition, accurately predicting work zone impact assists practitioners to optimize their 

TMPs to mitigate negative mobility and safety impacts resulted from work zone presence. This 

study showed a proof of concept in which machine learning classification algorithms can be used 
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to predict work zone impact with a considerable accuracy. Three classification modeling 

techniques, (XGBoost, Random Forest, and Neural Network) were used to predict speed for each 

highway segment over time. Performance of these models showed that these models are capable 

of learning traffic patterns from historical occurrences and predict future scenarios.   

Prescriptive Analytic: State-wide Work Zone Traffic Management  

A data set of historical lane-closure information was gathered from more than 1,700 case 

studies. This dataset included work zones with shoulder-lane closures to multiple-lane closures. 

Also, these lane-closures lasted between one to 15 days on highways. All the mobility metrics 

defined in the WZMA were calculated for these projects to further provide a state-wide impact 

assessment. The final data set was mined using various approaches to rank interstate highways 

based on their mobility performance, including delay and queueing metrics. In addition, an 

approach was utilized to identify significant projects which account for the majority of the impact. 

Using Pareto principle, 20% of lane-closures which caused approximately 80% of the overall 

impact were identified and ranked. Box-whisker plots were another approach used to highlight 

distribution of the impact for each highway. Using this approach, lane-closures were divided into 

four quantiles based on their impact. Cases that fall into the top quantile could also be considered 

as significant projects. In addition, CHAID statistical analysis was utilized to optimally split the 

previous work zones into significant categories. This approach provided more actionable 

information for work zone traffic management decision makers to categorize and compare 

different work zone strategies on each Michigan freeway. Practitioners can use the decision trees 

to approximate the expected mobility impact while planning future work zones.  

Figure 45 illustrates the work zone policy development and implementation process 

proposed by the FHWA along with the three approaches performed in this study to address its 

requirements.  
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Figure 45. Summary of approaches to address FHWA requirements 

Intelligent Mobility Platform 

This study attempted to address the federal rule on work zone safety and mobility (3) 

requirements by proposing three analytic approaches. The Work Zone Mobility Audit (WZMA) 

framework was applied to assess mobility for each individual work zone using various delay and 

queueing metrics. Machine Learning techniques were also applied to predict mobility for future 

work zones which assists decision makers in their planning. Business Intelligence was also 
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applied to develop an interactive dashboard in which work zone performance measures were 

summarized and visualized for more actionable information. This platform was called “Intelligent 

Work Zone Mobility” which utilizes these approaches to provide a web-based service for 

transportation agencies. This platform is expected to assist transportation agencies assess and 

manage their work zones both for an individual and state-wide level.  

Discussion and recommendation for future research 

Further research in the following areas is recommended: 

• This method is applicable for large-scale implementation to assist planning future lane-

closure projects. The WZMA process was developed to use probe vehicle data for 

mobility assessment. Agencies have access to the National Performance 

Measurement Research Data Set (NPMRDS) which is another source for probe 

vehicle data. Future research can incorporate data from NPMRDS to run the WZMA 

process for all work zones on US interstates.  

• Develop an algorithm to perform the WZMA process more efficiently could save 

computation resources specifically in large scale implementation 

• As more data becomes available in future, prediction performance of machine learning 

algorithms is suspected to increase. Performance of these prediction models is 

dependent on the case studies used for training and sufficient information to describe 

work zone characteristics. If available, including hourly traffic volume and weather 

information would help to establish more accurate predictions. 

• Future research work could also incorporate image processing algorithms to use work 

zone heatmaps for training and predicting mobility for future work zones (72). 
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• Agencies need to develop systematic approaches for recording lane closure activities. 

This will have tangible returns in future modeling practices and will facilitate more 

accurate mobility performance measurement.  

• The choice of speed bins used by classification algorithm for prediction could be 

explored in the future by applying clustering algorithms to find optimal ranges. An 

optimal split is expected to improve the prediction accuracy.  

• Further statistical and econometric analysis is recommended to diagnose the causality 

between mobility metrics and work zone characteristics.  

• Examine game theory applications to optimize work zone planning and management 

strategies (82). 

