
Visualizing Object Detection Features

by

Carl Vondrick

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 15, 2013

Certified by. .
Antonio Torralba

Associate Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Dedicated to my sister

3

4

Visualizing Object Detection Features

by

Carl Vondrick

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

We introduce algorithms to visualize feature spaces used by object detectors. The
tools in this paper allow a human to put on ‘HOG goggles’ and perceive the visual
world as a HOG based object detector sees it. We found that these visualizations
allow us to analyze object detection systems in new ways and gain new insight into
the detector’s failures. For example, when we visualize high scoring false alarms,
we discovered that, although they are clearly wrong in image space, they do look
deceptively similar to true positives in feature space. This result suggests that many
of these false alarms are caused by our choice of feature space, and indicates that
creating a better learning algorithm or building bigger datasets is unlikely to correct
these errors. By visualizing feature spaces, we can gain a more intuitive understanding
of our detection systems.

Thesis Supervisor: Antonio Torralba
Title: Associate Professor

5

6

Acknowledgments

The ideas and tools in this thesis would not have been possible without the patient

guidance from many people, whom I hope to acknowledge here.

Most of these algorithms and experiments grew out from countless conversations

with my collaborators and lab mates, and for this I am indebted. Many thanks to

Agata Lapedriza, Andrew Owens, Hamed Pirsiavash, Jenny Yuen, Jianxiong Xiao,

Joseph Lim, and Zoya Gavrilov. I give special thanks to Aditya Khosla and Tomasz

Malisiewicz for going the extra mile to help me refine methods, design experiments,

and execute evaluation.

I thank my advisor, Antonio Torralba, for providing a never ending stream of

wisdom and ideas that has proved crucial when brainstorming experiments and in-

terpreting results. His constant enthusiasm and encouragement makes working with

him a great pleasure.

I wish to give thanks to Deva Ramanan for being an inspiring mentor who in-

troduced me to the field of computer vision and taught me how to conduct scientific

research.

Finally, I owe great thanks to my friends for their laughter and my family for their

endless support.

Funding for this work was provided by a NSF Graduate Research Fellowship, a Google

research award, ONR MURI N000141010933 and NSF Career Award No. 0747120.

7

8

Contents

1 Introduction 15

1.1 Contributions . 19

1.2 Thesis Overview . 19

2 Related Work 21

2.1 Feature Inversion and Visualization 21

2.2 Diagnosing Object Detection Systems 22

3 Feature Visualization Algorithms 23

3.1 Algorithm A: Exemplar LDA (ELDA) 24

3.2 Algorithm B: Ridge Regression . 25

3.3 Algorithm C: Direct Optimization . 26

3.4 Algorithm D: Paired Dictionary Learning 26

4 Evaluation of Visualizations 31

4.1 Qualitative Results . 31

4.1.1 SIFT Comparison . 31

4.1.2 Dimensionality . 33

4.1.3 Color Inversions . 33

4.2 Quantative Benchmarks . 33

4.2.1 Reconstruction Error . 35

4.2.2 Visualization Benchmark . 35

9

5 Understanding Object Detectors 43

5.1 HOG Goggles . 43

5.2 Human+HOG Detectors . 46

5.3 Tweaking HOG . 48

5.3.1 Normalization . 49

5.3.2 Texture . 49

5.4 Interpolation in HOG Space . 49

5.5 Visualizing Models . 51

5.5.1 Model Weight Visualization 51

5.5.2 Super Objects . 54

5.6 Choice of Features . 54

6 Conclusion 57

10

List of Figures

1-1 Example of our visualization. 16

1-2 A curious false detection . 17

1-3 Visualizing the curious false detection 17

1-4 Visualizations of false positives . 18

3-1 Feature inversion by Exemplar LDA 24

3-2 Visualization of paired dictionary . 27

3-3 Paired dictionary learning graphic . 28

4-1 Qualitative results of feature inversions 32

4-2 Comparison of HOG inversions to SIFT inversions 34

4-3 Feature inversions and dimensionality 35

4-4 Color inversion results on outdoor images 36

4-5 Color inversions results on indoor images 37

4-6 Color inversions learned dictionaries 37

4-7 Visualization benchmark confusion matrices 40

5-1 HOG Goggles . 44

5-2 Visualizing false positives . 45

5-3 Human+HOG Detector User Interface 46

5-4 Human+HOG detector performance 47

5-5 Visualizing HOG normalization . 50

5-6 Visualizing HOG texture . 51

5-7 Linear interpolation in HOG space 52

11

5-8 Visualizing learned models . 53

5-9 Visualizing super objects . 54

5-10 Visualizing HSC vs HOG . 55

12

List of Tables

4.1 Measuring reconstruction error . 38

4.2 Measuring visualization performance 39

13

14

Chapter 1

Introduction

“The real voyage of discovery consists not in seeking new landscapes but

in having new eyes.” — Marcel Proust

One of the fundamental problems in computer vision is to build a system that

automatically recognizes objects in images. The rise of object recognition systems

would enable many particularly exciting applications, such as robots that clean and

cook in our homes, smart cameras that automatically respond to crises, or cars that

drive themselves. Unfortunately, although humans are able to perceive the visual

world without difficulty, building an automatic vision system has proved challenging.

While there are many possible approaches to object recognition, the dominant

paradigm today uses machine learning methods to learn visual appearance models

from a large database [7, 14, 26, 35, 2, 15, 11, 22]. One of the most crucial components

in this paradigm is the feature space for representing an image, and the choice of

features often has the most impact on the final performance [29]. Consequently, there

has been significant work focused on creating better features for object recognition

[28, 7, 24, 1, 4, 38, 31, 9].

This thesis introduces the tools to visualize feature spaces.1 Since most feature

spaces are too high dimensional for humans to directly inspect, we present algorithms

to invert feature descriptors back to a natural image. We found that these inversions

1A preliminary version of this work appeared in [36].

