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Abstract.  In this paper we evaluate the performance and energy effectiveness of 
FPGA and CPU devices for a kind of parallel computing applications in which the 

workload can be distributed in a way that enables simultaneous computing in 

addition to simple off loading.  The FPGA device is programmed via OpenCL 
using the recent availability of commercial tools and hardware while Threading 

Building Blocks (TBB) is used to orchestrate the load distribution and balancing 

between FPGA and the multicore CPU. We focus on streaming applications that 
can be implemented as a pipeline of stages. We present an approach that allows the 

user to specify the mapping of the pipeline stages to the devices (FPGA, GPU or 

CPU) and the number of active threads. Using as a case study a real streaming 
application, we evaluate how these parameters affect the performance and energy 

efficiency using as reference a heterogeneous system that includes four different 

types of computational resources: a quad-core Intel Haswell CPU, an embedded 
Intel HD6000 GPU, a discrete NVIDIA GPU and an Altera FPGA.  

Keywords. FPGA, OpenCL, heterogeneous scheduling, streaming application. 

Introduction 

 Energy efficiency is a fundamental consideration in both embedded and High 

Performance Computing (HPC). In HPC computational complexity means that power 

requirements of server racks have reached the level of megawatts and electricity bills 

continue to increase. Additionally, device power density is limiting the option of using 

more logic to solve problems in parallel. Confronted with this energy challenge 

designers are moving towards heterogeneous architectures in which specialized 

hardware units accelerate complex tasks. A good example of this trend is the 

introduction of GPUs (Graphics Processing Units) for general purpose computing with 

the help of parallel programming framework such as OpenCL (Open Computing 

Language). OpenCL is a cross-platform parallel programming model designed to 

facilitate effective use of heterogeneous processing platforms. FPGAs (Field 

Programmable Gate Arrays) are an alternative high performance technology that offers 

bit-level parallel computing in contrast with the word-level parallelism deployed in 

GPUs and CPUs. Bit-level parallel computing fits certain algorithms that cannot be 

parallelized easily with traditional methods. FPGAs also excel in tasks that require very 

low latency such as financial computing thanks to its ability to establish direct wired 

connections between streaming processing pipelines customized for the input data 



without intermediate memory transfers. Recently, FPGAs manufacturers have been 

pioneering OpenCL for FPGAs aiming to overcome their low-level programming 

models. In this paper we consider an accelerated system that combines FPGAs and 

GPUs with OpenCL support together with a multi-core CPU that can act as host or 

actively participate in the computation.  We evaluate different approaches to distribute 

the workload between host and accelerator in order to exploit processing threads 

mapped to the host in addition to the accelerator. The objective is to measure if 

simultaneous computing among these devices could be more favorable from and 

energy and/or performance points of view compared with off-loading and CPU idling. 

As a case study, we introduce ViVid, an application that implements an object (e.g., 

face) detection algorithm [1] using a “sliding window object detection” approach [2]. 

ViVid consists of 5 pipeline stages as we depict in Fig. 1. The first and the last one are 

the Input and Output stages (serial), whereas the three middle stages are parallel (or 

stateless). 

 

Figure 1. Vivid application 

 

The main contribution of this paper is the study of the performance portability that a 

realistic OpenCL application can obtain in FPGA devices compared with GPU and 

CPU devices.  We also propose a mechanism to simultaneously compute the OpenCL 

kernels with FPGA (GPU) and a multicore CPU, and explore its effects on 

performance and energy.   

The rest of the paper is organized as follows. Section 1 reviews background and related 

work that uses FPGAs with OpenCL for processing intensive applications. Section 2 

presents details of our test system that also considers discrete and embedded GPU 

devices as comparison points. Section 3 evaluates the performance, power and energy 

characteristics of each of these devices individually to asses their suitability. Section 4 

explores the possibility of using the FPGA or GPU device simultaneously with the 

multicore CPU to further accelerate the system and reduce overall processing time. 

Section 5 presents the conclusions and proposes future work. 

1. Background and Related work 

 There are significant efforts at using FPGAs as an acceleration technology based on 

the same programming model as the one used for other accelerators in the system. One 

of the objectives is to make FPGAs more attractive devices for software engineers by 

raising the level of abstraction and significantly increasing the level of productivity [3].  

FPGAs are hardware configurable after manufacturing so custom circuits can be 



created to match the application requirements.  Modern FPGAs are formed by a 2-

dimensional array of basic logic cells that are used to form logic and also include 

additional embedded memory, DSP blocks, high speed transceivers and I/Os, CPU 

cores (e.g. ARM/Intel) and routing which wire together all these elements to create 

custom circuits. FPGAs have been traditionally programmed using a RTL flow (e.g. 