  



90 
 

 
 

APPENDIX A: State-wide work zone mobility dashboard 
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APPENDIX B: Statistical analysis results 

Table 6. CHAID summary statistics using longest queue length 

 

  

Node Mean

Std. 

Deviatio

Number of 

records

Parent 

Node Variable Sig.a F df1 df2 Split Values

0 2.29 2.34 1655

1 2.67 2.49 914 0 Highway 0.000 30.01 3 1651 I-96; I-75; I-696

2 2.15 2.20 461 0 Highway 0.000 30.01 3 1651 I-94

3 1.64 1.83 132 0 Highway 0.000 30.01 3 1651 I-196; I-275

4 0.94 1.21 148 0 Highway 0.000 30.01 3 1651 I-69

5 2.30 2.37 416 1 CAADT 0.000 12.92 2 911 <= 210.0

6 3.16 2.44 380 1 CAADT 0.000 12.92 2 911 (210.0, 890.0]

7 2.40 2.81 118 1 CAADT 0.000 12.92 2 911 > 890.0

8 2.44 2.44 124 2 CAADT 0.000 13.13 3 457 <= 86.0

9 1.93 2.13 164 2 CAADT 0.000 13.13 3 457 (86.0, 493.0]

10 3.11 1.93 87 2 CAADT 0.000 13.13 3 457 (493.0, 520.0]

11 1.20 1.75 86 2 CAADT 0.000 13.13 3 457 > 520.0

12 2.81 2.34 108 6 Day (start) 0.001 13.58 2 377 Friday; Sunday; Wednesday

13 2.04 2.04 64 6 Day (start) 0.001 13.58 2 377 Saturday; Thursday

14 3.69 2.47 208 6 Day (start) 0.001 13.58 2 377 Monday; Tuesday

15 3.17 3.11 68 7 Day (start) 0.028 13.10 1 116

Friday; Saturday; Thursday; 

Sunday; Tuesday

16 1.36 1.94 50 7 Day (start) 0.028 13.10 1 116 Monday; Wednesday

17 3.18 2.29 60 8 Day (end) 0.048 11.93 1 122 Sunday; Monday; Saturday

18 1.73 2.37 64 8 Day (end) 0.048 11.93 1 122

Friday; Wednesday; Thursday; 

Tuesday

Primary Independent Variable
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Table 7. CHAID summary statistics using number of queue metric 

 

Table 8. CHAID summary statistics using delay metric 

 

 

Node Mean

Std. 

Deviation

Number of 

records

Parent 

Node Variable

Significanc

e F df1 df2 Split Values

0 1.55 1.9120686 1655

1 1.517 2.0594255 276 0 Highway 0.0000 71.36 2 1652 I-96; I-275

2 0.893 1.313379 609 0 Highway 0.0000 71.36 2 1652 I-94; I-69

3 2.082 2.0875107 770 0 Highway 0.0000 71.36 2 1652 I-196; I-75; I-696

4 2.439 2.3064123 68 1 Category 0.0000 12.83 2 273

Double Lane Closure; 

Multiple Lane Closure

5 1.447 2.145751 141 1 Category 0.0000 12.83 2 273 Single Lane Closure

6 0.728 0.9935911 67 1 Category 0.0000 12.83 2 273 Shoulder Closure

7 0.214 0.4394352 66 2 CAADT 0.0000 24.87 5 603 <= 75.0

8 1.392 1.574021 89 2 CAADT 0.0000 24.87 5 603 (75.0, 86.0]

9 0.713 1.1137315 207 2 CAADT 0.0000 24.87 5 603 (86.0, 493.0]

10 1.908 1.5508056 87 2 CAADT 0.0000 24.87 5 603 (493.0, 520.0]

11 0.891 1.3354713 76 2 CAADT 0.0000 24.87 5 603 (520.0, 6500.0]

12 0.293 0.7178189 84 2 CAADT 0.0000 24.87 5 603 > 6500.0

13 1.76 1.9904397 420 3 AADT 0.0000 22.5 1 768 <= 10866.0

14 2.467 2.1382487 350 3 AADT 0.0000 22.5 1 768 > 10866.0

15 2.244 1.9827585 122 13 Category 0.0100 10.4 1 418 Double Lane Closure

16 1.562 1.9626465 298 13 Category 0.0100 10.4 1 418

Single Lane Closure; Multiple 

Lane Closure; Shoulder 

Closure

Primary Independent Variable

Node Mean
Std. 