15

Figure 1-1: Example of our visualization.

provide an accurate and intuitive visualization of feature descriptors commonly used

in object detection. See Figure 1-1 for an example of the visualization.

We discovered that these visualizations allow us to inspect object detection sys-

tems in new ways and obtain insights into a detector’s failures. Consider Figure 1-2,

which shows a high scoring detection from an object detector with HOG features [7]

and a linear SVM [6] with deformable parts [14] trained on PASCAL [12]. Despite

the field’s progress, why do our detectors still think that sea water looks like a car?

Our visualizations offer an explanation. Figure 1-3 shows the output from our

visualization on the features for the false car detection. This visualization reveals

that, while there are clearly no cars in the original image, there is a car hiding in

the HOG descriptor. HOG features see a slightly different visual world than what

humans see, and by visualizing this space, we can gain a more intuitive understanding

of our object detectors.

Figure 1-4 inverts more top detections for a few categories. Can you guess which

are false alarms? Take a minute to study the figure since the next sentence might

ruin the surprise. Although every visualization looks like a true positive, all of these

detections are actually false alarms. Consequently, we can conclude that, even with a

better learning algorithm or more data, these false alarms will likely persist. In other

16

Figure 1-2: An image from PASCAL and a high scoring car detection from DPM [14].
Why did the detector fail?

Figure 1-3: We show the crop for the false car detection from Figure 1-2. On the right,
we show our visualization of the HOG features for the same patch. Our visualization
reveals that this false alarm actually looks like a car in HOG space.

17

(a) Person

(b) Chair

(c) Car

Figure 1-4: We visualize some high scoring detections from the deformable parts
model [14] for person (top left), chair (top right), and car (bottom). Can you guess
which are false alarms? Take a minute to study this figure, then see Figure 5-2 for
the corresponding RGB patches.

words, the features are to blame.

We expect feature visualizations can be a powerful tool for understanding object

detection systems and advancing research in computer vision. The tools in this thesis

allow humans to put on “feature space glasses” to perceive the visual world as a

computer sees it. Our hope is that these visualization tools will allow scientists and

researchers to gain a more intuitive understanding of the features that we use everyday

to ultimately advance the state-of-the-art in object detection systems.

18

1.1 Contributions

The contributions in this thesis revolve around developing and using feature space

visualizations for advancing research in object detection:

1. The primary contribution of this thesis is the presentation of algorithms for visu-

alizing features used in object detection. To this end, we present four algorithms

to invert object detection features back to natural images. Each algorithm has

different trade-offs: some are fast, some are non-parametric, and others are

more accurate. All of our algorithms are simple to understand, and they are

general so they can be used to visualize any feature.

2. In order to compare our visualization quality, we further propose two quantative

benchmarks to evaluate the performance of feature inversion algorithms. Our

first metric is automatic and uses normalized cross correlation to measure how

well an algorithm reconstruct relative pixel values. Our second metric uses

a large human study to see how well people can recover high level semantic

information from our visualizations. As we will show, our visualizations are

significantly more accurate than existing methods under both of these metrics.

3. The final contribution of this thesis is demonstrating that visualizations are

useful for inspecting the behavior of object detection systems and analyzing

failures. We present a variety of experiments using our HOG inverse, such as

diagnosing a detector’s false positives, generating high scoring “super objects”

for an object detector, examining different feature hyperparameters, and visual-

izing an object detector’s learned decision boundary. Our visualizations reveal

that the features are to blame for many object detection failures.

1.2 Thesis Overview

The remainder of this thesis describes, evaluates, and applies our visualization al-

gorithms in detail. Chapter 2 briefly reviews related work in feature inversion and

19

diagnosing object detection errors. Chapter 3 describes four algorithms to invert

features. Chapter 4 evaluates all our algorithms on HOG features using both an

automatic benchmark as well as a large human study. Chapter 5 then uses our vi-

sualization algorithms to explain some of the unusual behaviors of object detection

systems. Chapter 6 finally offers concluding remarks.

20

Chapter 2

Related Work

In this chapter, we briefly review related work. This thesis is most closely related to

work in feature inversion and a recent line of papers that attempt to diagnose object

detection systems.

2.1 Feature Inversion and Visualization

Our visualization algorithms extend an actively growing body of work in feature

inversion. Torralba and Oliva, in early work [34], described a simple iterative proce-

dure to recover images only given gist descriptors [28]. Weinzaepfel et al. [39] were

the first to reconstruct an image given its keypoint SIFT descriptors [24]. Their ap-

proach obtains compelling reconstructions using a nearest neighbor based approach

on a massive database. d’Angelo et al. [8] then developed an algorithm to reconstruct

images given only LBP features [4, 1]. Their method analytically solves for the inverse

image and does not require a dataset. In a related vein of work, Hariharan et al. [16]

further describe a method to invert descriptors back to a contour image.

While [39, 8, 34] do a good job at reconstructing images from SIFT, LBP, and gist

features, our visualization algorithms have several advantages. Firstly, while existing

methods are designed for specific features, our visualization algorithms we propose are

feature independent. Since we cast feature inversion as a machine learning problem,

our algorithms can be used to visualize any feature. In this thesis, we focus on features

21

for object detection, the most popular of which is HOG. Secondly, our algorithms are

fast: our best algorithm can invert features in under a second on a desktop computer,

enabling interactive visualization. Finally, to our knowledge, this thesis is the first to

invert HOG.

2.2 Diagnosing Object Detection Systems

The application of our visualizations complement a recent line of papers that provide

tools to diagnose object recognition systems, which we briefly mention here. Parikh

and Zitnick [30, 29] introduced a new paradigm for human debugging of object de-

tectors, an idea that we adopt in our experiments. Hoiem et al. [18] performed a

large study analyzing the errors that object detectors make. Divvala et al. [10] an-

alyze part-based detectors to determine which components of object detection have

the most impact on performance. Tatu et al. [32] explored the set of images that

generate identical HOG descriptors. Liu and Wang [23] designed algorithms to high-

light which image regions contribute the most to a classifier’s confidence. Zhu et al.

