

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

On the Automated compilation of UML notation to a

VLIW Chip Multiprocessor

by

David Stevens

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

December 2013

c© David Stevens 2013

Certificate of Originality
Thesis Access Conditions and Deposit Agreement

Students should consult the guidance notes on the electronic thesis deposit and the access conditions in the
University’s Code of Practice on Research Degree Programmes

Author…………...………………………………………………………………………………………………..…….

Title……..

I David Stevens, “the Depositor”,
would like to deposit “On the Automated compilation of UML notation to a VLIW Chip Mulitprocessor”, hereafter
referred to as the “Work”, once it has successfully been examined in Loughborough University Institutional
Repository

Status of access OPEN / RESTRICTED / CONFIDENTIAL

Moratorium Period…………………………………years, ending…………../…………20……………………….

Status of access approved by (CAPITALS):……………………………………………………………………

Supervisor (Signature)………………………………………………...…………………………………...

School of……………………………………………………………………...…………………………………

Author's Declaration I confirm the following :

CERTIFICATE OF ORIGINALITY
This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own except
as specified in acknowledgements or in footnotes, and that neither the thesis nor the original work therein has been
submitted to this or any other institution for a degree

NON-EXCLUSIVE RIGHTS
The licence rights granted to Loughborough University Institutional Repository through this agreement are entirely
non-exclusive and royalty free. I am free to publish the Work in its present version or future versions elsewhere. I
agree that Loughborough University Institutional Repository administrators or any third party with whom
Loughborough University Institutional Repository has an agreement to do so may, without changing content,
convert the Work to any medium or format for the purpose of future preservation and accessibility.

DEPOSIT IN LOUGHBOROUGH UNIVERSITY INSTITUTIONAL REPOSITORY
I understand that open access work deposited in Loughborough University Institutional Repository will be
accessible to a wide variety of people and institutions - including automated agents - via the World Wide Web. An
electronic copy of my thesis may also be included in the British Library Electronic Theses On-line System (EThOS).
I understand that once the Work is deposited, a citation to the Work will always remain visible. Removal of the
Work can be made after discussion with Loughborough University Institutional Repository, who shall make best
efforts to ensure removal of the Work from any third party with whom Loughborough University Institutional
Repository has an agreement. Restricted or Confidential access material will not be available on the World Wide
Web until the moratorium period has expired.

- That I am the author of the Work and have the authority to make this agreement and to hereby give Loughborough
University Institutional Repository administrators the right to make available the Work in the way described above.

i

- That I have exercised reasonable care to ensure that the Work is original, and does not to the best of my knowledge
break any UK law or infringe any third party’s copyright or other Intellectual Property Right. I have read the
University’s guidance on third party copyright material in theses.
- The administrators of Loughborough University Institutional Repository do not hold any obligation to take legal
action on behalf of the Depositor, or other rights holders, in the event of breach of Intellectual Property Rights, or
any other right, in the material deposited.

The statement below shall apply to ALL copies:

This copy has been supplied on the understanding that it is copyright material and that no quotation from the
thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any copying shall be strictly subject to written permission from the
University Dean of School and any external sponsor, if any.

Author's signature……………………………………..Date…………………………………...…………...……

user’s declaration: for signature during any Moratorium period (Not Open work):
I undertake to uphold the above conditions:

Date Name (CAPITALS) Signature Address

ii

Abstract

With the availability of more and more cores within architectures the process of extract-

ing implicit and explicit parallelism in applications to fully utilise these cores is becoming

complex. Implicit parallelism extraction is performed through the inclusion of intelligent

software and hardware sections of tool chains although these reach their theoretical limit

rather quickly. Due to this the concept of a method of allowing explicit parallelism to be

performed as fast a possible has been investigated. This method enables application de-

velopers to perform creation and synchronisation of parallel sections of an application at

a finer-grained level than previously possible, resulting in smaller sections of code being

executed in parallel while still reducing overall execution time.

Alongside explicit parallelism, a concept of high level design of applications destined

for multicore systems was also investigated. As systems are getting larger it is becoming

more difficult to design and track the full life-cycle of development. One method used to

ease this process is to use a graphical design process to visualise the high level designs of

such systems. One drawback in graphical design is the explicit nature in which systems are

required to be generated, this was investigated, and using concepts already in use in text

based programming languages, the generation of platform-independent models which are

able to be specialised to multiple hardware architectures was developed.

The explicit parallelism was performed using hardware elements to perform thread man-

agement, this resulted in speed ups of over 13 times when compared to threading libraries

executed in software on commercially available processors. This allowed applications with

large data dependent sections to be parallelised in small sections within the code resulting

in a decrease of overall execution time.

The modelling concepts resulted in the saving of between 40-50% of the time and effort

required to generate platform-specific models while only incurring an overhead of up to 15%

the execution cycles of these models designed for specific architectures.

iii

Acknowledgements

I would firstly like to take this opportunity to thank my supervisors Dr. Vassilios Chouliaras

and Dr. Sijung Hu for their guidance and support throughout the course of this research.

The advice and direction of Dr. Vassilios Chouliaras has been critical from the start until

the finish of this thesis.

I would also like to thank both the School of Electronic, Electrical and Systems Engineering

at Loughborough University and the Electronics System Design Group within this school

for the opportunity and financial support throughout the research stages of this Ph.D.

iv

TABLE OF CONTENTS

Table of Contents

Abstract iii

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Formulation . 1

1.2 Aims and Objectives . 3

1.3 Outline of Areas of Research . 4

1.3.1 Parallelism . 4

1.3.1.1 Instruction Level Parallelism 5

1.3.1.2 Thread Level Parallelism . 6

1.3.1.3 Task Parallelism . 8

1.3.2 Very Long Instruction Word Processor 9

1.3.3 High Level Design . 9

1.4 Contributions of Thesis . 11

1.5 Thesis Outline . 11

2 Background 13

2.1 Chapter Objectives . 13

2.2 High Level Modelling . 13

2.2.1 Object-Oriented Programming . 13

2.2.2 Visual Programming Languages . 14

2.2.3 Unified Modelling Language . 15

2.3 Parallelism . 19

2.3.1 Instruction Level Parallelism . 21

v

TABLE OF CONTENTS

2.3.2 Basic Block Parallelism . 22

2.3.3 Thread Level Parallelism . 24

2.4 Very Long Instruction Word Processor . 27

2.5 Summary . 31

3 Identification of Research Area 33

3.1 Chapter Objectives . 33

3.2 Parallelism . 33

3.3 Visual Programming . 35

3.4 Application Flow . 36

3.5 Summary . 37

4 Experimental Framework 38

4.1 Chapter Outline . 38

4.2 Theory . 38

4.2.1 Very Long Instruction Word Parallelism 39

4.2.1.1 Instruction Level Parallelism 39

4.2.1.2 Task/Thread Level Parallelism 39

4.2.1.3 Statically Customisable VLIW Processor 41

4.2.2 Modelling . 41

4.2.2.1 Architecture . 44

4.2.2.2 Application . 44

4.2.2.3 Mapping . 50

4.2.2.4 Design Rules . 53

4.3 Practice . 54

4.3.1 Very Long Instruction Word Processor 54

4.3.1.1 Configurability . 56

4.3.1.2 Processor Core Organisation 57

4.3.1.3 Multiple Contexts . 58

4.3.1.4 Synthesis and System-on-Chip 59

4.3.1.5 Task/Thread Level Parallelism 60

4.3.2 Software Tool Chain . 62

4.3.2.1 Compiler . 62

4.3.2.2 Assembler . 63

4.3.2.3 Orchestration . 66

4.3.2.4 Simulator . 66

4.3.3 Modelling . 70

4.3.3.1 Architecture . 71

vi

TABLE OF CONTENTS

4.3.3.2 Application . 72

4.3.3.3 Mapping . 74

4.4 Example Flow . 76

4.5 Summary . 76

5 Implementation and Usage 78

5.1 Chapter Objectives . 78

5.2 ENOSYS Project . 78

5.2.1 Tool Flow . 79

5.2.1.1 Design Space Explorer . 79

5.2.1.2 Modelling . 80

5.2.1.3 Behavioural Synthesis . 80

5.2.1.4 Source Code Optimisation 81

5.2.1.5 Compilation . 81

5.2.2 Contributions . 83

5.3 Summary . 85

6 Experiments 86

6.1 Chapter Objectives . 86

6.2 Comparison Platforms . 87

6.3 Micro-Benchmarks . 90

6.4 C benchmarks . 94

6.4.1 POSIX Thread . 95

6.4.1.1 Mandelbrot Set . 96

6.4.1.2 JPEG Decode . 98

6.4.1.3 Sobel Filter . 99

6.4.1.4 Data Encryption Standard 100

6.4.1.5 Execution Results . 101

6.4.2 CPUID . 107

6.4.2.1 Benchmarks . 108

6.4.2.2 Execution Results . 108

6.5 Unified Modelling Language . 110

6.5.1 Quantifying UML Capture . 112

6.5.2 UML Creation . 112

6.5.3 Execution Results . 119

6.6 Summary . 122

vii

TABLE OF CONTENTS

7 Conclusion 124

7.1 Chapter Objectives . 124

7.2 Summary of Thesis Objectives . 125

7.3 Contributions . 126

7.4 Findings . 128

7.4.1 Parallelism . 128

7.4.2 Very Long Instruction Word Processor 128

7.4.3 High Level Design . 129

7.5 Limitations of Research . 129

7.6 Further Research . 130

8 Publications 132

References 134

A LE1 XML Configuration File 145

B LE1 API available within MicroBlaze 147

C LE1 Assembler 151

D Insizzle 153

E Modelling Modification Implementations 156

E.1 Modifiable Architecture . 156

E.2 Modifiable Application . 156

E.3 Modifiable Allocations . 157

E.4 Platform-Specific UML Model Creation . 157

E.5 Miscellaneous . 157

F Full Flow Example 158

F.1 UML Model . 158

F.2 UML Notation . 160

F.3 FalconML . 162

F.4 LE1 Tool Collection . 163

F.5 Insizzle . 163

G Leon3MP SMT Modifications 167

H X11 User Interaction Capture 168

viii

TABLE OF CONTENTS

I PThread Execution Results 169

J CPUID Execution Results 178

K UML Creation Results 180

L UML Execution Results 183

ix

LIST OF FIGURES

List of Figures

1.1 UML design example . 10

2.1 Temporal versus Simultaneous threading . 25

4.1 UML system example . 42

4.2 Architecture captured using wildcard multiplicity 45

4.3 Example application captured in UML . 46

4.4 Application captured using wildcard multiplicity 47

4.5 Example application extension using fork and join objects 47

4.6 Example application extension by modifying surrounding structure 48

4.7 Behavioural code modifications for parallel application 49

4.8 Example usage of proposed Design Rules . 50

4.9 Examples of Static and Adjustable mapping 52

4.10 Tool Flow from UML to execution . 55

4.11 Structure of LE1 XML configuration . 57

4.12 LE1 CPU core schematic . 58

4.13 Two core LE1 CMP schematic . 59

4.14 Arguments for pthread create Operation . 61

4.15 LE1 Tool Chain overview . 63

4.16 Instruction Packing Example . 68

5.1 High-level block diagram of the ENOSYS tool flow 79

5.2 System-on-Chip configuration . 82

5.3 System-on-Chip block diagram . 82

5.4 Examples of Static and Adjustable mapping used in ENOSYS project 84

6.1 Mandelbrot PThread Execution Results . 97

6.2 JPEG Decode PThread Execution Results . 99

x

LIST OF FIGURES

6.3 Sobel Filter PThread Execution Results . 100

6.4 Data Encryption Standard PThread Execution Results 101

6.5 PThread Benchmarks on Leon3MP Architecture 103

6.6 PThread Benchmarks on Leon3MP (MicroBlaze) Architecture 104

6.7 PThread Benchmarks on Leon3MP (Leon3) Architecture 106

6.8 PThread Benchmarks on Leon3MP (Leon3) Architecture 106

6.9 PThread Benchmarks on LE1 Architecture 107

6.10 CPUID code example . 109

6.11 CPUID Benchmarks on LE1 Architecture . 111

6.12 CPUID Benchmarks on Leon3MP Architecture 111

6.13 Mandelbrot Set UML Class Diagram . 114

6.14 Sobel Filter UML Class Diagram . 114

6.15 DES UML Class Diagram . 115

6.16 Example wildcard UML notation original output image 117

6.17 Example wildcard UML notation output image 1 117

6.18 Example wildcard UML notation output image 2 117

6.19 User events captured to generate UML models using both RoundRobin and

Split design method . 118

6.20 Execution cycles of UML benchmarks using both user modified and script

modified models . 120

C.1 LE1 Assembler Orchestration . 152

F.1 Class diagram of Sobel Filer UML model . 159

F.2 Composite Structure of Sobel Filter UML model 159

F.3 Sobel Filer state machines . 160

F.4 Mapping example generated by the allocation script 162

xi

LIST OF TABLES

List of Tables

4.1 Mapping type definitions . 51

4.2 Permutations Example . 54

4.3 Micro-Architectural Configurability . 56

6.1 Available processor configurations . 89

6.2 PThread library timing test across available architectures 92

6.3 Example of JPEG Decode workload distribution 103

D.1 Insizzle arguments for LE1 Instruction Set Simulator 154

D.2 Description of heuristics from Insizzle Execution 155

F.1 Full flow static mapping permutations . 161

I.1 PThread Coarse Grain Mandelbrot Set Clock Cycles 170

I.2 PThread Fine Grain Mandelbrot Set Clock Cycles 170

I.3 PThread Coarse Grain Mandelbrot Set Speed Up 171

I.4 PThread Fine Grain Mandelbrot Set Speed Up 171

I.5 PThread Coarse Grain JPEG Decode Clock Cycles 172

I.6 PThread Fine Grain JPEG Decode Clock Cycles 172

I.7 PThread Coarse Grain JPEG Decode Speed Up 173

I.8 PThread Fine Grain JPEG Decode Speed Up 173

I.9 PThread Coarse Grain Sobel Filter Clock Cycles 174

I.10 PThread Fine Grain Sobel Filter Clock Cycles 174

I.11 PThread Coarse Grain Sobel Filter Speed Up 175

I.12 PThread Fine Grain Sobel Filter Speed Up 175

I.13 PThread Coarse Grain DES Clock Cycles . 176

I.14 PThread Fine Grain DES Clock Cycles . 176

I.15 PThread Coarse Grain DES Speed Up . 177

xii

LIST OF TABLES

I.16 PThread Fine Grain DES Speed Up . 177

J.1 LE1 CPUID Speed Up . 178

J.2 Leon3MP CPUID Speed Up . 178

J.3 LE1 CPUID Cycle Counts . 179

J.4 Leon3MP CPUID Cycle Counts . 179

K.1 User Events for Modelling Mandelbrot Set (RoundRobin) 180

K.2 User Events for Modelling Mandelbrot Set (Split) 181

K.3 User Events for Modelling Sobel Filter (RoundRobin) 181

K.4 User Events for Modelling Sobel Filter (Split) 181

K.5 User Events for Modelling DES (RoundRobin) 182

K.6 User Events for Modelling DES (Split) . 182

L.1 Execution Results of Hand Generated UML Models 183

L.2 Execution Results of Auto Generated UML Models 183

xiii

1. INTRODUCTION

1

Introduction

1.1 Problem Formulation

Modern embedded VLSI systems are more complicated than ever before, typically consist-

ing of multicore, many-core, heterogeneous processors along with custom hardware blocks

designed to efficiently compute specific tasks and optimise a particular metric such as power

consumption or execution time. This leads to more complexity in terms of developing and

deploying applications to execute on such systems while fully utilising all available compu-

tational resources.