VHDL/Verilog) but this has started to change over the last few years. Altera, for 

example, has introduced the Software Development Kit (SDK) for OpenCL (AOCL) 

which is an OpenCL-based heterogeneous parallel programming environment for their 

devices. There are two steps to program a FPGA with an OpenCL application using the 

AOCL tool. Firstly, the Altera Offline Compiler (AOC) compiles the OpenCL kernels 

and secondly, the host-side C compiler compiles the host application and then links the 

compiled OpenCL kernels to it [4]. Each OpenCL kernel is compiled to a custom 

pipelined-style parallel circuit consuming FPGA resources. AOCL favours a single but 

very deep pipeline in which multiple work-items execute in parallel. It is possible to 

replicate pipelines for even more parallelism creating multiple compute units. The 

custom FPGAs circuits can provide better performance per watt compared to GPUs for 

certain applications [5] according to the Altera literature.  

 The more common approach of using these devices consists of offloading complex 

kernels to the accelerator by selecting the best execution resource at compile time. It is 

also possible to do run-time selection by including different versions of the same kernel 

as long as enough hardware resources are available to implement all the kernel versions 

simultaneously. The idea of run-time has been explored previously in the literature 

mainly around systems that combine GPUs and CPUs. For example, selection for 

performance with desktop CPUs and GPUs has been done in [6] that assigns 

percentages of work to both targets before making a selection based on heuristics. 

Energy aware decisions also involving CPUs and GPUs have been considered in [7] 

which requires proprietary code. A more related work in the context of streaming 

applications [8] considers performance and energy when looking for the optimal 

mapping of pipeline stages to CPU and on-chip GPU, although FPGAs are not studied.  

Recently, IBM has proposed a new programming language called Lime and the Liquid 

Metal [9] system that combines GPUs, FPGAs and CPUs.  This approach uses a 

proprietary language and cannot leverage the extended efforts invested in creating 

high-level compilers by the different vendors.  SnuCL also proposes [10] an OpenCL 

framework for heterogeneous CPU/GPU clusters, considering how to combine clusters 

with different GPU and CPU hardware under a single OS image. In this paper we 

extend previous research around the idea of run-time selection by considering the 

efficiency of OpenCL-supported FPGAs compared with GPUs and CPUs and also the 

possibility of deploying CPUs and FPGAs simultaneously.   

2. Test system specifications 

 In order to perform a fair comparison a single test system is considered in which all the 

computational resources are installed.  This test system is formed by a desktop 

environment running Windows 7 64-bit and equipped with the different OpenCL 

targets which are the Terasic DE5-net board that includes an Altera Stratix V A7 

FPGA, a Core i7 4770k 3.5 GHz Haswell CPU with a HD6000 embedded GPU and a 

Nvidia Quadro K600 GPU. We have selected the K600 GPU as an example of low-



power device with comparable thermal power dissipations rated at 25 W for the FPGA 

and 40 W for the GPU. 

Currently the larger FPGA available in the Altera OpenCL program is the Stratix V D8. 

Our device is the Stratrix V A7 FPGA that is comparable in size to the D8 in all the 

parameters except in embedded DSP blocks. The Altera Stratrix V A7 FPGA contains 

622,000 logic elements comparable to the 695,000 available in the Stratix V D8 FPGA. 

The embedded memory in both FPGAs is rated at 52 Mbit for both devices, which can 

be used as private or local memory in OpenCL.  The main difference is that the A7 

device contains 256 27x27 DSP blocks, which is much lower than the 1963 DSP blocks 

present in the D8. The device memory is formed by 4GB DDR3 at 800 MHz installed 

in the DE5-net board with a max bandwidth of 25 GB/s.  

 The Nvidia Quadro K600 has 192 CUDA cores, 1 GB DDR3 memory, the max 

bandwidth is equivalent to the DE5-net and the top floating point performance is 

indicated as 336 GFLOPs. This top performance is much more difficult to determine in 

the FPGA device since the amount of floating point hardware that can be implemented 

depends on the type of operations and the logic that is required by the rest of the 

algorithm. One of the strengths of the FPGA is its abundant and flexible local memory 

that can be used to buffer data reducing the need for off-chip memory accesses.  The 

K600 and the Stratix V are both manufactured using a 28 nm process and were 

introduced in 2012 and 2011 respectively.  

 Table 1 shows the measurements taken to evaluate the (idle) power of the system when 

no benchmarks are running and only OS background activity is present. With this data 

it is possible to estimate that the idle power of the GPU card is around 8 Watts while 

the idle power of the FPGA card is approximately 22 Watts. Note that this is the power 

of the whole card including device memory and not just the GPU or FPGA devices. 

The system without accelerators shows the idle power without any cards installed. As a 

reference the idle power of the CPU socket that includes the quad-core and the 

embedded GPU has been measured at 9 Watts using the Intel energy counters available 

on chip. We can consider these values estimations that should be further refine with 

proper instrumentation in future work. 

