895 research outputs found

    On the automated compilation of UML notation to a VLIW chip multiprocessor

    Get PDF
    With the availability of more and more cores within architectures the process of extracting implicit and explicit parallelism in applications to fully utilise these cores is becoming complex. Implicit parallelism extraction is performed through the inclusion of intelligent software and hardware sections of tool chains although these reach their theoretical limit rather quickly. Due to this the concept of a method of allowing explicit parallelism to be performed as fast a possible has been investigated. This method enables application developers to perform creation and synchronisation of parallel sections of an application at a finer-grained level than previously possible, resulting in smaller sections of code being executed in parallel while still reducing overall execution time. Alongside explicit parallelism, a concept of high level design of applications destined for multicore systems was also investigated. As systems are getting larger it is becoming more difficult to design and track the full life-cycle of development. One method used to ease this process is to use a graphical design process to visualise the high level designs of such systems. One drawback in graphical design is the explicit nature in which systems are required to be generated, this was investigated, and using concepts already in use in text based programming languages, the generation of platform-independent models which are able to be specialised to multiple hardware architectures was developed. The explicit parallelism was performed using hardware elements to perform thread management, this resulted in speed ups of over 13 times when compared to threading libraries executed in software on commercially available processors. This allowed applications with large data dependent sections to be parallelised in small sections within the code resulting in a decrease of overall execution time. The modelling concepts resulted in the saving of between 40-50% of the time and effort required to generate platform-specific models while only incurring an overhead of up to 15% the execution cycles of these models designed for specific architectures

    Middleware for managing a large, heterogeneous programmable network

    Get PDF
    The links between BTexact Technologies and the Department of Computing Science at University College London are becomingincreasingly beneficial for the development of the middleware area for the management of programmable networks. This paperdescribes the work that has been done to date, and outlines the plans for future research

    Enhancing Java Runtime Environment for Smart Cards Against Runtime Attacks

    Get PDF

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    gcodeml: A Grid-enabled Tool for Detecting Positive Selection in Biological Evolution

    Get PDF
    One of the important questions in biological evolution is to know if certain changes along protein coding genes have contributed to the adaptation of species. This problem is known to be biologically complex and computationally very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome the computational challenge. We have developed a Grid-enabled tool (gcodeml) that relies on the PAML (codeml) package to help analyse large phylogenetic datasets on both Grids and computational clusters. Although we report on results for gcodeml, our approach is applicable and customisable to related problems in biology or other scientific domains.Comment: 10 pages, 4 figures. To appear in the HealthGrid 2012 con
    • 

    corecore