A system can be comprised of multiple processors and hardware blocks, these processors

can also be composed of multiple cores. Parallelism is defined as the ability to perform

execution simultaneously across these processors, cores and hardware blocks. An application

can be split up to perform computation in parallel; each parallel section of the application

is referred to as a “thread” and multiple threads can be executed on a single core within a

processor or as a custom hardware block designed to perform some specific tacks.

Theoretically, a system can be made up of many processors which in turn can be com-

posed of many cores. These cores are then able to execute multiple threads. As more and

more threads are active at the same time the complexity of managing these threads increases.

This parallel processing can be exploited both implicitly and explicitly. Implicit paral-

lelism refers to the automated extraction of parallel computation by either compilers or other

tools. Being implicit, it does not require the application developer to have any knowledge of

the parallelism being exploited. This can be advantageous as no platform/tool specific prag-

mas or directives are required to be included in the program code, leaving the application

developer to focus on the behaviour rather than the task of parallelising the computation.

It can however provide draw-backs; implicit parallelism requires extremely intelligent tools

1

1. INTRODUCTION

to extract parallelism from any program. This can lead to sub-optimal parallel code being

produced when compared with code explicitly parallelised by the application developer.

Explicit parallelism is achieved through the inclusion of primitives and library calls which

define sections of code that are suitable to be executed in parallel. The advantage of this

approach is that the application developer has full control and visibility of where computa-

tion is parallelised. This requires no intelligent tools to perform the task and leads to easier

debugging of code as no hidden optimisations are performed. The main disadvantage is that

once code is written to include parallel primitives the code is not transferable to another

platform or library without modifications being made to remove library specific primitives

or calls.

Explicit parallelism is used most often in code due to the full view and control the

application developer has of how computation is split across available hardware in a system.

However, the result of multiple, heterogenous processors in a single system leads to an

increase in the number of possible ways an application can be parallelised onto a particular

architecture. As well as this, with more and more processors/computational components it

becomes more difficult for the application developer to track all parallel computation.

One solution to this problem is to design the application at a higher abstraction level

in a graphical environment. This graphical view of all computational elements aids the

application developer in managing and viewing the explicit parallelism within the code.

This can be achieved through the use of Unified Modelling Language (UML) [1] as the

input medium for an application. A high level model, captured in UML, can then be refined

(lowered) to be implemented on a physical hardware architecture. In this way the application

developer can visualise both the hardware and software sections of a system and map them,

in a graphical manner, as software to execute on one or more CPUs or as other hardware

elements within the architecture.

Currently available tools and design processes which use UML as a graphical input

language for multicore architectures require a platform-specific UML (PSUML) model to

be captured before this can be refined to a physical architecture. This requires human

interaction to make alterations directly to the UML model as well as an awareness of the

best way to parallelise an application at design time.

One way around this is to design a platform-independent UML (PIUML) model which can

then be refined to a platform-specific model dependent on the architecture being targeted.

However, this solution requires a new set of tools to refine the PIUML model down to a

multicore architecture.

The target architecture within the research conducted in this thesis is a statically cus-

tomisable multicore processor. This processor can be instantiated with a variable number

of cores in order to optimise for area and speed. Synthesis is directed by a machine model

2

1. INTRODUCTION

file which defines the number of instances of the processor or cores to generate.

This forms the basis of the body of research discussed within this thesis; the methods

for creating an application at a high abstraction level (in UML) which can be refined for a

statically customisable multicore architecture. The application design takes place at a high

level such that the application developer is unaware of the underlying architecture which is

being targeted. This allows the application developer to focus mainly on the algorithmic

aspect of a system while still being able to easily test and deploy the application on a physical

hardware implementation.

Alongside the abstraction of the hardware from the application developer, investigations

into exploiting various methods of parallelism within the architecture were conducted to find

optimal methods of parallelism.

Throughout this thesis a “system” refers to a full implementation of an application and

architecture. The application is the software designed to perform a specific task and the

architecture is the physical hardware which is available to execute the application.

1.2 Aims and Objectives

The aims of the research conducted are:

• Develop a tool chain for a unique Very Long Instruction Word (VLIW) Chip Multi-

processor (CMP).

• Simplify the UML system design for a statically customisable multicore platform.

In order to meet the aims a set of objectives have been defined:

• Investigate parallelism methodologies.

• Design and Implement tool chain for a unique VLIW CMP.

• Implement parallel execution in a VLIW CMP.

• Investigate high level system design in UML.

• Develop UML modelling technique for statically customisable multicore platforms.

• Develop UML applications to utilise UML modelling techniques and tool chain.

The objectives are based around implementing a tool chain for a VLIW CMP which

exploits multiple levels of parallelism in order to increase performance in terms of execution

time. This VLIW CMP is then used as an architecture being targeted from a high level

design language. This high level design language requires new modelling techniques to be

developed to target this statically customisable architecture platform. Finally the creation

of applications to test and display the tool chain and modelling techniques is required.

3

1. INTRODUCTION

1.3 Outline of Areas of Research

This section aims to give the reader an overview of the main areas of research where work

was conducted through this thesis.

1.3.1 Parallelism

Parallelism, in terms of computing, is a method of simultaneously processing tasks with

the main aim to decrease computation time. This thesis focuses on three main forms of

parallelism; Instruction Level Parallelism (ILP), Thread Level Parallelism (TLP) and Task

Parallelism (TP).

In 1972 Michael Flynn proposed a classification of computer architectures [2] which de-

fines the number of instruction and data streams available in an architecture. The various

forms of parallelism which are the focus of this thesis fall into multiple classifications de-

pending on their implementations.

Flynn’s Taxonomy describes four classifications of architectures:

• Single Instruction, Single Data (SISD) - This describes a conventional, single CPU

architecture where each instruction is executed serially on a single data stream.

• Single Instruction, Multiple Data (SIMD) - In this classification the same instruction

is executed across multiple data streams, this is useful for repetitive tasks over a data

set.

• Multiple Instruction, Single Data (MISD) - Taking into account fault tolerance; mul-

tiple instruction streams compute over a single data set in order to reduce errors in

computation.

• Multiple Instruction, Multiple Data (MIMD) - Both instruction and data streams are

separate in this architecture classification; independent CPUs operate on separate data

streams.

The MIMD category has been extended to include more detailed classifications for modern

computing:

• Single Program, Multiple Data (SPMD) - A single program computes across multiple

data streams; the same program operating across multiple processors each at a different

point in the program.

• Multiple Program, Multiple Data (MPMD) - Multiple programs executing across mul-

tiple data streams; multiple processors execute multiple programs.

4

1. INTRODUCTION

1.3.1.1 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is a method of extracting instructions which can be

executed simultaneously by an ILP pipeline without affecting the overall execution of the

program [3]. In terms of Flynn’s Taxonomy, this form of parallelism can be available in all

classifications so long at the CPU within that clasification can execute multiple instructions

(from a single stream) in a single cycle.

ILP can be performed using both static and dynamic scheduling. Both methods require

an intelligent scheduling algorithm to ensure correct execution is performed while exploiting

the maximum Instructions Per Clock (IPC). The IPC metric is used to determine the ILP of

the code being executed, with the IPC being as close to the number of issue slots as possible

being the optimal result. The difference between static and dynamic scheduling is where

this scheduling takes place, static scheduling is performed at compile time by a software

process and dynamic scheduling is performed at run time in hardware.

Static scheduling relies on a software algorithm to re-arrange instruction into packets

to be executed. These packets are groupings of instructions which can be executed in

parallel with no data-dependencies across the instructions. Both Very Long Instruction

Word (VLIW) and in-order Superscalar processors use this form of scheduling to maximise

IPC within code.

Dynamic scheduling is performed at run time within the processor executing the code,

out-of-order Superscalar processors use dynamic scheduling to improve execution time.

Hardware within the processor queues instructions and only performs execution once input

registers are made available from previous instructions. This method enables instructions

which do not contain data-dependencies to be executed in parallel, this allows subsequent

instructions within the queue to be executed out-of-order if they can be computed without

the use of values currently being computed. The Tomasulo algorithm [4] is a hardware

implementation which supports full, out-of-order execution.

This method of parallelism is dependent on the type of application being executed as

well as the architecture on which is it being executed. Algorithm 1 shows three instructions,

instruction 2 can be executed at the same time as instruction 1 due to the fact it does

not require the result of 1 (E) to perform its own calculation. Instruction 3 on the other

hand requires both the calculation results from 1 and 2 to produce the correct result. This

example, without the concept of ILP, would require 3 cycles to complete, ignoring any

latencies of functional units performing computations. In an architecture which exploits ILP

it could be executed in 2 cycles due to the availability of extra computational resources and

the lack of data-dependency between instructions 1 and 2. This is a very simple example: the

exploitation of ILP is heavily dependent on the number of computational resources available

5

1. INTRODUCTION

Algorithm 1 Example of Instruction Level Parallelism. When executed on an ILP system

instructions 1 and 2 can be executed in parallel as there are no data-dependencies between

the operands. Instruction 3 requires the output of 1 and 2 and so must stall until these

values are available.
1. E = A+B

2. F = C +D

3. G = E ∗ F

to parallelise instructions as well as the nature of the program being compiled, the compiler

and the micro-architecture of the hardware.

An application with an abundance of data dependencies or control flow changes will

result in a low level of ILP being extracted. This is due to the CPU having to stall in order

for the results of previous calculations to be computed before being able to perform current

calculations using these results. Control flow changes also limit ILP due to the pipelined

nature of processors; each time the control flow of an application changes new instructions

from a different region of the instruction code need to be fetched and decoded to be executed,

resulting in empty clock cycles during this pipeline restart process.

1.3.1.2 Thread Level Parallelism

Thread Level Parallelism is the process of creating and simultaneously/concurrently ex-

ecuting software threads of a single application on separate hardware resources available

within an architecture [5]. Threading occurs at two levels; simultaneous and interleaved.

Simultaneous Multi-threading (SMT) refers to multiple threads performing computation at

the same time. These simultaneous threads can be executed on the same core through the

inclusion of extra registers to enable this parallel execution or on separate cores, referred

to as Chip Multiprocessing (CMP). Interleaved Multi-threading (IMT) is performed on a

single processor or core where a single thread is able to execute at any one time. This

is achieved primarily through the use of software libraries which create new threads and

perform monitoring and management of created threads. Algorithm 2 shows a pseudocode

example of creating two new threads, performing some computation and then synchronising

with these created threads. The thread executing the code shown in Algorithm 2 is referred

to as “master” and the threads it creates as “slave”. Number of Threads is a variable used

within loops to create and synchronise the slave threads. In this example this is set to

two, resulting in two new threads of execution being created, and a total of three threads

executing at the same time (including the master thread). The thread id[] array is used to

store identifiers of the created slave threads. work() is a function, undefined in this example,

which performs some form of computation.

6

1. INTRODUCTION

Algorithm 2 Example of Thread Level Parallelism, Master thread creates two new slave

threads, executes work() and synchronises with slave threads.

Number of Threads← 2 // Define number of Threads

thread id[Number of Threads] // Global array to store thread ids of created threads

work() // Function which performs some computation

for i = 0→ (Number of Threads− 1) do

// Perform execution of a function in a separate thread of execution

thread id[i]← create thread(work)

end for

// Master thread performs execution

work()

for i = 0→ (Number of Threads− 1) do

// Synchronise with thread i

join thread(thread id[i])

end for

// All created threads of execution are now synchronised with Master thread

Each time the first for loop is iterated a new slave thread is created and its identifier is

stored in thread id[]. In most threading libraries a function pointer is passed to the thread

creation operation and it is this function which the slave thread begins execution. In this

example the work() operation is to be computed in each slave thread.

After the first for loop the master thread also executes the work() operation. At this

point in the code all three threads are executing this work() operation. Once the master

thread has finished executing this operation the second for loop is iterated through. This

for loop is used to perform synchronisation between the master and slave threads. Using

each slave threads identifier from thread id[] the master thread is stalled until the specified

thread has completed executing the work() operation.

Once both slave threads have completed execution only the master thread is left execut-

ing. TLP can be used for splitting workloads across multiple threads to decrease execution

time as well as to designate specific tasks to each thread, for example an application with

a Graphical User Interface (GUI) could have a thread performing background computation

and another drawing the windows required by the GUI. This allows both tasks to be ex-

ecuted at the same time which results in the GUI not becoming unresponsive when the

background task performs computation.

TLP can fall under various definitions within Flynn’s taxonomy. In architectures where

7

1. INTRODUCTION

multiple threads can execute simultaneously (SMT) it would fall under the MIMD section

as multiple processes are executed in parallel on separate data items. It is also possible to

execute TLP on a single processor which interleaves multiple executing threads (IMT), in

this case only a single instruction stream is executing at any given time and so the SISD or

SIMD classification may be more appropriate.

1.3.1.3 Task Parallelism

Task Parallelism (TP) is achieved through multiple processors in a shared-memory system

executing different process. In Flynn’s Taxonomy this falls under the MIMD classification

where multiple processors simultaneously execute different instructions on separate data

items. An example of TP is shown in Algorithm 3. In this example the task being per-

formed by each processor executing the code is dependent on its unique identifier (CPUID).

The processor with CPUID 0 performs task zero, CPUID 1 performs task one and all

other processors perform a default task. This method of splitting workloads over separate

processors allows all available processors to use a unified instruction RAM and results in

less complicated compilation as only a single instruction and data RAM is required to be

generated.

Algorithm 3 Example of Task Parallelism, tasks are performed based on CPUID (unique

identifier of CPU).

if CPUID == 0 then

// Perform task 0

else if CPUID == 1 then

// Perform task 1

else

// Perform default task

end if

An alternative implementation of TP is based on distributed-memory systems, this im-

plementation is usually performed across different processors. These processors and tasks

being parallelised do not require to have anything in common and each has its own mem-

ory system. For distributed TP a method of communication is required to exchange data

between the executing tasks. The Message Passing Interface (MPI) [6] was designed for

this purpose and provides and means of communication between tasks. Distributed TP is

not within the scope of this thesis as the research conducted is based around an embedded

approach to parallelism.

8

1. INTRODUCTION

1.3.2 Very Long Instruction Word Processor

Statically scheduled ILP architectures, such as VLIW processors, are a natural target for an

ILP compiler. Originally conceived at HP Labs [7], the idea was that the best way to speed

up execution was to perform instructions in parallel (in a long packet) instead of serially.

VLIW processors [8, 9] execute multiple instructions in a single clock cycle, compared to a

scalar processor which executes only a single instruction. The advantage of being able to

execute multiple instructions is that overall execution time is reduced. Some noteworthy

VLIW processors include the Intel Itanium [10], the Trimedia media processor from Philips

[11] and the TMS320C62x series of DSPs from Texas Instruments [12].

VLIWs usually have a variable number of functional units and issue slots. Functional

units are computational elements within the processor, such as arithmetic logic units and

multiply units, whereas the issue slots refer to the number of instructions which can be

fetched and decoded at any time. With the ability of consuming variable number of instruc-

tions per clock cycle the aim is the keep the available functional units active at all time. For

example a VLIW with an issue width of four is being fully utilised when all four issue slots

are filled each cycle.

The ability to execute multiple instructions in parallel while maintaining correct exe-

cution implies extra complexity in both hardware and software to track data-dependencies

across instructions and registers. Without this, registers containing incorrect data could be

used in calculations resulting in data path execution issues. VLIWs rely on a compiler, which

performs scheduling of instructions for parallel execution, to be aware of their hardware con-

figurations. This includes all computational resources and latencies to efficiently schedule

instructions and fully utilise the CPU. As the instruction schedule is built statically by the

compiler, VLIW processors offer significant computational power with less hardware com-

plexity than is associated with out-of-order superscalar processors which perform scheduling

of instructions at run time.