[41] try to determine whether we have reached Bayes risk for HOG. The tools in this

thesis enable an alternative mode to analyze object detectors through visualizations.

By putting on ‘HOG glasses’ and visualizing the world according to the features, we

are able to gain a better understanding of the failures and behaviors of our object

detection systems.

22

Chapter 3

Feature Visualization Algorithms

We pose the feature visualization problem as one of feature inversion, i.e. recovering

the natural image that generated a feature vector. Let x ∈ RD be an image and y =

φ(x) be the corresponding feature descriptor. Since φ(·) is a many-to-one function,

no analytic inverse exists. Hence, we seek an image x that, when we compute features

on it, closely matches the original descriptor y:

φ−1(y) = argmin
x∈RD

||φ(x)− y||22 (3.1)

Optimizing Equation 3.1 is challenging. Although Equation 3.1 is not convex, we

tried gradient-descent strategies by numerically evaluating the derivative in image

space with Newton’s method for HOG features. Unfortunately, we observed poor

results, likely because HOG is both highly sensitive to noise and Equation 3.1 has

frequent local minima.

In the rest of this chapter, we present four algorithms for inverting features. We

focus on HOG, although our algorithms are general and can be applied to any feature.

We begin by describing our simplest algorithm that uses an exemplar object detector

to invert features. We then describe a parametric algorithm based off linear regres-

sion that learns a mapping between features and natural images. We next present

an algorithm that searches over a large space of candidate images to minimize the

reconstruction error. Finally, we introduce our main feature inversion that learns a

23

Figure 3-1: Inverting HOG features using exemplar LDA. We train an exemplar LDA
model on the HOG descriptor we wish to invert and apply it to a large database. The
left hand side of the above equation are the top detections, while the right hand side
shows the average of the top 100. Even though all top detections are semantically
meaningless, their average is close to the original image, shown on the right. Notice
that all the top detections share structure with the original, e.g., the top left bottles
create the smoke stack for the ship, and the middle right hands compose the wings
for the bird.

pair of dictionaries that enable regression between features and natural images.

3.1 Algorithm A: Exemplar LDA (ELDA)

Consider the top detections for the exemplar object detector [17, 26] for a few images

shown in Fig.3-1. Although all top detections are false positives, notice that each

detection captures some statistics about the query. Even though the detections are

wrong, if we squint, we can see parts of the original object appear in each detection.

We use this simple observation to produce our first inversion algorithm. Suppose

we wish to invert HOG feature y. We first train an exemplar LDA detector [17] for

this query:

w = Σ−1(y − µ) (3.2)

We then score w against every sliding window on a large database. The HOG inverse

is then simply the average of the top K detections in RGB space:

φ−1
A (y) =

1

K

K∑
i=1

zi (3.3)

where zi is a top detection.

24

This method, although simple, produces surprisingly accurate reconstructions,

even when the database does not contain the category of the HOG template. We

note that this method may be subject to dataset bias issues [33]. We also point out

that a similar nearest neighbor based technique is used in brain research to visualize

what a person might be seeing [27].

3.2 Algorithm B: Ridge Regression

Unfortunately, running an object detector across a large database is computationally

expensive. In this section, we present a fast, parametric inversion algorithm.

Let X ∈ RD be a random variable representing a gray scale image and Y ∈ Rd be

a random variable of its corresponding HOG point. We define these random variables

to be normally distributed on a D + d-variate Gaussian P (X, Y) ∼ N (µ,Σ) with

parameters:

µ = [µX µY] and Σ =
[

ΣXX ΣXY

ΣT
XY ΣY Y

]
(3.4)

In order to invert a HOG feature y, we calculate the most likely image from the

conditional Gaussian distribution P (X|Y = y):

φ−1
B (y) = argmax

x∈RD

P (X = x|Y = y) (3.5)

It is well known that Gaussians have a closed form conditional mode:

φ−1
B (y) = ΣXY Σ−1

Y Y (y − µY) + µX (3.6)

Under this inversion algorithm, any HOG point can be inverted by a single matrix

multiplication, allowing for inversion in under a second.

We estimate µ and Σ on a large database. In practice, Σ is not positive definite;

we add a small uniform prior (i.e., Σ̂ = Σ + λI) so Σ can be inverted. Since we

wish to invert any HOG point, we assume that P (X, Y) is stationary [17], allowing

25

us to efficiently learn the covariance across massive datasets. We invert an arbitrary

dimensional HOG point by marginalizing out unused dimensions.

We found that ridge regression yields blurred inversions. Intuitively, since HOG

is invariant to shifts up to its bin size, there are many images that map to the same

HOG point. Ridge regression is reporting the statistically most likely image, which

is the average over all shifts. This causes ridge regression to only recover the low

frequencies of the original image.

3.3 Algorithm C: Direct Optimization

We now provide a baseline that attempts to find images that, when we compute HOG

on it, sufficiently match the original descriptor. In order to do this efficiently, we only

consider images that span a natural image basis. Let U ∈ RD×K be the natural

image basis. We found using the first K eigenvectors of ΣXX ∈ RD×D worked well

for this basis. Any image x ∈ RD can be encoded by coefficients ρ ∈ RK in this basis:

x = Uρ. We wish to minimize:

φ−1
C (y) = Uρ∗

where ρ∗ = argmin
ρ∈RK

||φ(Uρ)− y||22
(3.7)

Empirically we found success optimizing Equation 3.7 using coordinate descent on ρ

with random restarts. We use an over-complete basis corresponding to sparse Gabor-

like filters for U . We compute the eigenvectors of ΣXX across different scales and

translate smaller eigenvectors to form U .