Table 1. Analysis of idle power for whole system 

 

Idle Power (Watts) 
No accelerator 44 

GPU in 52 
FPGA in 66 

GPU-FPGA in 74 
 

3. Performance and energy evaluation of individual devices 

 Table 2 shows the results of running the Vivid application accelerated by a single 

device for the configuration that includes the three processing kernels that correspond 

to the parallel stages: filter (F1), histogram (F2) and classifier (F3). A stream of 100 

LD (416x600) images was used in our experiments. The power has been estimated by 



measuring the wall plug power with the benchmark running and then subtracting the 

idle power reported in section 3.  The host code, accelerator code for the CPUs and 

accelerator code for the GPUs have been compiled with Visual studio 2013, TBB 4.3 

and Nvidia OpenCL 6.0 respectively. The GPUs’ OpenCL kernels were compiled using 

-03. The FPGA code is compiled offline with version 14.1 of the Altera AOC tools 

with the addition of the -fpc pragma that instructs the compiler to remove floating-point 

rounding operations and conversions whenever possible and carry additional mantissa 

bits to maintain precision during internal operations. The utilization ratios of the 

different logic resources and resulting kernel frequency for the FPGA are shown in 

Table 3 depending in which stage is implemented in the device.   

 

Table 2.  Power and performance analysis 

 

Device Time (sec.) Throughput 

(fps) 

Power (Watts) Energy 

(Joules) 

CPU (1 core) 167.610 0.596 37 6201 

CPU (4 cores) 50.310 1.987 92 4628 

FPGA 13.480 7.418 5 67 

On-chip GPU 7.855 12.730 16 125 

Discrete GPU 13.941 7.173 47 655 

 

Table 3.  FPGA kernels resource utilization and frequency 

 

Kernel Logic resources 

(Altera Logic 

Modules) 

DSP 

blocks 

Memory (bits) Freq (Mhz) 

F1 77,425 (32%) 44/256 6,896,354  (13%) 283 

F3 163,733 (69%) 106/256 18,693,257 (35%) 225 

F1+F2+F3 209,848 (89%) 162/256 24,679,220 (47%) 186 

Table 2 shows that the power used by the FPGA card when it is active is significantly 

lower than the other resources. This is surprising since its TDP is comparable to the 

discrete GPU. An analysis of the profiling reports shows that the FPGA pipeline stalls 

waiting for memory around 10% of the time which could have an implication in power 

but in any case this result indicates a good power efficiency of the FPGA card with this 

application.   

Fig. 2 shows the breakdown of the average time per frame (in ms.) for each stage of 

ViVid and on each device. Labels onGPU and disGPU represent de on-chip and 

discrete GPUs, respectively. Interestingly, stages 1 and 2 map better on the on-chip 

GPU, whereas stage 3 behaves best on the FPGA.  We also show the times that data 

transfers (host-to-device and device-to-host) require in each case. Clearly, these times 

are lower for the integrated GPU because it does not require PCIe bus transactions, as 

the others devices do.  For instance, data transfer times on the FPGA are 1.7x higher 

than those on the on-chip GPU. Fig. 2 suggest that the most effective configuration 

should combine the embedded GPU and FPGA simultanously.  

 



 

Figure 2. Breakdown of times for each stage and on each device. 

4. Simultaneous computing experimental results 

When an application like ViVid runs on a heterogeneous architecture, it is possible 

to distribute the workload so that more than one device is active simultaneously. In this 

case many possible configurations are possible. In this section we focus on combining 

CPU and GPU or FPGA devices and leave an extension that uses all the accelerator 

resources simultaneously (i.e. CPU and GPU and FPGA) as future work. Fig. 3 

graphically depicts the possible mappings for the three parallel stages to the CPU cores 

and the accelerator (GPU or FPGA). In addition, it is possible to control the number of 

active CPU cores that compute together with the accelerator to minimize the execution 

time, the energy consumption, or both (depending on the metric of interest). The 

pipeline mapping determines the device where the different stages of the pipeline can 

execute.  Let’s assume that a pipeline consists of S1, S2, .... Sn stages. We use a n-tuple 

to specify a static stage mapping to the accelerator and the CPU devices: {m1, m2, ..., 

mn}. The i-th element of the tuple, mi, will specify if stage Si can be mapped to the 

accelerator and CPU, (mi= 1), or if it can only be mapped to the CPU (mi= 0). If mi= 1, 

the item that enters stage Si will check if the accelerator is available, in which case it 

will execute on it; otherwise, it will execute on the CPU. For instance, for the ViVid 

example of Fig. 3 we represent the tuples (row major order): {1,1,1}, {1,0,0}, {0,1,0}, 

{0,0,1}, {1,1,0}, {1,0,1}, {0,1,1}, {0,0,0}. In our implementation, mapping {1,1,1} 

represents a special case: if the accelerator is available when a new item enters the 

pipeline, then all the stages that process it will be mapped to it.  