1.3.3 High Level Design

The current industry standard for modelling software-intensive systems is the Unified Mod-

elling Language (UML) [1]. It was created by the Object Management Group [13] and is a

general-purpose modelling language for object-oriented software engineering. UML is used

to create visual models of applications using a set of graphical notations and diagrams. The

UML standard is extended to support the development of embedded systems using the Mod-

elling and Analysis of Real Time and Embedded systems (MARTE) profile [14, 15]. The

MARTE profile consists of stereotypes which are used to label UML elements with various

hardware and software concepts. Using these stereotypes it is possible to capture an under-

9

1. INTRODUCTION

Figure 1.1: Example model showing Application mapped to both a hardware block (HwRe-

source) and cores within a processor (HwProcessor)

lying architectural view and specify how an application should be mapped to a hardware

architecture.

The exchange of UML models between tools vendors is encapsulated in the XML Meta-

data Interchange (XMI) standard [16]. This standard is an XML-based description language

in which the behaviour and structure of the UML model is represented. XMI is supported

by most UML tools, however, different tools generate different flavours of XMI models which

leads to compatibility issues in transporting these different models between tools.

It is standard across multiple UML design methods to split the a model into three dis-

tinct sections captured in a single UML model shown in Figure 1.1:

A) Application

B) Architecture

C) Mapping

The application is captured in Class Diagrams in UML which contain the static structure

and behaviour of the model. This static structure is then used as the basis in the Composite

Structure Diagrams; these diagrams capture the deployment of objects and the communi-

cation structure of the application. It is at this level which the architecture is also captured

using the MARTE profile to stereotype classes as either a “hardware resource”, a “processor”

or a “processor core” and then, using allocate arrows, to map the application elements to

the architecture. An example of this design specification is shown in Figure 1.1; it shows an

application with three objects where object i0 is mapped to a hardware block (HwResource)

and objects i1 and i2 are mapped to separate cores within a processor (HwProcessor within

HwComputingResource).

Using a modelling language, such at UML, the design being captured should be kept as

10

1. INTRODUCTION

implementation-independent as possible. By being keep implementation-independent, de-

signs are able to be translated between different architectures and implementations without

the need for the application developer to modify or refine the initial model.

1.4 Contributions of Thesis

The work presented in this thesis focuses on Thread Level Parallelism. Firstly, explicit

TLP is investigated in a statically configurable VLIW processor which implements thread

management in hardware. This is then further investigated using UML notation to map

tasks to available computational resources within the VLIW processor.

The main contributions made within this thesis are as follows:

Design Methodologies: UML design notations enabling a single platform-independent

model to be created which can then be transformed to fully utilise a statically config-

urable multicore architecture. Wildcard multiplicities and adjustable mappings are used

while defining the UML model and then translated when required to implement a statically

mapped, platform-specific UML model.

Translation Processes: Scripts, using the UML design methodologies, were developed

to perform translations between platform-independent and platform-specfic UML models.

Software Tool Chain: A tool chain was developed for a VLIW CMP along with a full

tool flow from C and UML to execution on both hardware and cycle-accurate simulation.

Hardware threading: The conception and validation of a hardware threading mecha-

nism, using a subset of the PThread library to perform fine-grain parallel execution within

applications.

Adoption of Tools and Methodologies: A selection of the UML design method-

ologies and the software tool chain are in use by commercial companies as part of an FP7

project.

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 is a detailed survey of research and development including various level of

parallelism and high level system modelling.

• Chapter 3 summarises the background literature survey and identifies the direction

and area of research which will be undertaken.

11

1. INTRODUCTION

• Chapter 4 presents, in detail, the experimental framework which has been developed

as an initial building block to fully implement and evaluate the research contributions.

• Chapter 5 provides a detailed view of the novel areas of research as well as introducing

areas/projects in which concepts presented in this thesis and tools developed through-

out the research are being adopted.

• Chapter 6 describes a selection of applications (C and UML) developed along with

results and comparisons to provide investigations into explicit parallelism and high

level modelling concepts.

• Chapter 7 concludes this research undertaken and offers possibly extensions to com-

plement the results presented here.

• Chapter 8 presents a list of journal, conference and project publications generated

throughout the course of the research undertaken.

12

2. BACKGROUND

2

Background

2.1 Chapter Objectives

The objective of this chapter is to present a review of previous studies and research into key

areas of interest defined in chapter 1. These areas include:

1. UML based High Level Modelling

2. Parallelism

3. VLIW Processors

This background research was used to find a research area in which to focus the efforts of

this thesis to best contribute to scientific knowledge.

2.2 High Level Modelling

2.2.1 Object-Oriented Programming

Object-Oriented Programming (OOP) consists of partitioning applications into a set of ab-

stract data types, called objects. The objects are instantiations of behavioural elements

called classes. Classes consist of a set of private attributes and behaviour defined to perform

specific tasks. They have a public interface which enables other sections of an application

to interact with their internal behaviour. Communication between objects takes the form

of messages passing across the public interfaces. The main benefit of OOP is the avoidance

of redundant code and the easier management of software complexity. Redundant code is

limited through the use of inheritance, where base classes can be extended to fit a specific

purpose. Software complexity is managed through the encapsulation of sections of code

within objects, leading to ease of testing, as it is possible to test small sections of an ap-

13

2. BACKGROUND

plication separately. Once tested and confirmed correct these classes can be instantiated

multiple times as well as reused in other applications as required.

2.2.2 Visual Programming Languages

Visual Programming Languages (VPL) use a selection of diagrams to define the structure

and behaviour of applications. They aim to improve the accessibility of information between

the application developer and the design and development tools. The authors of [17] present

an in depth study into various visual programming tools and languages and conclude that

visual programming reduces non domain-specific development time in an industrial setting

due to the ease of communication between application developers and end clients. Through

the use of visual programming the end clients can be involved more directly with the devel-

opment of an application by being able to visualise the actual implementation rather than

by traditional documentation practices. This enables end client interaction and feedback

at an earlier time during design and development which can result in issues being caught

before implementation takes place. Visual programming adds layers of abstraction from

the underlying implementation and makes application development more accessible. The

book [17] presents case studies of companies using visual programming languages and tools

in real life development; The Measurement Technology Center (MTC) used LabVIEW [18]

to assist in the redesign of flight software used for NASA’s Galileo mission. This task was

compared by one group using a VPL approach to another using a text-based programming

language (C). The outcome of the study, based on the creation of 40 applications, is that

visual programming increased productivity, independent of domain.

“MTC consistently finds that visual programming reduces development time by

at least a factor of 4, and up to an order of magnitude”

– “Visual Object-Oriented Programming” [17], Chapter 2.7, Page 38

The authors state that one of the complexities of using VPLs is that by creating a visual

language there is no requirement to be able to visualise all aspects of any other language

definition. This leads to issues when attempting to refine a visual model down to a physical

implementation.

“In creating a visual OOP language, the designer has the opportunity to devise

a language that is designed specifically to mesh with the visual techniques he or she

wishes to emphasize, and is not required to find ways to provide visual capabilities

for a predefined language.”

– “Visual Object-Oriented Programming” [17], Chapter 8.1, Page 162

14

2. BACKGROUND

2.2.3 Unified Modelling Language

The current visual design language of choice in software-intensive systems is the Unified

Modelling Language (UML) [1]. UML is a general purpose object-oriented modelling lan-

guage created in 1997 by the Object Management Group [13]. UML can be used at various

levels within the software development life cycle, from requirements through design & imple-

mentation and validation & verification [19, 20, 21, 22]. At the conception stage application

developers can create basic skeleton structures of applications along with requirements for

elements through the use of use case and timing diagrams. UML is designed to be domain

independent where no implementation details are included. This results in the ability to

transform the UML model easily between domains and models of computation. By includ-

ing domain-specific elements in a UML model, including behaviour in the form of state

diagrams and action code, it is possible to refine the UML model into a real life working

implementation.

There are various sources of methods of UML design for software engineering [23, 24,

25, 26]. All go into details around designing software models of applications using the UML

specification and an object-oriented method of software development. They include case

studies of real life applications captured in UML.

All concepts available within the UML specification are captured in an underlying meta-

model. This meta-model is made accessible to the application developer through the Graph-

ical User Interfaces (GUI) of UML tools and their available diagram types. There are a total

of 14 different diagrams which model the structure and behaviour of an application. These

diagrams are listed below along with descriptions of their usage. Different UML tools display

these diagrams slightly differently and also allow multiple types of diagrams to be captured

in a single diagram. For example, the Class Diagram displays the attributes of classes in a

model, these attributes can be typed as other classes which is essentially similar information

to that captured in the Composite Structure Diagram.

Structure Diagrams:

• Class : Applications Classes, Operations, Attributes and their relationship.

• Component : Split of application across Components and their connections.

• Object : Instantiations of Classes and their connections.

• Profile : Low level inheritance of UML model.

• Composite Structure : Internal structure (Objects, Ports and Connectors) of Classes.

• Deployment : Physical elements of system and their interactions.

15

2. BACKGROUND

• Package : Relationships between top level groupings of application

Behaviour Diagrams:

• Activity : Overall control flow of an application.

• Use Case : High level functionality of system.

• State Machine : Behaviour of Classes using states, transitions and actions.

• Interaction : Control and data flow.

– Communication : Messages between Objects and Parts.

– Interaction : Overview of Communication Diagrams.

– Sequence : Message passing between Objects.

– Timing : Similar to Sequence diagrams with the inclusion of the lifetime of

Objects.

The UML standard is extended to support the development of embedded systems using

the Modelling and Analysis of Real Time and Embedded systems (MARTE) profile [27].

The MARTE profile consists of stereotypes which are used to designate UML elements for

specific hardware and software concepts. Using these stereotypes it is possible to capture

an architectural specification of a hardware platform and map application elements to this

architecture. The inclusion of the MARTE profile into a UML model allows architectures

as well as applications to be captured and modelled using UML.

The MARTE profile consists of 5 sections which all serve a part in defining embedded

systems in UML:

• Core Elements : Foundation elements of structural and behavioural in MARTE

profile.

• Non Functional Property Modelling : Textual annotations to capture physical

attributes of systems.

• Time Modelling : Real-time system modelling.

• Generic Resource Modelling : Extensions for modelling architectural elements.

• Allocation Modelling : Mapping of application to architectural elements.

The ability to model both hardware and software aspects of systems has led to a wide

range of research and development into various means of synthesising hardware systems from

16

2. BACKGROUND

designs captured in UML, to creating multicore software applications and merging both of

these concepts together to generate fully co-designed system.

Previous studies using UML as an input modelling tool to generate real life hardware and

software systems include Unified Process for Embedded Systems (UPES) [28] and Hardware

and Software Objects on Chip (HaSoC) [29]. These studies use UML profiles, including

MARTE and UML for Real Time (UML-RT) [30], to describe partitioning UML models

across the hardware and software domains inclusive of scheduling and communication mech-

anisms required for this partitioning. In [28] the authors focus on developing a design

principle for embedded system co-design along with an environment for simulation of both

hardware and software sections of the UML model. Similarly, in [29] the full life-cycle of the

design is explored and emphasis is placed on early stage execution of the model along with

re-use of previously developed hardware and software components.

The idea of application mapping on a configurable architecture followed by design space

exploration was recently proposed in [31]. Here the authors present Gaspard, a design

framework which exploits both data and task level parallelism. Using multiplicities of objects

in the UML application which are mapped statically to a multi-core co-designed architecture

using the MARTE profile. The approach is performed at a high abstraction level and is

refined towards a lower level through iterations of deployment. The main problem with this

approach is that all aspects of the application, architecture and mappings are required to

be captured in the initial UML model. When a different mapping is required, for example,

when an object is to be mapped to a dedicated hardware block rather than a software block,

the application developer is required to manually make this alteration in the UML model.

Another study which uses the Gaspard design framework and focuses on alternative

mappings is presented in [32]. Here the authors present the concept of defining alternative

mappings between dedicated hardware blocks and multicore processors using finite-state

machines within the UML model to switch between mapping modes. However, nothing is

stated about how these mappings are generated and it reads as though they are required to

be specified by the application developer in the initial UML model.

In [33] the authors present a new UML extension profile which defines a design rule and

set of stereotypes to better model the architecture being targeted as well as the mapping of

the application to this architecture. The application section is a collection of behavioural and

structural components which define a platform-independent model. The architecture section

consists of existing library architectural elements with parameterisations, such as frequency,

area and power. Finally the mapping section connects the application and architecture

sections together through the use of dependencies. The authors also present a profiling tool

which uses the stereotypes and rule sets presented to optimise the communication overhead

between application elements.

17

2. BACKGROUND

This work is discussed further in [34], where the authors define the Koski design flow.

This is a full flow from specification down to prototyping on a Field Programable Gate Array

(FPGA). The authors have developed a framework which splits the full design flow into

smaller, more manageable design sections, including algorithm development, design entry

and verification. They also address design space exploration using an iterative approach on

these design sections to produce a model which meets the initial specifications provided. The

design space exploration is achieved through automated tasks which are controlled through

the Koski GUI.

In [35] the authors discuss direct hardware synthesis from UML. They present a brief

overview of how UML model behaviour can be implemented in hardware using finite-state

machines.

In [36] the author presents a prototype tool using UML to validate hardware design,

using UML to define the correct execution of an embedded systems dependent on a de-

sign specification. The authors generate HDL assertions which can be used to verify the

hardware produced adheres to the initial design specifications. This study is based on be-

haviour captured in state machine diagrams, which are translated to a hardware description

language.

The authors in [37] present a method of translating UML behavioural models to hardware

VHDL. This is achieved through the use of a high level language, named Semantic Model

Definition Language (SMDL), which is used to interface between models of computation

and translates concepts within the UML model into formal language specifications. These

specifications are then translated into a low-level finite-state machine described in VHDL to

be synthesised on a hardware architecture. As with the studies referenced above the authors

focus solely on behaviour captured in state machines within the UML model. The authors

note that there is an issue in terms of semantics of UML models from different UML tools

which leads to ambiguities when translating behaviour to another language.

Presented in [38] is a methodology to use UML for System-on-Chip (SoC) design, from

system level specifications down to partitioning between the hardware and software domains.

In this study, only the application section is captured in the UML model, the architecture

and mapping is included through a user guided stage of a predefined library of architectural

templates. The authors define a method of extracting both structural and behavioural details

from a UML model, using this information they then present the application developer with

a list of objects and communication channels. Through a GUI the application developer is

able to choose a predefined architecture to map the application to. This methodology allows

a single UML model to be mapped in multiple configurations onto various architectures,

leading to fully platform-independent UML modelling.

In [39] the authors present a subset of the MARTE profile to be used to target mul-

18

2. BACKGROUND

tiprocessor systems and perform system-wide analysis based on timing requirements and

communications between objects prior to developing any behavioural implementations. Pre-

sented is a modelling system for fast design space exploration based on worst case scenarios

of communication timing between the structural elements of an application. The benefit of

this method is that it allows preliminary investigations to aid the application developer in

the best methods of implementing behaviour. However, it is based on worst case communi-

cation scheduling and the authors do not discuss any physical implementation of the design

presented to confirm whether these communications assumptions are correct.

In [40] the authors present a model driven engineering methodology to generate OpenCL

[41] code from a UML model, using MARTE stereotypes, to be executed on a heterogenous

hardware system. They present example applications which are mapped to hardware ele-

ments adhering to the OpenCL specification and use transformations to generate an OpenCL

compliant application which will execute on OpenCL compatible systems.