3.4 Algorithm D: Paired Dictionary Learning

Direct optimization obtains highly accurate results, but since optimization requires

computing HOG features on a large number of candidate images, convergence is slow.

In our final algorithm, we propose a fast approximation.

26

Figure 3-2: Some pairs of dictionaries for U and V . The left of every pair is the gray
scale dictionary element and the right is the positive components elements in the
HOG dictionary. Notice that the gray patches are correlated with the HOG patches.

27

Figure 3-3: Inverting HOG using paired dictionary learning. We first project the
HOG vector on to a HOG basis. By jointly learning a coupled basis of HOG features
and natural images, we then transfer the coefficients to the image basis to recover the
natural image.

Let x ∈ RD be an image and y ∈ Rd be its HOG descriptor. Suppose we write

x and y in terms of bases U ∈ RD×K and V ∈ Rd×K respectively, but with shared

coefficients α ∈ RK :

x = Uα and y = V α (3.8)

The key observation is that inversion can be obtained by first projecting the HOG

features y onto the HOG basis V , then projecting α into the natural image basis U :

φ−1
D (y) = Uα∗

where α∗ = argmin
α∈RK

||V α− y||22 s.t. ||α||1 ≤ λ
(3.9)

See Figure 3-3 for a graphical representation of the paired dictionaries. Since efficient

solvers for Equation 3.9 exist [25, 21], we can invert features in under two seconds on

a 4 core CPU.

Paired dictionaries require finding appropriate bases U and V such that Equation

3.8 holds. To do this, we solve a paired dictionary learning problem, inspired by

recent super resolution sparse coding work [40, 37]:

argmin
U,V,α

N∑
i=1

(
||xi − Uαi||22 + ||φ(xi)− V αi||22

)
s.t. ||αi||1 ≤ λ ∀i, ||U ||22 ≤ γ1, ||V ||22 ≤ γ2

(3.10)

28

After a few algebraic manipulations, the above objective simplifies to a standard

sparse coding and dictionary learning problem with concatenated dictionaries, which

we optimize using SPAMS [25]. Optimization typically took a few hours on medium

sized problems. We estimate U and V with a dictionary size K ≈ 103 and training

samples N ≈ 106 from a large database. See Figure 3-2 for a visualization of the

learned dictionary pairs.

Unfortunately, the paired dictionary learning formulation suffers on problems of

nontrivial scale. In practice, we only learn dictionaries for 5 × 5 HOG templates.

In order to invert a w × h HOG template y, we invert every 5 × 5 subpatch inside

y and average overlapping patches in the final reconstruction. We found that this

approximation works well in practice. We hope to alleviate this concern in the future

with convolutional sparse coding [20, 3].

We found that the paired dictionary still obtains reasonable performance if, in-

stead of learning the dictionaries with Equation 3.10, we use randomly samples from

the training set as the dictionaries. While there is a noticeable drop in performance,

the results are still reasonable, an observation that reinforces recent findings that

learning dictionaries may not be crucial for performance in many vision tasks [5]. We

note that random samples allow the paired dictionary to be trained in real time with

only a modest drop in performance. Nonetheless, learning still provides some benefit,

and so report results with the learned dictionaries.

29

30

Chapter 4

Evaluation of Visualizations

In this chapter, we evaluate our four inversion algorithms using both qualitative and

quantitative measures. We use PASCAL VOC 2011 [12] as our dataset and we invert

patches corresponding to objects. Any algorithm that required training could only

access the training set. During evaluation, only images from the validation set are

examined. The database for exemplar LDA excluded the category of the patch we

were inverting to reduce the effect of biases.

4.1 Qualitative Results

We show our inversions in Figure 4-1 for a few object categories. Exemplar LDA and

ridge regression tend to produce blurred visualizations. Direct optimization recov-

ers high frequency details at the expense of extra noise. Paired dictionary learning

produces the best visualization for HOG descriptors. By learning a sparse dictionary

over the visual world and the correlation between HOG and natural images, paired

dictionary learning recovered high frequencies without introducing significant noise.

4.1.1 SIFT Comparison

We compare our HOG inversions against SIFT reconstructions on the INRIA Holidays

dataset [19]. Figure 4-2 shows a qualitative comparison between paired dictionary

31

(a) Original (b) ELDA (c) Ridge (d) Direct (e) PairDict

Figure 4-1: We show the results for all four of our inversion algorithms on held out
image patches on similar dimensions common for object detection.

32

learning and Weinzaepfel et al. [39]. Notice that HOG inversion is more blurred than

key point SIFT since HOG is histogram based.

4.1.2 Dimensionality

HOG inversions are sensitive to the dimensionality of their templates. For medium

(10 × 10) to large templates (40 × 40), we obtain reasonable performance. But, for

small templates (5 × 5) the inversion is blurred. Figure 4-3 shows examples as the

HOG descriptor dimensionality changes.

4.1.3 Color Inversions

We discovered that the paired dictionary is able to recover color from HOG descrip-

tors. Figure 4-4 shows the result of training a paired dictionary to estimate RGB

images instead of grayscale images. While the paired dictionary assigns arbitrary

colors to man-made objects and in-door scenes (see Figure 4-5), it frequently colors

natural objects correctly, such as grass or the sky, likely because those categories are

strongly correlated to HOG descriptors. We focus on grayscale visualizations in this

thesis because we found those to be more intuitive for humans to understand.

4.2 Quantative Benchmarks

In the remainder of this chapter, we evaluate our algorithms under two benchmarks:

first, an inversion metric that measures how well our inversions reconstruct the original

images, and second, a visualization challenge conducted on Amazon Mechanical Turk

designed to determine how well people can infer the original category from the inverse.

The first experiment measures the algorithm’s reconstruction error, while the second

experiment analyzes the recovery of high level semantics.

33

Figure 4-2: We compare our paired dictionary learning approach on HOG with the
algorithm of [39] on SIFT. Since HOG is invariant to color, we are only able to
recover a grayscale image. Furthermore, our blurred inversion shows that HOG is a
more coarse descriptor than keypoint SIFT.