 

 

 

 

 

 

 

 

Figure 3. Possible stage mappings of stages to the accelerator and/or CPU for ViVid. 

 



Fig. 4 shows the performance (fps or frames per second) and energy usage (Joules) 

after using configuration {100} that maps the first Vivid filter (F1) to the accelerator. 

The x-axis represents the number of threads that goes from 1 to 8, to evaluate the hiper-

threading feature of the Haswell CPU. Note that the energy is represented in log scale. 

In the figure we see that if the number of threads is limited to one then only the FPGA 

or GPU accelerator are used, but if the number of threads is higher the scheduler uses 

the cores as additional computing resources.  It is possible to observe in Fig. 4 that 

when only one thread is active the performance of all the accelerators is comparable but 

the FPGA configuration is much more energy efficient. In this case, the FPGA energy 

consumption is 11% and 30% more energy efficient than the consumption on the 

integrated and discrete GPUs, respectively. Adding additional threads results in the 

cores participating in the computation, which increases throughput but it is more 

energy inefficient. When the third stage (F3) is mapped as shown in Fig. 5 both energy 

efficiency and throughput increase when both CPUs and accelerators participate in the 

computation. The combination of CPU and FPGA is the best choice for this stage for 

both energy and performance purposes.  Now with 8 threads, the FPGA is 39% faster 

and 54% more energy efficient than the discrete GPU. 

 

Finally, Fig. 6 shows the case when all the stages try to use the accelerator as its first 

choice. This configuration results in the higher performance achieving almost 20 fps 

for the embedded GPU case, 12 fps for the FPGA and 8 fps for the discrete GPU. For a 

single thread, performance is comparable for all the accelerators but the FPGA is the 

most energy efficient. The FPGA is 1.8x and 9.2x more energy efficient than the 

embedded and the discrete GPUs, respectively. Once the number of threads increases 

and the cores participate in the computation, the combination of the embedded GPU 

and the CPU is more energy efficient than the FPGA and CPU, but overall energy 

efficiency decreases because we reach the point of diminishing returns when using 4 

threads. Critically, this reduction of energy efficiency takes place despite the overall 

increase in throughput. The fact that the embedded GPU is more energy efficient than 

the FPGA for the multi-threaded configuration could be explained in part due to the 

overheads of the data movements over the PCIe bus compared with the tighter 

integration between CPUs and embedded GPUs that share the L3 cache. In the case of 

the discrete accelerators the presence of the PCIe bus can quickly become a 

performance bottleneck especially when computation is shared between cores and 

accelerators. Other factor that explains the higher performance of the integrated GPU is 

that the OpenCL compiler generates a very efficient binary for the first kernel/stage, as 

we saw in Fig. 2. 

 

In any case further work is necessary to understand how the tighter integration results 

in better performance and energy efficiency. Overall, the discrete GPU results cannot 

match the results observed with the embedded GPU and FPGA configurations, mainly 

due to the less efficient third kernel (see Fig. 2). Let’s keep in mind that we use the 

same OpenCL source code of the kernels for all accelerators. This was done on purpose 

to evaluate performance portability of the same code version on the different devices.  

As a future work we plan to study which OpenCL optimizations work well for each 

accelerator.  

  



 

 

 

  

     Figure 4.  Stage 1 acceleration with different hardware configurations.     

 

 

 

 

      Figure 5.  Stage 3 acceleration with different hardware configurations             

 

 

 

 

 

 

 

 

 

 

       Figure 6.  Stages 1+2+3 acceleration with different hardware configurations.             

5. Conclusions 

This paper has investigated the effects of distributing the workload between 

accelerators consisting of GPUs, FPGAs and CPU cores. From the conducted 

experiments a number of conclusions can be drawn. The first conclusion is that the 

FPGA device programmed with OpenCL is competitive with other accelerator types 

and shows good performance portability characteristics. It obtains the most energy 

efficient configuration superior to both embedded and discrete GPUs as seen in Fig. 6. 



This takes place despite that the OpenCL code has not been optimized for the FPGA 

device and is essentially the same code used to program the GPU devices. The second 

conclusion is that the single thread configurations in which the CPU cores do not 

participate in the computation are more energy efficient. On the other hand Fig. 6 also 

shows that if the objective is to obtain raw performance the additional deployment of 

the cores is beneficial and it can double throughput. Future work involves optimizing 

the code for the FPGA device focusing on reducing the number of pixels that must be 

fetched from device memory by reusing pixels shared by the filter operations and also 

increasing hardware occupancy by activating all kernels simultaneously instead of 

serially as done in these experiments. We also plan to develop a system that will allow 

to use the GPU and FPGA cores simultaneously with the CPU cores, deploying all the 

computation resources at the same time.   
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