There are commonalities which can be seen throughout the investigations into developing

UML models and profiles for both application and architectural aspects of system. These

are:

A) the split of the model into application and architecture sections along with a method of

mapping objects within the application to specific elements within the architecture.

B) the trade off of keeping the abstraction level of the model high while including enough

information to fully deploy all aspects of the application onto an underlying architecture.

C) the use and extensions of UML profiles, such as MARTE, to stereotype sections of the

UML model to define architectural components of a system.

2.3 Parallelism

Parallelism in computing is the method of executing multiple instructions or tasks simul-

taneously. This can be applied at multiple levels of granularity within an application. At

a coarse-grain, sections of an application can be split into independent tasks, or threads,

which can be executed in parallel. It is also possible at a finer grain; at the basic block and

instruction level. Basic blocks are sections of code with a single entry and exit point, leading

to the basic block always being executed in its entirety. At a smaller scale still, instructions

can be parallelised to be executed in the same clock cycle. The main aim of all forms of

parallelism is to reduce the overall execution time of an application.

As has already been stated, there are two forms of parallelism; implicit and explicit.

Implicit parallelism is defined as:

“The sequentially coded source program is translated into parallel object code by

a parallelizing compiler. [...] With parallelism being implicit, success relies heavily

19

2. BACKGROUND

on the “intelligence” of a parallelizing compiler.”

– “Advanced Computer Architecture: Parallelism, Scalability, Programmability” [42],

Chapter 1.1, Page 18

where the application developer is not required to have any knowledge of parallelism and

the application can be run both serially and in parallel, depending on the compiler chosen

to generate object code. As stated in [42], this method is highly dependent on the compiler

and how much parallelism it can extract from the application code. Alternatively, explicit

parallelism is defined as:

“Parallelism is explicitly specified in the user programs. [...] Special software

tools are needed to make an environment more friendly to user groups.”

– “Advanced Computer Architecture: Parallelism, Scalability, Programmability” [42],

Chapter 1.1, Page 19

where the application developer must exploit parallelism within the application themselves.

This is achieved using libraries, such as PThread [43], MPI [6] and OpenMP [44], or writing

explicit parallel code specifically for the target architecture. However, for a large scale

architecture with multiple processing elements the latter would become unmanageable very

quickly. The use of libraries aids in managing explicit parallelism, however, there is a draw

back of the application code being dependent on a certain library implementation and only

compilable for architectures which support the library being used.

It is not possible to parallelise all sections of an application, there are many factors which

affect the amount of parallelism able to be extracted. There are sections of applications which

cannot be parallelised and must be run serially, including setup and sections which require

the convergence of data or instruction streams. An optimal parallel application is defined

as one where a linear execution speed up is seen by added extra computational resources.

For example, adding X processing resources results in an overall execution time of 1/X.

Amdahl’s law [45] specifies the potential speed-up through parallelisation of an application,

as shown in equation 2.1.

S(N) =
1

(1− P) + P
N

(2.1)

where P is the portion of the program which can be performed in parallel, resulting in

(1− P) being the remainder of the application which must be performed serially, and N is

the number of computational resources. This results in a maximum possible speed up of

1/(1− P).

The limits of hardware are not taken into account in Amdahl’s law, the law works

using percentages of execution and shows there is an upper bound to the number of extra

computational resources which will positively affect the execution time. The idea of memory

20

2. BACKGROUND

conflicts and register bank sizes are not factored into the equation but should be investigated.

Memory systems within conventional architectures are banked, this means that they are split

into sections to allow multiple memory accesses at any given time. There is a trade off of

the number of banks and number of computational resources which access the memory.

This is similar to the instruction level, where the number of registers available to perform

computations affects the amount of parallelism which can be extracted.

Another factor which affects parallelism in terms of possibility and also speed up is data-

dependencies. These dependencies at the basic block and task level relate to sections of an

application executing in parallel requiring data which is being computed by other threads

of execution and not being available at the time needed. This can lead to race conditions

and incorrect execution as a result of old data being used in computations. To address this

problem the application must either be created in a manner where the application developer

is aware off all parallel execution state and timing to ensure there are no data race issues,

or use extra hardware/software to guard memory sections using mutual exclusion primitives

or transaction level (lock-free) shared data accesses.

The remainder of this section looks into previous research carried out into parallelism at

instruction, basic block and task level.

2.3.1 Instruction Level Parallelism

The most widely understood form of fine-grain parallelism which can be exploited within

an application is at the instruction level, referred to as Instruction Level Parallelism (ILP).

This involves executing more than one instruction per clock cycle with the goal of shortening

the execution time of the application. However, there are tradeoffs to be made as it requires

additional hardware resources and a more complex bypass logic to retrieve the resulting

computations and make them available for use by proceeding instructions. Also, the amount

of ILP which can be extracted from applications is highly dependent on the nature of the

program.

An extensive study into ILP was performed in [46]. The author investigated the upper

limits the instruction parallelism which can be extracted through various methods, including

speculative branch and jump predictions, register window sizes, loop unrolling, register file

sizes and register renaming. A selection of systems was investigated from a completely opti-

mal system with a perfect memory system, perfect register renaming, unlimited instruction

fetching, and a very large number of functional units to an extremely memory and register

limited system. Through simulation of a large number of benchmarks on these systems it

was found that even on the optimal system the amount of ILP which could be extracted

ranged between four and seven instructions per clock.

This work was extended in [47] where the authors took the results generated previously

21

2. BACKGROUND

to investigate the effects of control flow on parallelism. The authors investigated three alter-

native methods of control flow analysis; branch prediction speculation, control dependence

analysis and following multiple flows of control. The paper concludes that all methods are

important in parallelism and the nature of the program being executed plays a key role in

the amount of parallelism which can be extracted. Speculating control flow is only benefi-

cial if there are no data-dependencies through the section of the program attempting to be

parallelised.

In [48] the authors present the Mutliflow compiler and trace scheduling algorithm. The

aim of the scheduling algorithm is to exploit instruction level parallelism within applications

compiled for a VLIW processor which can execute 28 instructions per clock cycle. This is

achieved through static analysis of the instructions to be executed, using a large set of

registers for storage it is possible to calculate data-dependencies at the instruction level.

This is a form of implicit parallelism which the application developer is not required to be

aware of. However, this method requires a very intelligent set of compilation tools to fully

exploit the underlying architecture and produce highly parallel object code.

ILP exploitation within an out-of-order Superscalar (SS) processor is investigated in [49].

This methodology differs from that presented for VLIWs due to the SS performing scheduling

solely in hardware rather than depending on an intelligent software compilation process to

produce parallel code. Extra hardware is required to determine the relationships between

instructions and prevent “hazards”, which are defined as sections of code where instructions

reference the same storage location. They can occur in three forms: read-after-write (RAW),

write-after-read (WAR) and write-after-write (WAW).

The application developer is usually unaware of ILP and it is classified as implicit paral-

lelism. The studies presented show that to exploit ILP there is a lot of computation required

by either the compiler, producing the object code, or the hardware itself to prevent incorrect

execution and decrease overall execution time.

2.3.2 Basic Block Parallelism

Basic Blocks, as described previously, are sections of a program which contain a single entry

and exit point. Basic blocks are used to analyse control flow within a program as their entry

and exit points can be used to investigate execution paths of an application.

Methods of parallelism which use this control flow analysis at the basic block level to

speed up execution time have been investigated. Which basic block is executed depends

on parameters computed within an application and conditional statements decide which

execution path should be taken. This is the basis of investigations into a form of parallelism

which exploits basic blocks.

In [50] the authors present the Weld architecture model. Based on a multithreaded

22

2. BACKGROUND

VLIW processor, this model aims to reduce run-time latency effects which are introduced

through control flow changes during execution. This is achieved through a novel method of

inserting custom operations into object code to “spawn” and “squash” threads of execution.

This new operation, named “bork”, which implies a branch and fork operation, is inserted

at certain points throughout the program and upon execution a new thread of execution

(referred to as the descendant thread) is generated, executing a forthcoming basic block.

When the main thread (referred to as the ancestor thread) reaches the section of code

where the speculative descendant thread has been spawned it checks to see whether the bork

operation has performed the correct execution, if correct the two threads are merged and

the ancestor continues execution based on the state of the descendant thread. Alternatively,

if the descendant thread has been incorrectly speculated then it is disregarded (squashed).

The ancestor and descendant threads of execution execute on a single processor with the

two instruction streams “welded” together, hence the name. This is performed at run time

and attempts to fully utilise all functional units within the VLIW processor. The authors

present a selection of results gained from a benchmark suite and report a 27% increase in

performance through using the Weld model with two to six threads versus conventional

execution.

The Weld architecture is further investigated in [51] where the authors present a 34%

increase in performance based on a dual thread VLIW processor. The authors report that

in the previous study the inclusion of extra speculative threads led to more complicated

synchronisation hardware and an operation “welder”. Thus, the focus was on optimising

the Weld algorithms for a single speculative thread.

A similar methodology is presented in [52] where the authors present the Single-Program

Speculative-Multithread (SPSM) architecture. This methodology also uses extra instruc-

tions (“fork” and “suspend”) to perform a similar concept to that of the Weld architecture,

relying on an intelligent compiler to produce code containing the custom instructions speci-

fied. Similar to the ancestor and descendant threads the SPSM architecture defines a main

and future thread where the main thread forks data independent code to the future thread

and then merges the data back into itself once it reaches a suspend instruction within the

object code.

These methods present an implicit form of parallelism where tools generate the specula-

tive threads and the application developer is not required to be aware of this extra function-

ality, resulting in previously written code not requiring any alterations to take advantage

of these provided extensions. In both cases instruction set architecture extensions and cus-

tom hardware resources are required to accommodate these methodologies. However, both

require no software processes to perform thread synchronisation and thread management.

23

2. BACKGROUND

2.3.3 Thread Level Parallelism

The highest level of application parallelism performed is defined as Thread Level Parallelism

(TLP). This methodology requires the use of software libraries and/or unique identifiers of

threads to distribute execution over multiple threads of execution. Control or data flow

can be distributed across multiple threads using software libraries to create and synchronise

threads of execution executing in parallel or using unique identifiers to perform parallel tasks

by hardcoding sections of code to be executed on specific computational resources.

These libraries abstract away the complexity of threading by allowing the application

developer to create and synchronise threads without an explicit knowledge of how or where

the threads execute. This requires extra computation overhead to manage the created

threads and is usually performed by an operating system or other dedicated resource. There

have been studies which present the implementation of these software libraries in hardware

as a means of decreasing this overhead [53, 54]. Both studies cite that the overall advantages

of performing certain tasks in hardware rather than software routines results in the ability to

perform parallel management and communication at a finer granularity than with software

implementations due to lower latencies of operations.

There are two main methods of threading at the task/thread level: simultaneous and

temporal (blocked). The difference between the two is the number of threads which can

execute at any point in time; in temporal threading only a single thread is able to execute

at any time and simultaneous threading refers to when more than one thread executes at

any time. Temporal threading aims to fully utilise all computation resources by performing

thread switches in the event of a stall produced by an access to memory or control flow

change. By switching between threads in this manner it is possible to keep instruction

pipelines full. An example of Temporal Threading is shown in Figure 2.1(a), there is only ever

one thread active at any time. (Dotted arrows display a context switch between threads.)

Simultaneous threading, on the other hand, is aimed at architectures with the availabil-

ity of more than one computation resource. An architecture with multiple instances of a

processor could use simultaneous threading to fully utilise the architecture. An example

of Simultaneous Threading is shown in Figure 2.1(b), where execution on Thread1 and

Thread2 is performed at the same time.

Two example of temporal threading are Interleaved Multithreading (IMT) and Blocked

Multithreading (BMT). IMT is a method of switching threads after each cycle or specified

time interval, this results in minimal empty slots seen in the pipeline from memory and

control flow latencies as other threads of execution mask this overhead [55] [56]. BMT, on

the other hand, switches to alternative threads on memory stalls and control flow changes

as a method of filling the pipeline where it would otherwise be empty [57, 58].

24

2. BACKGROUND

(a) Temporal Threading - Only a single thread executing at any time, context switches

shown with dotted arrows

(b) Simultaneous Threading - More than one thread executing at a given moment in time

Figure 2.1: The difference between Temporal and Simultaneous threading. This simple

example shows only a single concurrent thread in the Temporal example and multiple parallel

threads in the Simultaneous example.

The difficulties of parallel programming and the limitations of implicit parallelism are

discussed in [59]. The author presents the idea that threading is complicated and must be

done explicitly at a low level by an application developer who is aware of the underlying

architecture being targeted. However, emphasis is placed on the nondeterministic nature

of threaded programming. The number of possible outcomes from executing a threaded

program is too great for the application developer to fully visualise and with increased

number of threads this problem is increased exponentially.

“Threads continue to dominate the parallel programming landscape despite the

existence of alternatives. Many obstacles prevent these alternatives from taking

root, probably the most important being that the very notion of programming, and

the core abstractions of computation, are deeply rooted in the sequential paradigm

to which most widely used programming languages adhere. Syntactically, threads

provide either a minor extension to these languages, as in Java, or just an external

library. Semantically, they thoroughly disrupt the languages’ essential determin-

ism.”

– “The problem with threads” [59], Page 8

25

2. BACKGROUND

POSIX threads (PThreads) is an IEEE standard which defines a Application Program-

ming Interface (API) for creating and managing threads of execution along with methods

of synchronisation between threads [43]. One of the benefits of using the PThreads library

is the portability of applications due to numerous platforms supporting the PThreads prim-

itives. This results in applications only requiring recompilation rather than rewriting for

each platform.

Another standard for thread parallel programming is the Message Passing Interface

(MPI). This is an API which is focused on the communications between processes running

in separate threads on distributed-memory architectures. It provides a model for communi-

cation between processes running on a distributed memory system [6]. Unlike the PThread

library there is no concept of the creation of threads, this results in the possible use of both

libraries together when developing a parallel application. For example, the PThread library

is used to instantiate multiple threads (across shared-memory and distributed-memory sys-

tems) and MPI is used for communication and synchronisation between these active threads.

OpenMP is another widely used threading library consisting of a set of functions and also

preprocessor directives for the application developer to use to generate parallel applications

for shared-memory machines [44]. The OpenMP model consists of a single master thread

which, through the use of the preprocessor directives, spawns slave threads to execute tasks

in parallel. Using a barrier mechanism the master thread is blocked until all slave threads

complete their specified computations.

The threading libraries and approaches discussed above are compared in [60] which offers

an in-depth view into the current implementation of multithreading within applications and

parallel programming models.

Research into task level parallelism includes [61] which presents a rule named Kill If Less

Than Linear (KILL). The authors investigate the trend of increasing the number of cores

within a multicore system and introduce a design approach based on performance and area

of computation resources. They suggest “with x% increase in core area there must be a

greater than x% increase in performance” as a baseline of whether adding extra cores is a

viable approach to increasing performance.

In [62] the authors present the superthreaded architecture, which combines compiler-

directed thread-level speculation of control and data-dependences with run-time data de-

pendence verification hardware to exploit both TLP and ILP. This architecture attempts to

split the control flow of applications across multiple thread processing elements to diminish

the effects of latencies introduced by memory accesses. This is performed at loop level where

at the top of a loop body a global index variable is updated and a new thread of execution

created. This method is implemented using instruction set extensions to create new threads

of execution, perform memory operations and the synchronisation of threads. These extra

26

2. BACKGROUND

instructions are included implicitly by the compiler. It was concluded that the success of

this methodology was highly dependent on the type of program being targeted; programs

with data-dependencies did not benefit from using the superthreading technique.