34

Figure 4-3: Our inversion algorithms are sensitive to the HOG template size. Larger
templates are easier to invert since they are less invariant. We show how performance
degrades as the template becomes smaller. Dimensions in HOG space shown: 40×40,
20× 20, 10× 10, and 5× 5.

4.2.1 Reconstruction Error

We consider the inversion performance of our algorithm: given a HOG feature y, how

well does our inverse φ−1(y) reconstruct the original pixels x for each algorithm? Since

HOG is invariant up to a constant shift and scale, we score each inversion against the

original image with normalized cross correlation. Our results are shown in Table 4.1.

Overall, exemplar LDA does the best at pixel level reconstruction.

4.2.2 Visualization Benchmark

While the inversion benchmark evaluates how well the inversions reconstruct the

original image, it does not capture the high level content of the inverse: is the inverse

of a sheep still a sheep? To evaluate this, we conducted a study on Amazon Mechanical

Turk. We sampled 2,000 windows corresponding to objects in PASCAL VOC 2011.

We then showed participants an inversion from one of our algorithms and asked users

to classify it into one of the 20 categories. Each window was shown to three different

users. Users were required to pass a training course and qualification exam before

participating in order to guarantee users understood the task. Users could optionally

select that they were not confident in their answer. We also compared our algorithms

against the standard black-and-white HOG glyph popularized by [7].

Our results in Table 4.2 show that paired dictionary learning and direct optimiza-

tion provide the best visualization of HOG descriptors for humans. Ridge regression

35

Figure 4-4: Color inversions of PASCAL images on outdoor scenes. Left is our inverse
and right is the original image.

36

Figure 4-5: Color inversions of PASCAL images on indoor scenes. Left is our inverse
and right is the original image.

Figure 4-6: Visualization of the learned paired dictionary for inverting HOG to RGB
images.

37

Category ELDA Ridge Direct PairDict
aeroplane 0.634 0.633 0.596 0.609
bicycle 0.452 0.577 0.513 0.561
bird 0.680 0.650 0.618 0.638
boat 0.697 0.678 0.631 0.629
bottle 0.697 0.683 0.660 0.671
bus 0.627 0.632 0.587 0.585
car 0.668 0.677 0.652 0.639
cat 0.749 0.712 0.687 0.705
chair 0.660 0.621 0.604 0.617
cow 0.720 0.663 0.632 0.650
table 0.656 0.617 0.582 0.614
dog 0.717 0.676 0.638 0.667
horse 0.686 0.633 0.586 0.635
motorbike 0.573 0.617 0.549 0.592
person 0.696 0.667 0.646 0.646
pottedplant 0.674 0.679 0.629 0.649
sheep 0.743 0.731 0.692 0.695
sofa 0.691 0.657 0.633 0.657
train 0.697 0.684 0.634 0.645
tvmonitor 0.711 0.640 0.638 0.629
Mean 0.671 0.656 0.620 0.637

Table 4.1: We evaluate the performance of our inversion algorithm by comparing
the inverse to the ground truth image using the mean normalized cross correlation.
Higher is better; a score of 1 is perfect. In general, exemplar LDA does slightly better
at reconstructing the original pixels.

38

Category ELDA Ridge Direct PairDict Glyph Expert
aeroplane 0.433 0.391 0.568 0.645 0.297 0.333
bicycle 0.327 0.127 0.362 0.307 0.405 0.438
bird 0.364 0.263 0.378 0.372 0.193 0.059
boat 0.292 0.182 0.255 0.329 0.119 0.352
bottle 0.269 0.282 0.283 0.446 0.312 0.222
bus 0.473 0.395 0.541 0.549 0.122 0.118
car 0.397 0.457 0.617 0.585 0.359 0.389
cat 0.219 0.178 0.381 0.199 0.139 0.286
chair 0.099 0.239 0.223 0.386 0.119 0.167
cow 0.133 0.103 0.230 0.197 0.072 0.214
table 0.152 0.064 0.162 0.237 0.071 0.125
dog 0.222 0.316 0.351 0.343 0.107 0.150
horse 0.260 0.290 0.354 0.446 0.144 0.150
motorbike 0.221 0.232 0.396 0.224 0.298 0.350
person 0.458 0.546 0.502 0.676 0.301 0.375
pottedplant 0.112 0.109 0.203 0.091 0.080 0.136
sheep 0.227 0.194 0.368 0.253 0.041 0.000
sofa 0.138 0.100 0.162 0.293 0.104 0.000
train 0.311 0.244 0.316 0.404 0.173 0.133
tvmonitor 0.537 0.439 0.449 0.682 0.354 0.666
Mean 0.282 0.258 0.355 0.383 0.191 0.233

Table 4.2: We evaluate visualization performance across twenty PASCAL VOC cat-
egories by asking Mechanical Turk workers to classify our inversions. Numbers are
percent classified correctly; higher is better. Chance is 0.05. Glyph refers to the
standard black-and-white HOG diagram popularized by [7]. Paired dictionary learn-
ing provides the best visualizations for humans. Interestingly, the glyph is best for
bicycles.

39

Figure 4-7: We show the confusion matrices for each of our four algorithms as well
as the standard HOG black-and-white glyph visualization. The vertical axis is the
ground truth category and the horizontal axis is the predicted category.

40

and exemplar LDA performs better than the glyph, but they suffer from blurred in-

versions. Human performance on the HOG glyph is generally poor, and participants

were even the slowest at completing that study. Interestingly, the glyph does the best

job at visualizing bicycles, likely due to their unique circular gradients. Overall, our

results suggest that visualizing HOG with the glyph is misleading, and using richer

diagrams is useful for interpreting HOG vectors.

