5 research outputs found

    Joint Deep Learning for Pedestrian Detection

    Full text link
    Feature extraction, deformation handling, occlusion handling, and classification are four important components in pedestrian detection. Existing methods learn or design these components either individually or sequentially. The interaction among these components is not yet well ex-plored. This paper proposes that they should be jointly learned in order to maximize their strengths through coop-eration. We formulate these four components into a joint deep learning framework and propose a new deep network architecture1. By establishing automatic, mutual interac-tion among components, the deep model achieves a 9 % re-duction in the average miss rate compared with the cur-rent best-performing pedestrian detection approaches on the largest Caltech benchmark dataset. 1

    Visualizing object detection features

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 59-61).We introduce algorithms to visualize feature spaces used by object detectors. The tools in this paper allow a human to put on 'HOG goggles' and perceive the visual world as a HOG based object detector sees it. We found that these visualizations allow us to analyze object detection systems in new ways and gain new insight into the detector's failures. For example, when we visualize high scoring false alarms, we discovered that, although they are clearly wrong in image space, they do look deceptively similar to true positives in feature space. This result suggests that many of these false alarms are caused by our choice of feature space, and indicates that creating a better learning algorithm or building bigger datasets is unlikely to correct these errors. By visualizing feature spaces, we can gain a more intuitive understanding of our detection systems.by Carl Vondrick.S.M

    Text Detection in Natural Scenes and Technical Diagrams with Convolutional Feature Learning and Cascaded Classification

    Get PDF
    An enormous amount of digital images are being generated and stored every day. Understanding text in these images is an important challenge with large impacts for academic, industrial and domestic applications. Recent studies address the difficulty of separating text targets from noise and background, all of which vary greatly in natural scenes. To tackle this problem, we develop a text detection system to analyze and utilize visual information in a data driven, automatic and intelligent way. The proposed method incorporates features learned from data, including patch-based coarse-to-fine detection (Text-Conv), connected component extraction using region growing, and graph-based word segmentation (Word-Graph). Text-Conv is a sliding window-based detector, with convolution masks learned using the Convolutional k-means algorithm (Coates et. al, 2011). Unlike convolutional neural networks (CNNs), a single vector/layer of convolution mask responses are used to classify patches. An initial coarse detection considers both local and neighboring patch responses, followed by refinement using varying aspect ratios and rotations for a smaller local detection window. Different levels of visual detail from ground truth are utilized in each step, first using constraints on bounding box intersections, and then a combination of bounding box and pixel intersections. Combining masks from different Convolutional k-means initializations, e.g., seeded using random vectors and then support vectors improves performance. The Word-Graph algorithm uses contextual information to improve word segmentation and prune false character detections based on visual features and spatial context. Our system obtains pixel, character, and word detection f-measures of 93.14%, 90.26%, and 86.77% respectively for the ICDAR 2015 Robust Reading Focused Scene Text dataset, out-performing state-of-the-art systems, and producing highly accurate text detection masks at the pixel level. To investigate the utility of our feature learning approach for other image types, we perform tests on 8- bit greyscale USPTO patent drawing diagram images. An ensemble of Ada-Boost classifiers with different convolutional features (MetaBoost) is used to classify patches as text or background. The Tesseract OCR system is used to recognize characters in detected labels and enhance performance. With appropriate pre-processing and post-processing, f-measures of 82% for part label location, and 73% for valid part label locations and strings are obtained, which are the best obtained to-date for the USPTO patent diagram data set used in our experiments. To sum up, an intelligent refinement of convolutional k-means-based feature learning and novel automatic classification methods are proposed for text detection, which obtain state-of-the-art results without the need for strong prior knowledge. Different ground truth representations along with features including edges, color, shape and spatial relationships are used coherently to improve accuracy. Different variations of feature learning are explored, e.g. support vector-seeded clustering and MetaBoost, with results suggesting that increased diversity in learned features benefit convolution-based text detectors

    A Data Driven Method for Feature Transformation

    No full text
    Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented dataset. In this work we propose a data driven, local histogram based feature extraction method that reduces the manual intervention during the feature computation process and improves on the performance of widely used gradient histogram based features (e.g., HOG). We demonstrate favorable object detection results against HOG on the Inria Pedestrian[7], Pascal 2007[10] data. 1
    corecore