[5] presents an investigation into simultaneous multithreading (SMT), utilising the Mul-

tiflow trace scheduling compiler [48], and comparing against alternative processor organi-

sations (a wide superscalar, a fine-grain multithreaded processor, and single-chip, multiple-

issue multiprocessing architectures). The benefit presented is the ability to fully utilise all

function units within a processor through ILP and TLP, where a processor can issue multiple

instructions from multiple threads each cycle. The authors conclude that SMT outperforms

superscalar and fine-grained multithreading by four and two times, respectively.

The authors of [63] present an in-depth investigation into explicit multithreading. They

conclude that the use of threading and multiple processors/cores with a small issue width

offers a greater execution speed up than a single processor/core with a wide instruction

fetch capability due to the limitations of compilers in scheduling instructions to all processor

resources each cycle.

The authors of [64] developed a hardware implementation of the Message Passing Inter-

face (MPI) used in multithreading for communication and synchronisation between active

threads. They implemented a set of Remote Memory Access (RMA) primitives which sup-

ported the underlying functionality required by MPI. The reason for the hardware imple-

mentation was due to the high latency of a software based mechanism of communications.

Allowing the main CPU to offload the communication tasks to a hardware processor to not

waste valuable CPU cycles in communication activities.

SMT in VLIWs is investigated in [65]. The authors present a method of exploiting SMT

at the cluster level of a VLIW. Clusters are a grouping of registers and functional units

within the processor, which are used to aid parallelism as the VLIW compiler is able to

perform instruction scheduling individually within these multiple groups. The deployment

of instructions is based on the cluster level rather than the functional units, which results

in register conflicts being more easily resolved. This method removed horizontal waste by

filling the instruction pipeline with other available clusters instructions, however as with

other methods of VLIW multithreading there are scalability issues relating to the compilers

which attempt to produce very wide instruction bundles.

2.4 Very Long Instruction Word Processor

The benefit of a Very Long Instruction Word (VLIW) processor is the exploitation of In-

struction Level Parallelism (ILP) through wide instruction packets. Such processors contain

multiple instances of functional units to allow the execution of multiple instructions in

27

2. BACKGROUND

parallel. The benefit of a wide instruction is the decrease of execution time as multiple,

data-independent instructions can be executed in a single clock cycle. This requires an in-

telligent compiler to be able to take advantage of the multiple functional units and schedule

instructions to fill the pipeline.

“The VLIW processor design philosophy is to open up to the program not only

the operations, as in RISC, but the ILP itself. Just as there are constituent parts

of a CISC operation that are not visible in the program, superscalar ILP hardware

can arrange the parallelism in ways not specified in the code. The VLIW design

philosophy is to design processors that offer ILP in ways completely visible in the

machine-level program and to the compiler.

Examples of the principles of VLIW design are: don’t allow the hardware to do

things you cannot see when programming; don’t waste silicon on said hardware;

avoid hardware that computes anything other than the intended computation on

the critical path of every instruction; have only clean instructions; and don’t count

instruction bits.”

– “Embedded computing - a VLIW approach to architecture, compilers, and tools” [8],

Chapter 2.2, Page 59

The above quote was taken from [8], this book gives an indepth overview of ILP and

VLIWs, going into details of the Instruction Set Architectures (ISA), instruction encoding,

micro-architecture and compiler techniques required for VLIWs. The book also introduces

the VEX system [66] (VLIW EXample) which is a VLIW compiler and tool chain made

available from HP Labs [7]. The book focuses on and uses the VEX system as a reference

point throughout its examples.

There are many VLIW compliers available [67, 68, 66, 69] and the use of VLIWs is in-

creasing with the new ARM GPU architectures being based on VLIW architectures [70].

The Trimaran [67] compiler is a full compiler and simulation environment for VLIW archi-

tectures which allows the application developer to fully customise and optimise the VLIW

architecture and object code being generated. The Stanford University Intermediate For-

mat (SUIF) [68] compiler is a research compiler which explicitly generates parallel object

code from serial inputs. Although not specifically a VLIW compiler there have been studies

which built upon it to generate code for VLIW processors [71, 72]. The VEX compiler [66]

is a research orientated compiler which offers a full compiler and simulator environment

and enables the alterations of the base architecture and the inclusion of custom instructions

to simulate speed up achieved through performing computation in custom hardware accel-

erators. LLVM is gaining ground in the compiler space at the moment and has recently

included a VLIW backend to its compiler collection [69]. However, at the start of the re-

28

2. BACKGROUND

search presented in this thesis this was unavailable. The ARM Mali-400 [70, 73] processor is

an OpenCL compatible device which is based on a VLIW architecture, unfortunately due to

it being a commercial product information regarding the compiler and physical architecture

is limited.

The utilisation of VLIW processors is measured though the use of horizontal and vertical

waste metrics. Horizontal waste is empty issue slots within wide instruction packets, unable

to be filled due to data-dependencies and control flow changes and vertical waste is empty

instruction packets, or no-op instructions, where no computation is performed as a result

of waiting for computation in functional units to complete or data to be read from external

memory.

The horizontal waste is filled by the compiler and as previous research has shown is

usually limited between four and seven instructions per cycle [46]. Vertical waste is limited

using techniques such as basic block and task/thread parallelism where context switching

occurs to hide these latencies.

A rich history of ILP exploited by VLIW and Superscalar (SS) processors is archived

in [74]. The authors discuss the beginning of ILP in the 1940s and 50s, where the idea of

being able to execute more than one instruction at the same time was first discussed, to

the conception of VLIW processors in the late 1970s and early 1980s with the availability

of more space within silicon chips.

However, as discussed in [46], the extent to which this ILP can be exploited is limited

(five instructions per clock, median) depending on the type of application being executed

and extra methods of parallelism are required to further increase execution speed up.

This section looks at previous research into VLIW processors and comparisons with other

types of architectures.

Superscalar (SS) processors are similar in nature to VLIW processors, they consist of

multiple function units and can execute multiple instructions in parallel to achieve reduced

execution times. There are two types of SS processors, out-of-order and compile time.

Compile time SS processors are similar to VLIW processors and require instructions to be

scheduled at compile time. Where as out-of-order SSs perform this scheduling in hardware,

resolving data-dependencies between instructions at run time. This results in a simpler

compiler required to generate machine code for out-of-order SSs and leads to a more complex

hardware design to perform this scheduling at run time.

In [75] the authors present a comparison based on a H.263 video encoder around com-

piler and application developer optimisations. The one-way SS outperforms an eight wide

VLIW (C600) with only compiler optimisations by a ratio of 7.5:1. Using memory and code

optimisation techniques for the VLIW the authors are able to increase the performance of

the VLIW in such a way to achieve a 14% speed up compared to a 256 wide SS imple-

29

2. BACKGROUND

mentation and a speed up of 61 times that of the VLIW with only compiler optimisations.

The memory optimisations were performed manually after statically analysing the H.263

code and included moving frequently accessed memory items into on-chip memory areas to

reduce load/store latencies. The code optimisations included writing custom parallel assem-

bly code for computationally expensive functions within the application. This experiment

heavily favoured the VLIW implementation and showed a limit to the amount of paral-

lelism gained when solely using compiler optimisations to implicitly exploit ILP within an

application. Unfortunately the authors do not provide the overall instructions per clock

figures gained from their optimisations, it would be interesting to see the extent to which

the customisations performed fully utilised the eight wide pipeline of the VLIW.

The authors of [76] compare the performance between VLIWs and SSs compared to a

SIMD architecture. Using a range of benchmarks, including kernels and audio codecs, the

authors present a study into the exploitation of parallelism focused around branch prediction

and out-of-order execution to fully utilise wide architectures. They conclude that the speed

up offered by VLIWs is completely dependent on the application being executed, seeing

relative speed ups from 0.63 to 9.0 times over their range of benchmarks; experimenting

with perfect branch prediction increases this ten fold. The SS did not see a greater than

four times speed up and this was traced to the extra resources required to schedule the

instructions at run time.

The TRACE VLIW and Trace Scheduling compiler are presented in [77], a seven wide

TRACE processor provides a speed up in the order of five compared with minicomputers

available at the time, such as the VAX 8870, when running scientific code. A background

of VLIW architectures and designs is described along with the mechanisms of the TRACE

Scheduling compiler. This compiler produces instruction parallel code through statistical

analysis of source code and performing branch prediction to expose larger basic blocks and

implicitly exploit the maximum amount of parallelism within an application.

A complementary approach to TRACE for scheduling code for both VLIW and SS archi-

tectures is presented in [78]. The authors present an analytical method of moving operations

around loops and conditional statements to extend the reach of ILP which can be exploited.

This results in up to 20% run time improvement versus a single issue machine, although this

is entirely dependent on the code being executed.

Another approach in exploiting ILP in non-numeric code is introduced in [79]. The

authors suggest a logarithmic execution speedup up to five-fold is achievable through their

methods, even on realistic devices. This methodology parallelises code across different basic

blocks in a single cycle and performs checks at the end of each cycle to confirm which basic

block was the correct one to execute, the results of operations from this basic block are then

written back and other results disregarded.

30

2. BACKGROUND

The customisable nature of VLIWs, in terms of issue width and the number of function

units, results in fine tuned architectures for specific domains. This leads to a large design

space to explore in terms of all the different options to choose from when generating suitable

VLIW architectures. [80] presents a insight into trade-offs relating to different application

domains. Introducing the Lx VLIW processor, the authors conclude that enabling the

customisation of an architecture is very effective in term of cost/area trade offs, they present

a four to eight times speed up in a selection of benchmarks. They also report that the amount

of ILP which can be exploited is very application specific.

The authors of [81] present a homogeneous multicore VLIW system accompanied by

hardware co-processors accessible as custom instructions within the VLIW. This configura-

tion gains a speed up of 10 and 30 times in relation to two scalar pipelined architectures,

Intel’s XScale and StrongARM, respectively. The compilation flow performs profiling to

extract loops from application code and perform behavioural synthesis to seamlessly inte-

grate hardware blocks which implement the extracted loops. A set of media benchmarks

were targeted and compared using a single issue and four issue VLIW against the scalar

processors.

A fully customisable VLIW processor and tool chain is presented in [82]. The mAgic

architecture allows the application developer to specify various parameters of the VLIW

processor, including the issue width, number of functional units and size and types of mem-

ory available to the processor. A single machine description is used both to customise

the hardware and generate a custom compiler to generate object code to execute on the

hardware.

A hardware multithreading technique using VLIW processors is presented in [83], the

authors report a speed up of between 4.5% and 27%, comparing a single threaded VLIW

processor running legacy code with a multithreaded VLIW. This is performed using an

interleaved method of threading, where the processor begins executing another thread of

execution on the event of an instruction with a long latency. When executing a hand

optimised MPEG-2 decoder a performance increase of only 4.5% was recorded compared

with 27% when using an unoptimised MPEG-2 decoder. The authors conclude that while the

hand optimised code performed better it is not always feasible to optimise all applications,

in this case hardware multithreading can be used to reduce overall execution time.

2.5 Summary

This chapter presented previously conducted research and development in the areas of high

level modelling, various methods of parallelism and VLIW processors.

The overview of Visual Programming Languages showed that they aid design of appli-

31

2. BACKGROUND

cations in terms of development time, showing a factor of four improvement over direct

code approaches. The main drawback being that there are many ways to visualise what

is essentially the same concept. UML was used as a basis of the investigation due to its

current dominance in the field of VPL; UML allows a high level of abstraction from archi-

tecture specific design. However, to be able to implement a design either intelligent tools or

experts are required to refine UML models to an implementable level. One of the key as-

pects discovered through this background research was the various different ways researchers

have approached the concept of capturing applications and architectures through UML and

defining how they relate to one another.

Three main methods of parallelism were covered, including instruction, basic block and

task/thread level. ILP is achieved through finding data independent instructions which can

be executed simultaneously to reduce the execution time of applications. This method shows

varying efficiency based on the type of application being targeted, numerical applications

which work on large data sets in loops can be parallelised efficiently whereas control flow

based applications are more difficult. Basic block parallelism is mainly exploited through

branch prediction to reduce the amount of time a processor spends refilling its pipeline.

Examples of both temporal and simultaneous threading have been investigated and achieve

high speed up, although as with ILP the type of application affects the amount of parallelism

achievable. Finally, TLP was investigated, this is mainly implemented through the use of

libraries which perform the management of threads to implement parallel tasks. These

methods often incur an overhead of requiring operating system or another executive to

perform thread and communication management.

VLIW processors and compilers implicitly exploit some parallel aspects of applications

through static analysis of code and scheduling. VLIW compilers are able to implicitly extract

fine-grained parallelism at the instruction level to decrease execution time of applications.

There seems to be a limit to the amount of ILP which can be exploited, many studies con-

verge on the figure of between four and seven being the maximum ILP exploited even when

simulating on perfect architectures. A notable trend in studies which report higher amounts

of ILP being achievable is that scientific code, which is based mainly on loop intensive cal-

culations, is used for testing theories and methodologies. In real world applications this is

not the case and applications are more control flow based, these types of applications limit

the idea of ILP due to small basic blocks resulting in fewer areas of the code to parallelise.

The result of using non-scientific code is that alternative levels of parallelism need to be

exploited alongside ILP which leads onto the research and development to be carried out in

this thesis.

The following chapter reviews these previous studies and uses them to identify an area

of research which will be investigated as a basis of this thesis.

32

3. IDENTIFICATION OF RESEARCH AREA

3

Identification of Research Area

3.1 Chapter Objectives

This chapter analyses work and research previously conducted, reviewed in chapter 2, to find

a specialisation area to focus the main research and development activities in this thesis.

3.2 Parallelism

Instruction Level Parallelism (ILP) has been extensively researched and documented over the

previous 40 years, from its first conception in the late 1970s and early 1980s to modern day

wide architectures. ILP has been found to be limited to between four and seven instructions

per clock [46, 59] even when ignoring the limitations of physical systems. There has also

been research into many forms of Thread Level Parallelism (TLP) investigating how context

switching and control flow speculation [50, 51, 52] can eliminate execution stalling due to

memory accesses and pipeline refills. Along side this, multiple threading libraries have been

developed to give the application developer full visibility and access to multiple execution

threads with which to perform parallel tasks [43, 6, 44].

Context switching occurs in two forms: interleaved and blocked. Interleaved is wherein

each clock cycle, or given time frame, an alternate thread is executed, and blocked is where if

the currently active thread is stalled a waiting thread is executed. Control flow speculation,

used to mask stalls incurred through memory access and pipeline refill latencies, requires

extensions to hardware systems and software tool chains to include and execute look ahead

instructions to create and destroy speculative threads where control flow is dependent on

calculations made at runtime. Threading libraries impose an overhead of extra hardware or

software processes to manage executing threads.

33

3. IDENTIFICATION OF RESEARCH AREA

A multicore Very Long Instruction Word (VLIW) processor targets both of these forms of

parallelism, ILP in the scheduling of instructions and TLP in the availability of multiple cores

to perform execution. The statically customisable LE1 VLIW Chip Multiprocessor (CMP)

[84], which is described in section 4.3.1, has been chosen as the basis of investigations due to

this. The processor is currently in the early development stage with only a basic Instruction

Set Architecture (ISA) which enables modifications and extensions to be introduced during

this development process. Also, a software tool chain is yet to be produced resulting in the

ability to cherry pick implementation details from previous research. This results in the

development of a tool collection and hardware processor aimed at fully exploiting multiple

forms of parallelism with focus on low-cost hardware thread management.