There is strong correlation with the accuracy of humans classifying the HOG in-

versions with the performance of HOG based object detectors. We found human clas-

sification accuracy on inversions and the state-of-the-art object detection AP scores

from [13] are correlated with a Spearman’s rank correlation coefficient of 0.77. This

result suggests that humans can predict the performance of object detectors by only

looking at HOG visualizations.

Figure 4-7 shows the classification confusion matrix for all algorithms. Partici-

pants tended to make the same mistakes that object detectors make. Notice that

bottles are often confused with people, motorbikes with bicycles, and animals with

other animals. Users incorrectly showed a strong prior that the inversions were for

people, evidenced by a bright vertical bar in the confusion matrix.

41

42

Chapter 5

Understanding Object Detectors

We have so far presented four algorithms to visualize object detection features. We

evaluated the visualizations with a large human study, and we found that paired

dictionary learning provides the most intuitive visualization of HOG features. In

this section, we will use this visualization to inspect the behavior of object detection

systems.

5.1 HOG Goggles

Our visualizations reveal that the world that features see is slightly different from

the world that the human eye perceives. Figure 5-1a shows a normal photograph of

a man standing in a dark room, but Figure 5-1b shows how HOG features see the

same man. Since HOG is invariant to illumination changes and amplifies gradients,

the background of the scene, normally invisible to the human eye, materializes in our

visualization.

In order to understand how this clutter affects object detection, we visualized the

features of some of the top false alarms from the Felzenszwalb et al. object detection

system [14] when applied to the PASCAL VOC 2007 test set. Figure 1-4 shows our

visualizations of the features of the top false alarms. Notice how the false alarms

look very similar to true positives. This result suggests that these failures are due to

limitations of HOG, and consequently, even if we develop better learning algorithms

43

(a) Human Vision (b) HOG Vision

Figure 5-1: HOG inversion reveals the world that object detectors see. The left shows
a man standing in a dark room. If we compute HOG on this image and invert it, the
previously dark scene behind the man emerges. Notice the wall structure, the lamp
post, and the chair in the bottom right hand corner.

44

(a) Person

(b) Chair

(c) Car

Figure 5-2: We show the original RGB patches that correspond to the visualizations
from Figure 1-4. We print the original patches on a separate page to highlight how
the inverses of false positives look like true positives. We recommend comparing
this figure side-by-side with Figure 1-4. Top left: person detections, top right: chair
detections, bottom: car detections.

or use larger datasets, these will false alarms will likely persist.

Figure 5-2 shows the corresponding RGB image patches for the false positives

discussed above. Notice how when we view these detections in image space, all of

the false alarms are difficult to explain. Why do chair detectors fire on buses, or

people detectors on cherries? Instead, by visualizing the detections in feature space,

we discovered that the learning algorithm actually made reasonable failures since the

features are deceptively similar to true positives.

45

Figure 5-3: The Amazon Mechanical Turk interface for the Human+HOG detector.

5.2 Human+HOG Detectors

Although HOG features are designed for machines, how well do humans see in HOG

space? If we could quantify human vision on the HOG feature space, we could get

insights into the performance of HOG with a perfect learning algorithm (people).

Inspired by Parikh and Zitnick’s methodology [30, 29], we conducted a large human

study where we had Amazon Mechanical Turk workers act as sliding window HOG

based object detectors.

We built an online interface for humans (see Figure 5-3) to look at HOG visual-

izations of window patches at the same resolution as DPM. We instructed workers

to either classify a HOG visualization as a positive example or a negative example

for a category. By averaging over multiple people (we used 25 people per window),

we obtain a real value score for a HOG patch. To build our dataset, we sampled top

detections1 from DPM on the PASCAL VOC 2007 dataset for a few categories. Our

dataset consisted of around 5, 000 windows per category and around 20% were true

positives.

1Note that recall will now go to 1 in these experiments because we only consider windows that
DPM detects. Consequently, this experiment can only give us relative orderings of detectors. Un-
fortunately, computing full precision-recall curves is cost prohibitive.

46

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Chair

HOG+Human AP = 0.63
RGB+Human AP = 0.96
HOG+DPM AP = 0.51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Cat

HOG+Human AP = 0.78
HOG+DPM AP = 0.58

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Car

HOG+Human AP = 0.83
HOG+DPM AP = 0.87

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Person

HOG+Human AP = 0.69
HOG+DPM AP = 0.79

Figure 5-4: By instructing multiple human subjects to classify the visualizations, we
show performance results with an ideal learning algorithm (i.e., humans) on the HOG
feature space. Please see text for details.

47

Figure 5-4 shows precision recall curves for the Human+HOG based object de-

tector. In most cases, human subjects classifying HOG visualizations were able to

rank sliding windows with either the same accuracy or better than DPM. Humans

tied DPM for recognizing cars, suggesting that performance may be saturated for car

detection on HOG. Humans were slightly superior to DPM for chairs, although per-

formance might be nearing saturation soon. There appears to be the most potential

for improvement for detecting cats with HOG. Subjects performed slightly worst than

DPM for detecting people, but we believe this is the case because humans tend to be

good at finding other people in abstract drawings.

We then repeated the same experiment as above on chairs except we instructed

users to classify the original RGB patch instead of the HOG visualization. As ex-

pected, humans achieved near perfect accuracy at detecting chairs with RGB slid-

ing windows. The performance gap between the Human+HOG detector and Hu-

man+RGB detector demonstrates the amount of information that HOG features dis-

card.

Our experiments suggest that there is still some performance left to be squeezed

out of HOG. However, DPM is likely operating very close to the performance limit of

HOG. Since humans are the ideal learning agent and they still had trouble detecting

objects in HOG space, HOG may be too lossy of a descriptor for high performance

object detection. If we wish to significantly advance the state-of-the-art in recognition,

we suspect focusing effort on building better features that capture finer details as

well as higher level information will lead to substantial performance improvements in

object detection.