Deviation

Number of 

records

Parent 

Node
Variable

Significanc

e
F df1 df2 Split Values

0 3.722 5.9934635 1655

1 6.37 8.162536 389 0 category 0 57.06 2 1652
Double Lane Closure; 

Multiple Lane Closure

2 3.304 5.7967599 732 0 category 0 57.06 2 1652 Single Lane Closure

3 2.365 3.1116174 534 0 category 0 57.06 2 1652 Shoulder Closure

4 5.747 7.4883212 329 1 left_closure 0 12.85 1 387 0

5 9.792 10.599175 60 1 left_closure 0 12.85 1 387 1

6 6.683 11.035458 107 2 roadway_x 0 28.65 2 729 I-96

7 3.156 4.4493446 473 2 roadway_x 0 28.65 2 729 I-94; I-196; I-75; I-696

8 1.388 1.8569557 152 2 roadway_x 0 28.65 2 729 I-69; I-275

9 1.759 2.3602655 340 3 roadway_x 0 37.96 1 532 I-96; I-94; I-196; I-69; I-275

10 3.428 3.8952235 194 3 roadway_x 0 37.96 1 532 I-75; I-696

11 2.461 3.4500018 282 7 AADT 0 17.61 1 471 <= 10866.0

12 4.181 5.4592507 191 7 AADT 0 17.61 1 471 > 10866.0

Primary Independent Variable
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The presence of work zones on freeways causes traffic congestion and creates hazardous 

conditions for commuters and construction workers. Traffic congestion resulting from work zones 

causes negative impacts on traffic mobility (delay), the environment (vehicle emissions), and 

safety when stopped or slowed vehicles become vulnerable to rear-end collisions. Addressing 

these concerns, a data-driven approach was utilized to develop methodologies to measure, 

predict, and characterize the impact work zones have on Michigan interstates. This study used 

probe vehicle data, collected from GPS devices in vehicles, as the primary source for mobility 

data. This data was used to fulfill three objectives: develop a systematic approach to characterize 

work zone mobility, predict the impact of future work zones, and develop a business intelligence 

support system to plan future work zones. 

Using probe vehicle data, a performance measurement framework was developed to 

characterize the spatiotemporal impact of work zones using various data visualization techniques. 

This framework also included summary statistics of mobility performance for each individual work 

zone. The result was a Work Zone Mobility Audit (WZMA) template which summarizes metrics 
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into a two-page summary which can be utilized for further monitoring and diagnostics of the 

mobility impact. 

A machine learning framework was developed to learn from historical projects and predict 

the spatiotemporal impact of future work zones on mobility. This approach utilized Random 

Forest, XGBoost, and Artificial Neural Network classification algorithms to determine the traffic 

speed range for highway segments while having freeway lane-closures. This framework used a 

distribution of speed for each freeway segment, as a substitute for hourly traffic volume, and were 

able to predict speed ranges for future scenarios with up to 85% accuracy. The ANN model 

reached up to 88% accuracy predicting queueing condition (speed less than 20 mph), which could 

be utilized to enhance queue warning systems and improve the overall safety and mobility.  

Mobility data for more than 1,700 historical work zone projects in state of Michigan were 

assessed to provide a comprehensive overview of the overall impact and significant factors 

affecting the mobility. A Business Intelligence (BI) approach was utilized to analyze these work 

zones and present actionable information which helps work zone mobility executives make 

informed decisions while planning their future work zones. The Pareto principle was also utilized 

to identify significant projects which accounted for a majority of the overall impact. Chi-square 

Automatic Interaction Detector, CHAID, algorithm was also applied to discover the relationship 

between variables affecting the mobility. This statistical method built several decision-trees which 

could be utilized to determine best, worst, and expected consequence of different work zone 

strategies. 
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