From investigations into VLIW compilers the VEX compiler [66] has been chosen due to

the ability to compile complex code and easily modify the architecture which is being tar-

geted through the use of a plain text machine description file. Another plus is that the VEX

compiler is still under active development by HP Labs whereas other compilers which were

investigated are no longer maintained. VEX is aimed towards a research audience in ILP

and introduces a simple method of including custom instructions to examine the theoretical

speed up of custom hardware blocks to perform computationally expensive sections of an

application. Due to the vast amount of research into ILP it was decided not to extensively

investigate alternative methods in parallelisation at this level. The use of VEX allows the

exploitation of ILP without it being the main focus of the research.

The TLP which is to be focused on during the course of this research will be based

around a subset of the PThread [43] library as well as a Single Process Multiple Data

(SPMD) style threading mechanism. The PThread library allows the application developer

to fully control the creation, deletion and synchronisation of threads to decrease execution

time and thus, speed up execution. However, this requires a thread management process,

which uses computational resources, to allow threads to be created and synchronised. The

VEX complier does not include any notion of TLP, which allows full control of threads to

be implemented and managed through the LE1 processor and tool chain. As a method

of reducing the overhead of the thread management the inclusion of a hardware PThread

management unit which is accessible through custom instructions will be investigated and

implemented.

The SPMD method can be achieved through the inclusion of a single custom operation

to return a unique identifier to differentiate between executing threads. The management

of these threads is solely performed in the application created by the application developer

which leads to a simple threading mechanism with little to no overhead.

These two methods provide the building blocks for the remainder of the proposed research

and allow parallelisation of applications using two alternative threading mechanisms.

34

3. IDENTIFICATION OF RESEARCH AREA

3.3 Visual Programming

Using a visual programming language (VLP) adds a layer of abstraction from the application

developer which enables focus during implementation to remain on the application rather

than physical architecture being targeted. The current VLP standard in both research and

industry for modelling systems is the Unified Modelling Language (UML) and this will be

investigated as a means of application creation within this thesis.

Previous research using UML for system modelling involves splitting the UML models

into three distinct sections: Application, Architecture and Mapping. One of the key draw-

backs to this concept found in literature is the requirement to directly modify the UML

model or generate at design time the possible mapping options of how an application should

be implemented on a specific architecture. In [31] the application developer is required to

manually alter the mappings, and in [32] the use of state machines to loop through possible

mappings is used. Both of these methods are specific to an architecture available at the

time the UML model is created and although the model is not entirely a platform-specific

UML (PSUML) model the level of abstraction introduced from the use of UML is slightly

lost. Both methods require human interaction to include these mapping options, this human

interaction results in the inability to use UML models as inputs for automated processes

which could explore and optimise designs for a given metric, for example speed or area.

A concept of generic architectures and mappings will be investigated in order to create

a fully platform-independent UML (PIUML) model with the aim of a single design being

valid for multiple architecture configurations as well as architectures unavailable at the time

of creation. This will aid in the reuse of UML models for various architectures, different

methods of this will be investigated including:

A. Solely generating the application section of a UML model and having the architecture

and mapping automatically generated and included. This should result in a fully PIUML

model which can be retargeted without the requirement of designing an architecture.

B. Allowing the application developer to specify an architecture and mapping in which to

explore around.

C. Design notations to allow parts of an application to be tagged as able to be parallelised

across multiple processors within the architecture.

Depending on the size of the application and architecture the first method could result in

a very large design space to explore around so a fully automated flow for generating and

modifying PIUML models would be ideal. The second method would reduce this design

space and focus around a certain user guided architecture/mapping of a system.

35

3. IDENTIFICATION OF RESEARCH AREA

3.4 Application Flow

Bringing both of the proposed research areas together results in using UML to capture ap-

plications designed for multicore systems. With the inclusion of the customisable VLIW this

leads to a modifiable base architecture which would currently require the direct modification

of a UML model in order to target different instantiations of the architecture. Using the

VLIW tool chain along with the concept of generic architectures and mappings, the idea is

to take a PIUML model and generate a PSUML model for a specified multicore architecture.

This also leads to the capture of alternative TLP models within UML and their inter-

actions with the underlying architecture. By creating concepts which can be captured in

UML to specify that certain components and data flows can be executed in parallel it is

possible to use a single UML system design to target and fully utilise a modifiable hardware

architecture. This is achieved by taking sections of the application which have been speci-

fied as parallel and including multiple instantiations of these objects based on the number of

computational elements available within the architecture. This is performed through modi-

fications to both the behaviour and structure of the application as well as the structure of

the architecture.

There are various UML modelling tools available, both commercial and free to use. All

vary slightly in their implementations of Graphical User Interface, underlying UML Meta-

Model and XMI generation. XMI is used as a container for data exported from the UML

tools to be used by other tools. Due to these problems there is a lack of fully implemented

applications captured in UML models which can be used for benchmark purposes.

A behavioural synthesis tools, FalconML [85], will be used to translate XMI containing

UML models to C code which is required by the VLIW tool chain. As the research interest

is in methods of capturing parallelism within UML models the use of an external tool to

provide this behavioural synthesis functionality allows the focus to remain solely on the

concept of modelling.

Due to the lack of benchmark UML models available, various applications are required

to be developed to test the suggested research ideas. Both small kernels and full applications

will be created and tested to present a valid research output.

In order to perform analysis on the benefit of designing UML models for a generic

architecture and having an intelligent program implement the final design, a method of

quantisation in terms of work required by the application developer is required. This will be

based around the amount of user interaction required to generate and modify a UML model

from one architecture to another, this metric can then be used along with comparisons of the

execution times from both user performed and automatically generated methods to provide

insight into the effectiveness of the proposed design methods.

36

3. IDENTIFICATION OF RESEARCH AREA

3.5 Summary

This chapter presents the areas of research which will be the focus of this thesis. Initially,

work will be carried out to provide a full tool flow for the statically customisable LE1 VLIW

CMP, followed by research into various forms of modelling parallelism in UML. Finally,

application development will be performed to provide a comparison point of all the work

conducted around this thesis. The key areas of work are:

• Investigation into hardware threads in the LE1 VLIW CMP.

• The capture of Platform-Independent UML models.

• Fully modifiable mappings for application mapping to statically customisable multicore

platforms in UML.

• Intelligently threading applications in UML.

• Development of UML benchmarks.

Initially the conception and creation of the LE1 tool chain and threading mechanisms

will be investigated, this will result in an architectural specification which can then be used

by UML models as a base architecture to investigate the generic mapping and architecture

modelling.

37

4. EXPERIMENTAL FRAMEWORK

4

Experimental Framework

4.1 Chapter Outline

This chapter presents the theoretical and practical aspects of the experimental framework

which has been implemented in order to conduct research into parallelism and modelling

within this thesis. It is split into two main sections, firstly the theory behind the implemen-

tation is presented and then the physical implementation details are described.

Full details regarding the novel modelling rules which have been created, along with their

usage and implementation are also presented.

The underlying architecture which is being targeted is introduced, including details of

the Very Long Instruction Word (VLIW) processor and System-on-Chip (SoC) generated

as a base platform to execute applications. This is followed by a detailed description of the

software tool chain developed to generate machine code for executing on the heterogeneous

processors within the architecture.

The architecture and software compilation are required to be synchronised so applications

are compiled for the correct underlying architecture. The method of keeping these two

sections in sync using a single, extensible machine model is then described.

4.2 Theory

This section introduces the theoretical aspects of parallelism and high level modelling con-

structs which are of importance for the design flow from UML to a multicore system. Firstly,

parallel aspects of the multicore VLIW are presented and discussed, followed by the novel

modelling semantics required to capture this multicore architecture in UML and method-

ologies to create applications to utilise this modifiable architecture from a single design.

38

4. EXPERIMENTAL FRAMEWORK

4.2.1 Very Long Instruction Word Parallelism

Instruction Level Paralleism (ILP) is a form of parallelism which is intrinsic within VLIW

processors where wide instruction packets execute in parallel to decrease execution time.

There is a large amount of research in which ILP has been investigated with the conclusions

converging on the figure of between four and seven instructions per clock being the saturation

point of ILP [46, 59]. Due to this previous work the research presented within this thesis

does not investigate improving ILP and instead looks for alternate methods of parallelism

with which to complement ILP.

The main area of interest is in Thread Level Parallelism (TLP) within the statically

customisable VLIW multicore system to reduce thread management latencies and exploit the

maximum amount of parallelism available within an application. This is achieved through

the use of an explicit threading library with the thread management being controlled through

custom hardware in order to not tie the processor up with thread management and leaving

it to execute only the application code.

The LE1 VLIW Chip Multi Processor (CMP) [84] is being used as the target architecture,

as it was made available and was still under development at the beginning of the research.

Only a basic Instruction Set Architecture (ISA) was implemented and there was no software

tool chain to target the processor. This allowed full control during the development of the

software tool chain to customise the ISA for the needs and requirements of the hardware

threading management.

4.2.1.1 Instruction Level Parallelism

ILP is the primary form of parallelism exploited by VLIW processors. An intelligent compiler

performs instruction scheduling and register allocation to allow multiple instructions to be

executed in parallel, resulting in an overall reduced execution time. The tool chain developed

in this thesis uses the VEX research compiler [66]. This compiler implements implicit ILP

based on the machine model of a target VLIW.

4.2.1.2 Task/Thread Level Parallelism

Task and thread level parallelism is harnessed through the availability of multiple cores

within the VLIW architecture being used as a base of this research. TLP is explored two

alternative ways:

A) Using the PThread library.

B) An SPMD approach.

39

4. EXPERIMENTAL FRAMEWORK

The PThread library implements an explicit form of threading, requiring the application

developer to specify sections of an application which can be performed in parallel. Current

implementations of the PThread library rely on software processes to maintain the state

of active threads within a system. These software implementations require an operating

system or other form of task scheduler to perform this management. As this is implemented

in software it requires processing power from the executing processor to manage the active

threads. The proposed PThread approach performs thread management using hardware

state tables. This removes the requirement of a task scheduler to be implemented in software.

This will be achieved using hardware tables which are accessible through software calls and

custom instructions from code executing on the processor. These hardware tables maintain

the state of all active threads and custom hardware performs the task of thread management.

This hardware implementation is proposed to reduce the latencies of thread management

as well as removing the requirement of a software process executing on the processor to

perform this task.

The SPMD approach, referred to throughout as the CPUID approach, performs parallel

execution based on a unique identifier of each thread. Using this unique identifier the

task performed by each active thread can be specified within the application, resulting in

different threads performing different computation. This CPUID approach requires the

target processor to include a software call to return a unique value based on the thread

requesting the identifier.

On the LE1 system in both PThread and CPUID approaches a physical core can execute

a single thread at any time. This results in a maximum number of parallel threads equal to

the number of cores within the physical architecture, however, once a thread has completed

execution the core can be re-used by a new thread of execution. Both approaches require

different execution environments, for PThread a single core is required to be active at the

start of execution, this then creates new threads of execution to perform tasks. This differs

from the CPUID approach which requires all available cores to be active at run time, each

core begins execution from the entry point of an application and then performs computation

dependent on its unique identifier.

Due to the ISA of the LE1 being under development extensions were included to in-

corporate both PThread and CPUID instructions along with hardware which service these

custom instructions. The aim of including a hardware PThread implementation is to reduce

the requirement of software running on the VLIW itself to perform thread management

tasks leaving the VLIW to only execute the application code produced by the application

developer, hence reducing the amount of work performed, leading to a reducing of execution

time.

40

4. EXPERIMENTAL FRAMEWORK

4.2.1.3 Statically Customisable VLIW Processor

Larger FPGA devices enable multiple cores and functional units to be included in designs.

With more and more context, hypercontexts and functional units the customisation of the

LE1 processor became unmanageable and as a result a method of easily customising the

target VLIW processor was required. A machine description file, readable and modifiable by

both human and computer, was created to allow modification to the underlying architecture.

Using a standardised markup language which allows a hierarchical structure it was possible

to capture multiple instances of cores within a processor along with alternative architectural

templates for each core. XML was therefore chosen as a medium for the LE1 configuration

file. The availability of XML parsers and writers in multiple programming languages enables

use by multiple programs/scripts and the XML structure is easily readable and modifiable

by hand.

The XML machine description file is used as a synchronisation point within both the

hardware and software sections of the LE1 tool chain to eliminate software and hardware

compilation inconsistencies. Due to VLIW processors requiring implicitly scheduled machine

code, the machine code produced only executes correctly when used with the hardware

architecture specified at compile time.

4.2.2 Modelling

This section describes the high level modelling of both application and architecture using

UML. It introduces both the existing methods of capturing systems within UML along with

the novel techniques and approaches which are one of the key contributions of the research

presented.

The methodologies presented use previous work into modelling for configurable architec-

tures [31, 29, 34] and builds upon them to create a fully dynamic modelling procedure to

fully exploit all available system parallelism. From the previous research, cited above, the

aspect of three separate sections within a system is used. These sections are: Application,

Architecture and Mapping. The Application section includes the structural and behavioural

aspects of a system; the Architecture details the structure of the underlying hardware being

targeted and the Mapping links the application and architecture together to specify how the

application is implemented on the architecture. The MARTE profile is used to define the

target architecture of the UML model.

An example system captured in UML using these three sections and displayed in a

Composite Structure Diagram is shown in Figure 4.1. It shows a top level class (App)

containing three objects (i0, i1 and i2) which are instantiations of classes defined in the

application section of the UML model (not shown). This is the Application section of the

41

4. EXPERIMENTAL FRAMEWORK

Figure 4.1: Full System captured in UML

system. The Architecture is captured in a similar way, using classes and objects along with

stereotypes from the MARTE profile to represent hardware blocks (HwResource) and a CPU

(HwComputingResource) which is composed of two processor cores (HwProcessor). The

Mapping then links the Application and Architecture with MARTE Allocate dependencies

to specify how objects in the application section are mapped on the architecture. The

example shows object i0 mapped to the HwResource; this is used to define a hardware

implementation of this object, possible via the FalconML behavioural synthesis tool [85],

whereas and i1 and i2 are mapped to separate cores within the CPU.

This results in the behaviour of object i0 being implemented in VHDL by FalconML

which can then be synthesised as a hardware block on an FPGA device. Objects i1 and

i2 are implemented in C code by FalconML, this C code is then compiled for the LE1

VLIW CMP with each object being executed on separate cores. FalconML also generates

the wrapper code for all objects to perform communications between the hardware and cores

within the LE1.

While this method of system capture in UML is not novel itself there is definite novelty

when capturing a system to be mapped on an statically customisable architecture, like the

LE1 VLIW CMP. In order for a software system to map correctly on a given architectural

instance the UML model must be altered for each variance; this leads to the requirement

42

4. EXPERIMENTAL FRAMEWORK

of the mappings changing to accommodate this customisable architecture. For example a

system generated to use three LE1 cores is only valid for instances of the architecture which

have three or more cores instantiated; any fewer and the system defined in the UML model

is incorrect; any more and cores are wasted with no computation being mapped to them.

A final issue occurs when capturing parallelisable applications when the target archi-

tecture is either unknown or able to be modified to offer more or fewer cores for parallel

sections of the application to execute on. The existing methodologies require a statically

defined UML model to translate to low level abstraction to implement as either hardware

(RTL VHDL) or software (C or C++). This static nature results in limitations for the appli-

cation developer who is tasked with refactoring the UML model whenever the application or

architecture changes. The novel approach, presented here, removes this limitation through

the use of wildcard notations and adjustable mappings to allow the translation of models to

be performed through an automated process.