5.3 Tweaking HOG

In this section, we visualize a few tweaked variants of HOG. We show how HOG’s

normalization step affects the feature, and we offer a new visualization of the texture

features inside the HOG descriptor.

48

5.3.1 Normalization

A crucial step in computing HOG is normalizing each bin with its neighbors. Figure 5-

5 shows inversions with and without normalization. While no normalization makes the

inversions less noisy, they are also no longer invariant to lighting. This visualization

confirms that the normalization step makes HOG robust to lighting changes.

5.3.2 Texture

A common implementation of HOG adds a texture based feature to each cell, an idea

popularized by [14]. While the HOG glyph does not visualize this texture feature,

our inversion offers one of the first visualizations of these cells. Figure 5-6 shows

results where we invert from only the texture dimensions. While the inversions are

predictably degraded, there is still significant information in the texture dimensions.

Notably, the texture features primarily capture sharper gradients.

5.4 Interpolation in HOG Space

Since object detection is computationally expensive, most state-of-the-art object de-

tectors today depend on linear classifiers. Figure 5-7 analyzes whether recognition

is linear separable in HOG space by inverting the midpoint between two positive

examples. Not surprisingly, our results show that frequently the midpoint no longer

resembles the positive class. Since linear classifiers assume that the midpoint of any

positive example is also a positive, this result indicates that perfect car detection is

not possible with a single linear separator in HOG space. Car detection may be solv-

able with view based mixture components, motivating much recent work in increasing

model complexity [26, 14].

49

Figure 5-5: We compare HOG with and without normalization. Left: no normaliza-
tion. Middle: with normalization. Right: original image. Notice how normalization
increases HOG’s robustness to lighting (rows 1 and 2) at the expense of extra noise
(rows 3 and 4).

50

Figure 5-6: We invert only the texture features inside HOG and compare to the
full HOG reconstruction. Left: texture only visualization. Middle: full HOG vi-
sualization. Right: original image. Even though the texture features are very low
dimensional (4 dimensions per cell), there is still significant information stored inside.

5.5 Visualizing Models

Although our focus in this thesis to visualize feature descriptors, our algorithms are

also able to visualize learned object models. In this section, we visualize a few models

from popular object detectors.

5.5.1 Model Weight Visualization

We found our algorithms are also useful for visualizing the learned models of an object

detector. Figure 5-8 visualizes the root templates and the parts from [14] by inverting

the positive components of the learned weights. These visualizations provide hints on

which gradients the learning found discriminating. Notice the detailed structure that

emerges from our visualization that is not apparent in the HOG glyph. In most cases,

one can recognize the category of detector by only looking at the visualizations.

51

Figure 5-7: We linearly interpolate between examples in HOG space and invert its
path. First two rows: occasionally, the interpolation of two examples is still in the pos-
itive class even under extreme viewpoint change. Last two rows: frequently, however,
the midpoint is no longer the positive. This confirms that a single linear separator in
HOG space is insufficient for perfect object detection.

52

Figure 5-8: We visualize a few deformable parts models trained with [14]. Notice the
structure that emerges with our visualization. First row: car, person, bottle, bicycle,
motorbike, potted plant. Second row: train, bus, horse, television, chair. For the
right most visualizations, we also included the HOG glyph. Our visualizations tend
to reveal more detail than the glyph.

53

Figure 5-9: We train single component, linear SVM object detectors with HOG for
a variety of categories and translate in HOG space orthogonal to the decision hyper-
plane. Moving towards the right is making the object more positive and to the left
is making it more negative. The full color image on the right is the original image.
Moving towards the positive world causes the discriminative gradients of the example
to increase, and moving to the negative world causes the example to become more
like background noise.

5.5.2 Super Objects

In Figure 5-9, we examine how the appearance of objects change as we make an

object “more positive” or “more negative.” We move perpendicularly to the class

decision boundary in HOG space. As the object becomes more and more positive,

the key gradients become more pronounced, but if the object is downgraded towards

the negative world, the object starts looking like noise.

5.6 Choice of Features

While HOG is the most popular feature for object detection today, it is not the only

one. In a recent paper, Ren and Ramanan showed that using a Histogram of Sparse

Codes (HSC) [31] in place of HOG can improve performance on object detection

54

Figure 5-10: We visualize HSC and HOG features using a paired dictionary. Best
viewed on the computer. Left: original image, middle: HSC visualization, right: HOG
visualization. Notice how HSC discards image artificats added during post processing
(“Grandma’s Girls” is missing) and appears to blur high frequencies (stripes on the
chair).

benchmarks. In this section, we compare visualizations of HSC with visualizations of

HOG. To do this, we trained our paired dictionary to invert HSC features instead of

HOG.

Figure 5-10 shows visualizations of HSC features on images from PASCAL VOC.

In general, HSC visualizations are very similar to HOG visualizations, but they do

reveal that HSC captures slightly different information than HOG. Firstly, HSC often

discards image artificats that are added during post-processing, such as timestamps

or in-painted text, while HOG is highly sensitive to it. We hypothesize this is the

case because the HSC feature is learned from natural images, and post-processing

text is unnatural. Secondly, HSC tends to blur high frequencies, which we believe

happens because the basis set is often small. Finally, HSC tends to capture less noise

than HOG. This appears to arise from the lack of a normalization step in HSC, so

insignificant gradients are not magnified.

55

56

Chapter 6

Conclusion

This thesis has presented four algorithms to visualize object detection features. Each

of our algorithms have a variety of trade-offs: some are fast, some are non-parametric,

some have better pixel reconstructions, and others have superior recovery of high-level

semantics. We evaluated our algorithms with a large user study on Amazon Mechan-

ical Turk and our results demonstrate that visualizing HOG with our algorithms pro-

vide both a more accurate and intuitive visualization for humans than the standard

black-and-white HOG glyph. We then used these visualizations to examine the false

alarms from a state-of-the-art object detector, and our experiments show that while

many false alarms are clearly wrong in image espace, they are still reasonable failures

since their features are deceptively similar to true positives. Our visualizations allow

us to conclude that the features are to blame for the failures.