The full system is captured through the use of a UML modelling tool and then exported

in XMI. This is an XML-based description language in which the behaviour and structure of

the UML model is represented [16]. This XMI structure contains all of the implementation

details of the system but does not include any notion of the diagrams which were created

in the UML modelling tool. This XMI structure is used for the methods defined here; it is

read, modified and then rewritten, finally it can be read back into a UML modelling tool or

other tool which uses the XMI schema.

The exported XMI structure is used by FalconML to generate hardware and software

aspects of the system along with the communication layer between processors and hardware.

FalconML allows the mapping of objects to hardware resources and generates hardware

descriptions (RTL VHDL) of the objects mapped to these sections. This thesis does not use

this aspect of the tool, although the design principles introduced are transferable to these

hardware blocks.

In order to perform alterations to the UML model to be usable by other tools the ex-

ported XMI structure is directly modified. By pre-processing the UML model in this XMI

structure and utilising the modelling rules, introduced below, it is possible to transform a

platform-independent UML (PIUML) model to a statically-mapped platform-specific UML

(PSUML) model which can be then synthesised to a hardware/software co-design system by

the behavioural synthesis tool. In this flow the application developer creates the architecture

and application along with a single mapping of the application to that architecture which

is then processed to automatically generate a selection of valid, statically-mapped PSUML

models. The main concepts of interest here are:

A) the methods of defining a generic model using wildcard multiplicities.

B) adjustable mapping to guide the pre-processing tools to generate a valid UML model.

43

4. EXPERIMENTAL FRAMEWORK

These concepts, without the pre-processing stage as part of the tool flow to translate

from the PIUML would result in undefined behaviour in the tools performing behavioural

synthesis as they require PSUML models in order to generate hardware and software imple-

mentations of the UML model ready for synthesis or compilation onto physical architectures.

4.2.2.1 Architecture

The existing approach for UML modelling for a configurable architecture is to go back to the

UML modelling tool, redefine the available architecture and then export the XMI for this new

model. This method requires human interaction in order to make any modifications to the

architecture section of the UML model. When creating models targeting the configurable

VLIW CMP this results in multiple instances of the UML model to capture all possible

implementations of the underlying hardware.

To allow for the architecture within a system to be defined as modifiable/configurable the

use of wildcard multiplicities (*) is proposed. Architectures are captured in UML similarly

to applications, using class and object elements from the UML specification. These UML el-

ements are then stereotyped using the MARTE profile to tag them as architectural elements.

In this case we use the HwProcessor, HwComputingResource and HwResource stereotypes

to define available hardware elements. Multiplicities are used to define the number of in-

stances of UML elements, the wildcard multiplicity defined here allows the HwProcessors

to be defined as “expandable”, where more than a single HwProcessor may be available.

Similarly with the adjustable mapping, a transformation process will be required to convert

the UML model utilising the wildcard multiplicities to a static model which includes the

correct number of HwProcessors for the current architecture being targeted.

For example, Figure 4.2 shows an architecture section of a system using wildcard multi-

plicities. A single CPU is defined containing three HwProcessors; without using the wildcard

multiplicity this defines a three core CPU but with the use of the wildcard multiplicity, as

shown in core2, it defines a three or more core CPU. This results in the PIUML model,

containing the wildcard multiplicity, being reusable across multiple architectural instances.

This idea is the second major contribution of this research in the space of high level mod-

elling for a customisable underlying architecture and is complemented by a similar notion

introduced in the following section.

4.2.2.2 Application

As presented in the previous section, when developing a UML model for a configurable

architecture, such as the LE1, the application developer is required to modify the architec-

44

4. EXPERIMENTAL FRAMEWORK

Figure 4.2: Example architecture captured using MARTE and wildcard multiplicity notation

tural elements within the model to match that of the architecture being targeted. These

modifications would also require modifications to the application section of the UML model.

Removing or adding architectural elements results in either application elements (objects)

being mapped to cores which no longer exist in the architecture or cores which do not have

any application elements mapped to them at all.

This limitation is addressed by utilising the wildcard multiplicity and transformation

process, similarly to the architecture modelling, to define application elements which can be

instantiated multiple times and which are able to perform computation in parallel. Within

the application section this design notation and transformation process is used to replicate

application elements to fully utilise the current architecture.

A complex transformation process is required by the application section in order to

replicate application elements while still achieving a functionally correct UML model. This

is due to the nature of UML design and how communications between elements is achieved.

The surrounding structure and behaviour of the UML model needs to be aware of the

replicated application elements to communicate with them. Methods for performing this

transformation are presented within this section.

UML is an object-oriented design language and as such uses class’s and objects to define

the behaviour and structure of applications. A class is constructed of state and methods

which define the behaviour of an application. Classes are then instantiated as objects which

implement the classes behaviour, these objects are then connected to one another to define

the structure of an application.

Classes are composed of attributes, operations, state machines and ports. Attributes are

local variables available within a class used to store state (data). In UML the behaviour of a

class can be defined both graphically, using state machines, and textually, using operations.

Ports are used to present the public functionality of a class and a means to pass data into

and out of classes.

45

4. EXPERIMENTAL FRAMEWORK

Figure 4.3: Example application captured in UML

An interface is a UML element which simply defines a set of public operations. Interfaces

are realised by classes in order to define their public functionality to the application. Within

a class a set of ports, which also implement the interface realised by the class, are used as

the communication points within the application.

When a class is instantiated as an object all internal state, behaviour and ports of the

class are replicated and used to define the object. The ports within objects are connected to

ports on other objects and define the communication structure of an application. Figure 4.3

shows an example application section where each object has two ports, in and out with the

output port of each object connected to the input port of the next object. This allows data

to flow from left to right across the application, resulting in object i0 being able to call

operations within i1 made available through the interface which is realised by the base class

of i1.

Using the same wildcard multiplicity notation idea as in the architecture section, it is

possible to define objects within an application which can be executed in parallel. The use

of a wildcard multiplicity in an application section is shown in Figure 4.4, the only difference

between this and Figure 4.3 is that object i1 has been tagged with a wildcard multiplicity

(*), meaning this object can be replicated multiple times.

The use of the wildcard multiplicity to specify objects which can be replicated results in

a requirement of the surrounding objects and ports to be aware of these replicated objects.

This results in complicated decisions regarding the surrounding structure of the application.

Two different approaches to this decision are possible where one modifies the structure of the

application and the other modifies both structure and behaviour. Each approach replicates

objects within the model based on the number of cores available in the architecture, this

replication of objects is performed at compile time and produces static mappings of objects

to cores. Both methods are described below:

A) The first method requires extra classes and objects to be created within the UML model.

46

4. EXPERIMENTAL FRAMEWORK

Figure 4.4: Example modifiable application captured in UML using wildcard multiplicity

Figure 4.5: Example application extension using fork and join objects

These extra classes surround the object being replicated to provide “fork” and “join” points

without the need to directly modify the surrounding objects. These new classes provide

synchronisation points for the replicated objects and result in the surrounding application

being unaffected by any modifications. Figure 4.5 shows an example of this method using

Figure 4.4 as the input UML model and replicating object i1 three times.

The creation of new classes and objects is shown Figure 4.5 in which objects fork and join

have been created along side three instantiations of object i1. The fork object implements

its own internal behaviour which passes calls destined for i1 to each instantiation in turn

(in a round robin method). For example, the first time an operation within i1 is called

from i0 this is passed to fork, which then passes this to object i1 0, the second time this

will be directed to i1 1 and so on. The join object performs synchronisation and simply

forwards the outputs from each i1 instantiation to object i2. This methodology allows

operations within i1 to be performed in parallel as each instantiation implements the same

internal behaviour. The fork and join objects connect in-between the existing objects in the

47

4. EXPERIMENTAL FRAMEWORK

Figure 4.6: Example application extension by modifying surrounding structure

UML model and behave as split and synchronisation points. There are some limitations to

this methodology, the operations need to be non-blocking (they do not have return values),

otherwise this removes the parallelism which could be exploited due to only a single object

being active at any time. Also, if the operation(s) being performed in the replicated objects

are not computationally expensive this can result in a negative performance in including

these objects due to them not being fully utilised for computation.

B) The second method requires the modification of both structure and behaviour in the UML

model. The objects connected directly to the object tagged with the wildcard multiplicity

are modified instead of including the fork and join objects. The structural modifications

include instantiating multiple ports within these objects in order to connect to the replicated

objects. The behaviour within the surrounding objects is then required to be modified to

be aware of these newly instantiated ports.

Once again using Figure 4.4 and replicating object i1 three times Figure 4.6 shows the

resulting UML model generated from using this second method.

The method is shown in Figure 4.6 where i0 and i2 have newly instantiated ports

connected to the replicated i1 objects. This method requires the behaviour within i0 and

i2 to be modified to be aware of these new ports. For example, a call to an operation in

i1 from the out port of i0 (as seen on the right hand side of i0 in Figure 4.4) will pass

arguments across the connection between i0 and i1. In the application generated by the

48

4. EXPERIMENTAL FRAMEWORK

/∗ Before ∗/
. . .

f unc t i on (out , /∗ begin ∗/ 0 , /∗ end ∗/ 1 2) ;

. . .

/∗ After ∗/
. . .

f unc t i on (out 0 , /∗ begin ∗/ 0 , /∗ end ∗/ 4) ;

f unc t i on (out 1 , /∗ begin ∗/ 4 , /∗ end ∗/ 8) ;

f unc t i on (out 2 , /∗ begin ∗/ 8 , /∗ end ∗/ 1 2) ;

. . .

}

Figure 4.7: Calls to an operation named function where the first argument is the port which

is used along with a list of arguments to pass. After modification the initial call is replaced

by 3 calls to the same operation across all newly generated ports with the workload split

across each call.

application developer this will reference port out, however, this port is no longer available

in the modified application as shown in Figure 4.6. The port has been replaced with new

instances (out 0, out 1 and out 2) this then requires any behaviour which references the

out port to be modified to pass data to the newly instantiated ports. An example of this

modification is shown in Figure 4.7 where a call to function using the out port is replicated

three times to reference the new ports.

The method targeted in the transformation process instantiates multiple instances of

objects is the one which generates the fork and join objects around the wildcard object.

The alternate method requires direct modification of the surrounding classes and objects

which alters their behaviour and structure (action code and ports). This would require a

parser to modify the action code used to pass data over the newly available ports and include

a mechanism with which to split the data across the newly created ports.

Using the method which generates fork and join classes allows all other objects around

that tagged with a wildcard multiplicity to remain unmodified. By limiting the modifications

to a single object, rather than modifying all surrounding objects to accommodate these

changes, the possibility of introducing errors into the UML model is reduced. The fork and

join objects will be instantiated from classes generated specifically for the purpose required.

Using this method there are two alternative threading mechanisms which need to be

implemented:

49

4. EXPERIMENTAL FRAMEWORK

Figure 4.8: Example usage of Design Rules showing wildcard notations along with static

and dynamic mapping.

Firstly a simple round-robin mechanism in which the fork object passes the calls it

receives to subsequent port and instantiations of the wildcard objects and the join object

simply forwards any data it gets from any input port to the single output port. Using

Figure 4.5 as an example the fork object would pass calls to i1 0, i1 1, i1 2, i1 0, il 1, et

cetera. and the join object would take calls from in 0, in 1 and in 2 and pass data directly

to its out port. This is similar to the PThread library [43] where each call creates a new

thread of execution to perform computation.

The alternative mechanism is to split a single computation across available objects; this

would require the fork object to pass data items to the wildcard objects where the amount

of data is dependent on the number of other objects performing computation. The join

object would then be required to process the output data and only pass this onto the next

object once all computation has completed. This is similar to the threading techniques seen

in the OpenMP library [44], where a master thread spawns multiple slave threads and uses

a barrier mechanism to wait for all slave threads to complete execution before continuing.

4.2.2.3 Mapping

Firstly, the concept of Mapping is investigated. Mapping is used to define where objects in

an application are to be deployed within an architecture and enables parallel threads to be

mapped to parallel computational resources.

50

4. EXPERIMENTAL FRAMEWORK

Table 4.1: Mapping type definitions: CPU refers to a HwComputingResource and Core

refers to a HwProcessor

Application Architecture Mapping Details

Application CPU Adjustable Any un-mapped Objects will be

mapped to any free Cores in CPU

Application Core Static/Adjustable Any un-mapped Objects will be

mapped to specific Core (depend-

ing on the number of mappings

from the Top Level)

Object CPU Adjustable Object is mapped to any free

Core in CPU

Object Core Static Object is mapped to specific Core

The main concept revolves around two types of mapping; static - a form of required

mapping where a thread must execute on a specified resource, and adjustable - a form

of constrained mapping where a thread can execute on one of (possibly) many specified

resources. A full definition of static and adjustable mappings is shown in Table 4.1 along

with examples and descriptions of their usage in Figure 4.9.

Currently, FalconML requires static mapping to process and correctly implement an

application across available architectural elements, for example CPU cores or a custom

hardware block (RTL VHDL). The application developer must specify at design time the

relationship between the application and architecture. Through the inclusion of adjustable

mappings a model can be modified to be architecturally independent as it no longer includes

just required mappings but also includes constrained mapping which can be used to focus

the final mappings once an architecture is known.

Figure 4.9(a) defines a fully static model in which both objects (i0 and i1) map directly

to HwProcessors. This results in a single mapping option available for this configuration,

the underlying architecture being targeted must have at least two cores to be able to execute

this application.

A fully adjustable model is shown in Figure 4.9(b), a single mapping from the application

to the CPU (HwComputingResource) defines that any object within the application can be

mapped to any core in the CPU. This results in four possible static mappings from this

example; both i0 and i1 are mapped to core0 or core1 and i0 is mapped to core0 while i1

is mapped to core1 and vice versa.

51

4. EXPERIMENTAL FRAMEWORK

(a) Static Mapping - Objects directly mapped to

HwProcessors

(b) Adjustable Mapping - Application mapped to

HwComputingResource

(c) Adjustable Mapping - Object mapped to Hw-

ComputingResource

(d) Static and Adjustable Mapping - Objects

mapped to both HwComputingResource and Hw-

Processor

Figure 4.9: Examples of Static and Adjustable mapping

52

4. EXPERIMENTAL FRAMEWORK

Figure 4.9(c) shows another adjustable mapping option in which object i0 is mapped to

the CPU, resulting in two mapping options as it can either be mapped to core0 or core1.

In this example object i1 is not mapped to any architectural resource as there is no higher

level mapping options included.

Both static and adjustable mappings are shown together in a single system in Fig-

ure 4.9(d). Object i0 is mapped statically to core0 and will always be mapped to this

specific core within the CPU. The second mapping is shown from the application to the

CPU, this defines that any unmapped objects within the application can be mapped to any

available core within the CPU. In this example there are two permutations, i0 always maps

to core0 and i1 can be mapped to core0 or core1.

The combination of static and adjustable mappings within a UML model results in

multiple mapping permutations of the application to the architecture. FalconML requires

a PSUML model as an input, so a transformation process in-between XMI export from the

UML tool and input into FalconML is required in order to produce a PSUML model from

the PIUML model. This idea of adjustable mapping which is refined to static mappings

is the first major contribution of this research in the space of high level modelling for a

customisable architecture.

4.2.2.4 Design Rules

The adjustable mapping and wildcard multiplicity design rules introduced above do not

require extensions of the UML specification. They allow the application developer to create

a PIUML model which can then be refined to a PSUML model once the target architecture

is known.