We believe visualizations can be a powerful tool for understanding object detection

systems and advancing research in computer vision. The tools in this thesis allow a

scientist to carefully inspect our feature spaces and perceive the world as an object

detector sees it. Since object detection researchers analyze HOG glyphs everyday

and nearly every recent object detection paper includes HOG visualizations, we hope

more intuitive visualizations will lead to insights that advance the state-of-the-art in

computer vision.

57

58

Bibliography

[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In CVPR,
2012.

[2] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human
pose annotations. In Computer Vision, 2009 IEEE 12th International Conference
on, pages 1365–1372. IEEE, 2009.

[3] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional sparse coding.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust indepen-
dent elementary features. ECCV, 2010.

[5] A. Coates and A. Y. Ng. The importance of encoding versus training with sparse
coding and vector quantization. In ICML, 2011.

[6] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In CVPR, 2005.

[8] E. d’Angelo, A. Alahi, and P. Vandergheynst. Beyond bits: Reconstructing
images from local binary descriptors. ICPR, 2012.

[9] M. Dikmen, D. Hoiem, and T. S. Huang. A data driven method for feature
transformation. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 3314–3321. IEEE, 2012.

[10] S.K. Divvala, A.A. Efros, and M. Hebert. How important are deformable parts
in the deformable parts model? Technical Report, 2012.

[11] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in the
west. BMVC, 2010.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

[13] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester. Cascade object detection
with deformable part models. In CVPR, 2010.

59

[14] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object de-
tection with discriminatively trained part-based models. PAMI, 2010.

[15] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for
object detection, tracking, and action recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 33(11):2188–2202, 2011.

[16] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours
from inverse detectors. In ICCV, 2011.

[17] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clus-
tering and classification. ECCV, 2012.

[18] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors.
ECCV, 2012.

[19] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric
consistency for large scale image search. ECCV, 2008.

[20] K. Kavukcuoglu, P. Sermanet, Y.L. Boureau, K. Gregor, M. Mathieu, and Y. Le-
Cun. Learning convolutional feature hierarchies for visual recognition. NIPS,
2010.

[21] H. Lee, A. Battle, R. Raina, and A.Y. Ng. Efficient sparse coding algorithms.
NIPS, 2007.

[22] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T Freeman. Sift flow: dense
correspondence across different scenes. In Computer Vision–ECCV 2008, pages
28–42. Springer, 2008.

[23] L. Liu and L. Wang. What has my classifier learned? visualizing the classification
rules of bag-of-feature model by support region detection. In CVPR, 2012.

[24] D.G. Lowe. Object recognition from local scale-invariant features. In ICCV,
1999.

[25] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse
coding. In ICML, 2009.

[26] T. Malisiewicz, A. Gupta, and A.A. Efros. Ensemble of exemplar-svms for object
detection and beyond. In ICCV, 2011.

[27] S. Nishimoto, A.T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J.L. Gallant.
Reconstructing visual experiences from brain activity evoked by natural movies.
Current Biology, 2011.

[28] A. Oliva, A. Torralba, et al. Building the gist of a scene: The role of global
image features in recognition. Progress in Brain Research, 2006.

60

[29] D. Parikh and C L. Zitnick. The role of features, algorithms and data in visual
recognition. In CVPR, 2010.

[30] D. Parikh and C.L. Zitnick. Human-debugging of machines. In Workshop on
Computational Social Science and the Wisdom of Crowds, NIPS, 2011.

[31] X. Ren and D. Ramanan. Histograms of sparse codes for object detection.

[32] A. Tatu, F. Lauze, M. Nielsen, and B. Kimia. Exploring the representation
capabilities of the hog descriptor. In ICCV Workshops, 2011.

[33] A. Torralba and A.A. Efros. Unbiased look at dataset bias. In CVPR, 2011.

[34] A. Torralba and A. Oliva. Depth estimation from image structure. PAMI, 2002.

[35] P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-
ple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages
I–511. IEEE, 2001.

[36] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. Inverting and visual-
izing features for object detection. arXiv preprint arXiv:1212.2278, 2012.

[37] S. Wang, L. Zhang, Y. Liang, and Q. Pan. Semi-coupled dictionary learning with
applications to image super-resolution and photo-sketch synthesis. In CVPR,
2012.

[38] X. Wang, T.X. Han, and S. Yan. An hog-lbp human detector with partial occlu-
sion handling. In ICCV, 2009.

[39] P. Weinzaepfel, H. Jégou, and P. Pérez. Reconstructing an image from its local
descriptors. In CVPR, 2011.

[40] J. Yang, J. Wright, T.S. Huang, and Y. Ma. Image super-resolution via sparse
representation. Transactions on Image Processing, 2010.

[41] X. Zhu, C. Vondrick, D. Ramanan, and C.C. Fowlkes. Do we need more training
data or better models for object detection? BMVC, 2012.

61

	Introduction
	Contributions
	Thesis Overview

	Related Work
	Feature Inversion and Visualization
	Diagnosing Object Detection Systems

	Feature Visualization Algorithms
	Algorithm A: Exemplar LDA (ELDA)
	Algorithm B: Ridge Regression
	Algorithm C: Direct Optimization
	Algorithm D: Paired Dictionary Learning

	Evaluation of Visualizations
	Qualitative Results
	SIFT Comparison
	Dimensionality
	Color Inversions

	Quantative Benchmarks
	Reconstruction Error
	Visualization Benchmark

	Understanding Object Detectors
	HOG Goggles
	Human+HOG Detectors
	Tweaking HOG
	Normalization
	Texture

	Interpolation in HOG Space
	Visualizing Models
	Model Weight Visualization
	Super Objects

	Choice of Features

	Conclusion