These design rules, used in both the application and architecture section of the UML

model, are one of the major contributions of the research presented in this thesis and result

in an approach which allows the application developer to create a single UML model which

can later be refined to fully utilise a target architecture. Figure 4.8 shows an example of a

system using these design rules, an application named App containing three objects (i0, i1

and i2). Object i1 is tagged with a wildcard multiplicity meaning that multiple instances

of it can be instantiated within the application. The architecture consists of a single CPU

with two cores (core0 and core1), with core1 being tagged with a wildcard multiplicity.

This defines a CPU with two or more cores, which is dependent on the architecture being

targeted. There are two mappings displayed, one from object i0 to core0 and one from App

to CPU. The first mapping is a static mapping, i0 will always be instantiated on core0 and

the second is adjustable. Any unmapped objects within App can be statically mapped to

any available core within CPU.

This results in a different number of mapping permutations which is dependent on the

53

4. EXPERIMENTAL FRAMEWORK

Table 4.2: Possible permutations of statically mapped UML models based on model shown

in Figure 4.8.

Permutation Core0 Core1

0 i0, i1 0, i1 1, i2

1 i0, i1 0, i1 1 i2

2 i0, i1 0 i1 1, i2

3 i0 i1 0, i1 1, i2

4 i0, i1 0, i2 i1 1

5 i0, i2 i1 0, i1 1

6 i0, i1 1, i2 i1 0

7 i0, i1 1 i1 0, i2

number of cores and times that i1 is replicated. For example, if there were two cores within

the CPU and i1 is replicated twice there would be a total of 8 permutations available. These

possible permutations are shown in Table 4.2, where i1 is replaced with i1 0 and i1 1 to

represent the two instances. By increasing the number of available cores the number of

permutations increases, for example, with three cores there would be 27 permutations and

for four there would be 81.

The next section explains the implementation details required to perform the task of

refining a PIUML model using the proposed design rules to fully utilise a specific architecture.

4.3 Practice

This section introduces the implementation details of the hardware system used as a platform

for the research within this thesis. Also introduced is the software tool collection developed

to transform PIUML models down to machine code to execute on the statically customisable

VLIW platform. An overview of the tool flow is shown in Figure 4.10.

4.3.1 Very Long Instruction Word Processor

This section presents all of the elements which make up the hardware system being targeted.

The hardware system is implemented on a Xilinx ML605 Evaluation Board [86] with a

Virtex-6 LX240T device, allowing multiple VLIW processor to be instantiated.

The LE1 VLIW CMP [87] is highly parametrisable in both architectural and micro-

54

4. EXPERIMENTAL FRAMEWORK

(a) Full tool flow showing UML to hardware and

simulation

(b) Process of modifying XMI from platform-

independent to platform-specific model

Figure 4.10: Tool flow from UML model to execution. The application developer generates

a UML model in Modelio, this is then exported and processed to generate a statically

mapped PSUML model which is synthesised by FalconML. This output is then compiled

and assembled through the LE1 Tool Collection and the resulting output can be executed

in simulation or on the physical LE1 device.

architectural views. It presents architectural parameters to the application developer to

fully customise the hardware being produced. Table 4.3 shows the high level parameters

of the LE1, these customisations are available to exploit both ILP and TLP while making

trade offs between area and performance.

The base Instruction Set Architecture (ISA) is an amalgam of the partially-predicated

Multiflow TRACE architecture [88] and the fully-predicated EPIC architectures [89] aug-

mented with substantial Single Instruction Multiple Data (SIMD) support [90]. This model

(ISA, state) can be extended with additional registers and single/multi-input, multi-output

custom instruction extensions.

55

4. EXPERIMENTAL FRAMEWORK

Table 4.3: Micro-Architectural Configuration settings available within the LE1 VLIW CMP.

Architectural Param-

eter

Description

ISSUE WIDTH Architectural width (LIW) of the processor. This is

the number of RISC operations (syllables) dispatched

every on clock

IALUs Number of integer ALUs per processor

IMULTs Number of integer multipliers per processor

IRAM SIZE Size of closely-coupled instruction (code) RAM. The

application code is loaded in this memory prior to ex-

ecution

DRAM SIZE Size of closely-coupled data RAM. The initialised data

segment is loaded in this memory prior to execution.

Serves as the stack area for all active hardware threads

DRAM BANKS Number of banks of the Data RAM. Accesses to dis-

joint banks incur no cycle penalty

LSU CHANNELS Number of channels to the Data RAM per processor

LE1 CONTEXTS Number of LE1 contexts (cores) in the multiprocessor

(CMP) configuration.

4.3.1.1 Configurability

The LE1 hardware and software tool chain is configured using a single XML configuration

file. This is used to specify the number of contexts, hypercontexts and clusters along with

the number of functional units and sizes of register files. It is used to generate the physical

hardware as well as produce software which runs on specific implementations of this hard-

ware. The LE1 structure is captured and the hierarchical view is displayed in Figure 4.11,

this structure is then captured in an XML schema used throughout the tool collection. This

configuration file is used to generate a main configuration VHDL file which is used to syn-

thesise the LE1 system in hardware and is read directly by the Instruction Set Simulator to

populate the software simulation of the LE1 system. In both cases the number of function

units, registers and architectural elements as defined within the XML file are instantiated.

Finally the configuration file is used to generate a VEX machine model file based on the

micro-architectural configurations, this machine model file is used by VEX to perform in-

56

4. EXPERIMENTAL FRAMEWORK

Figure 4.11: Structure of LE1 XML configuration

struction scheduling and optimally utilise the available functional units and registers. The

use of a single configuration file throughout the tool flow maintains a synchronisation point

across all tools and results in hardware and software sections being synthesised and compiled

for the same target LE1 system.

An example XML config file is attached in Appendix A. This shows a two context, four

issue wide homogenous LE1 system. A homogenous system implies that all contexts within

the LE1 are similar and as such only a single cluster template definition is required. In

this case the cluster template is instantiated by the single hypercontext and this will be

instantiated twice due to the number of contexts being specified as “2” within the XML file.

4.3.1.2 Processor Core Organisation

The LE1 has an 8-stage pipeline, shown in Figure 4.12. This shows the internal structure

and a break down of the internal pipeline stages of the LE1. The Pipe Control block depicts

the primary control mechanism which schedules the full flow from instruction fetch and

decode to data execution. It is responsible for initialising internal registers and memory

sections through a debug mechanism from a host machine as well as maintaining the control

space of the LE1 through a collection of state machines which schedule the overall system

execution. As well as the Pipe Control, the CPU is composed of an Instruction Fetch

Engine (IFE), Load Store Unit (LSU) and the main execution core (LE1 CORE). The IFE

maintains the instruction cache (IRAM) and associated state machine. Each long instruction

word can be up to two times ISSUE WIDTH operations wide due to the inclusion of 32-bit

immediates for large integers and addresses which results in the IFE controlling interlocks to

57

4. EXPERIMENTAL FRAMEWORK

Figure 4.12: LE1 CPU core schematic

retrieve all required instructions when they span more than one IRAM location. The banked,

shared memory is accessed from the LE1 CORE through the LSU. The number of channels

(LSU CHANNELS) to the memory along with the banking system (DRAM BANKS) of the

memory are both configurable. Finally, The LE1 CORE includes the main execution data

paths of the CPU each with its own register set, integer (SCore) and floating point (FPCore)

data paths. The FPCore is not instantiated in this study (all floating point calculations are

simulated through library calls). The configuration of the SCore is dependent on the IALU s

and IMULT s parameters shown in Table 4.3 which define the number of functional units

available for executing integer based arithmetic operations.

4.3.1.3 Multiple Contexts

Increasing the value of the LE1 CONTEXTS parameter within the LE1 XML configuration

file (Table 4.3) results in multiple instances of the LE1 CORE being instantiated. Fig-

ure 4.13 shows a dual context, shared memory LE1 CMP. Each LE1 CORE consists of

functional units, instruction RAM and decode logic with a shared memory accesses to the

common, banked DRAM. This shared DRAM enables communications between contexts as

well as the ability for both contexts to perform computation on a shared data set.

58

4. EXPERIMENTAL FRAMEWORK

Figure 4.13: Two-way multiprocessors consisting of two instances of a 4-wide, single-cluster

LE1 core, the common data memory and the thread control unit

4.3.1.4 Synthesis and System-on-Chip

The LE1 hardware is synthesised to match the configuration which is specified through the

LE1 XML configuration file. This is translated into a VHDL file which sets configuration

constants to generate the specified hardware.

Once the LE1 CMP is synthesised it is connected to the PLB system of a Xilinx FPGA

design. This system contains a MicroBlaze processor along with memory blocks and periph-

erals. The MicroBlaze is a soft-core processor designed by Xilinx [91]. The processor itself

is highly configurable to be optimised for either area or performance. In the usage with the

LE1 we use an area optimised MicroBlaze core as it is simply used as a bus master to load

instruction and data RAMs on the LE1 and no computationally intensive code is executed

on it.

A single MicroBlaze processor is instantiated to act as a boot loader for the LE1. An

API to the LE1 has been created which allows full access to the LE1 hardware for reading

and writing registers, memory and control state of the LE1. This API consists of a collection

of low level functions which are used along with data produced by the LE1 software tool

chain, presented below. All data required by the LE1 is compiled through MB-GCC [92]

(using the Xilinx SDK) with instruction and data RAMs being included as header files and

59

4. EXPERIMENTAL FRAMEWORK

accessible through the MicroBlaze. These low level functions make it possible to compose

more general functions to load instruction and data RAM and communicate with all available

LE1 contexts. A default setup has been generated which requires a single LE1 instruction

and data RAM to be included into the MicroBlaze binary. Once this is compiled and

executed on the MicroBlaze it automatically loads instruction and data RAMs and starts

execution on the LE1. The available API functions and descriptions of their functionality

are included in Appendix B.

The MicroBlaze is also used to retrieve instrumentation data from the LE1 after execution

has completed. All global data variables can be extracted from the LE1 data RAM which

allows confirmation that correct execution was performed.

4.3.1.5 Task/Thread Level Parallelism

Thread management and dynamic allocation to hardware contexts takes place in the Thread

Control Unit (TCU) within the LE1. This is a set of hierarchical state machines, responsible

for the management of software threads and their allocation to execution resources. It ac-

cepts PThread operation requests from either the host or any of the executing hypercontexts.

It maintains a series of hardware (state) tables, and is a point of synchronisation amongst

all executing hypercontexts. Due to the need to directly control the operating mode of

each hypercontext while having direct access to the system memory, the TCU resides within

the debug interface (DBG IF) where it makes use of the existing hardware infrastructure

to start and stop execution and modify memory. A critical block in thread management

is the Context TCU which manages locally (per context, in the PIPE CTRL block) the

distribution of PThread operations to the centralised TCU. Each clock, one of the active

hypercontexts in a context arbitrates for the use of the context TCU; When granted access,

the command requested is passed on to the TCU residing in the DBG IF for centralised

processing. Upon completion of the PThread operation, the Context TCU returns (to the

requesting hypercontext) the return values, as specified by that command.

A subset of the PThread library is implemented, namely: pthread create, pthread join

and pthread exit. These three functions enable the creation, synchronisation and termination

of threads within the LE1 system to provide an explicit method of application threading.

The PThread hardware implementation is not instantaneous, the setup time for the man-

agement of threads through the TCU carries latencies which block execution in the calling

thread until the operation has been serviced. The latency of a pthread create operation is 20

clock cycles. The 20 clock cycles allow the TCU to locate an available hypercontext within

the LE1 system and initialisation of registers required for execution.

The pthread create operation takes four arguments and returns the status of the oper-

ation. These arguments are shown in Figure 4.14. The operation is serviced by the TCU.

60

4. EXPERIMENTAL FRAMEWORK

i n t

p th r ead c r ea t e (pthread t ∗ r e s t r i c t thread ,

const p t h r e a d a t t r t ∗ r e s t r i c t at t r ,

void ∗(∗ s t a r t r o u t i n e) (void ∗) ,

void ∗ r e s t r i c t arg) ;

thread : g l o b a l memory po in t e r to s e t ID o f c r ea ted thread

a t t r : unused

s t a r t r o u t i n e : f unc t i on po in t e r used to s e t program counter

arg : po in t e r to g l o b a l memory used to s e t as r e g i s t e r 3

Figure 4.14: Arguments for pthread create Operation

Firstly an available hypercontext within the LE1 system is located, this is a hypercontext

currently not performing any execution. Once found, the ID of this hypercontext is stored

in the location specified by thread, the hypercontext then begins execution of the function

pointed to by start routine using the argument pointed to by arg. The pthread create opera-

tion also takes an attr argument to define the priority and scheduling of the created thread.

In the LE1 hardware PThread implementation this is currently unused, it has been left in

for compatibility reasons but is currently unimplemented and any thread attributes will be

ignored.

When more than one pthread create is issued at any time, or if a second is issued while

the TCU is already servicing a request the second thread of execution is stalled until the

current request is serviced, this is then stalled for 20 clock cycles to service its own request.

The pthread join operation is a blocking operation. The execution of the calling thread

is suspended until the target thread is terminated. The latency of this operation in the LE1

hardware PThread implementation is five clock cycles in a best case scenario. If the target

thread has already completed execution and terminated the calling thread is stalled for five

clock cycles, this is the time required by the TCU to perform a check and return the status

of the target thread to the calling thread.

The pthread exit function is implemented as a HALT instruction to terminate execution

of the hypercontext as well as updating state within the TCU to allow other threads to be

aware that the thread is no longer active.

In this implementation of the subset of the PThread library the passing of return values

from the pthread exit and pthread join functions is not implemented. Due to this global

variables are required to pass data across threads as well as careful programming to ensure

that the executing code is thread-safe.

61

4. EXPERIMENTAL FRAMEWORK

The CPUID method is simpler and returns a 32 bit control register consisting of a unique

identifier for each hypercontext in the LE1 system. This allows the application developer

to specify in their code how each hypercontext should execute. The CPUID instruction is

encoded directly into the ISA. Within the C code a call to a function named getCPUID()

is replace in the generated assembly to the CPUID instruction. For example:

int my cpuid = getCPUID(NULL) ;

is replaced with

CPUID r 0 . 5

where the variable my cpuid is mapped to register 5 in the current hypercontext. This

operation has a latency of 1 cycle, so the register is able to be used in the following clock

cycle. This allows the returned value to be used to define the control flow of the program.

4.3.2 Software Tool Chain

The tool chain developed for the LE1 VLIW consists of the research compiler VEX, devel-

oped by HPLabs [7], along with a collection of scripts which perform transformations of the

assembly generated by the compiler. These transformations extend the instruction set to

include threading mechanisms and libraries required by both the physical implementation

and the cycle accurate instruction set simulator. Figure 4.15 displays an overview of this

tool chain starting with C code and resulting in the instruction and data RAM sections of

the LE1 system.

4.3.2.1 Compiler

The compilation section of the tool chain is provided by a research tool available from HP

Labs. VEX, Vliw EXample [66], is a VLIW compiler which extracts ILP from C code. VEX

provides a full compilation and simulation environment, allowing C code to be executed as if

on a VLIW described through the use of a machine model to define the number of functional

units and cache sizes available. A compiled simulator is produced from the input C code

which produces multiple heuristics based on the execution run.

In this tool chain VEX is used solely for its instruction scheduling and assembly genera-

tion. A dedicated LE1 assembler and simulator were developed to exploit and enable TLP

provided by the LE1.

62

4. EXPERIMENTAL FRAMEWORK

Figure 4.15: LE1 Tool Chain overview

4.3.2.2 Assembler

The Assembler section of the LE1 Tool Collection takes the scheduled assembly produced by

the VEX compiler and transforms this to match the required ISA of the LE1 VLIW. These

transformations include operation modifications and renaming, reordering of the code at

function level and producing a single self contained assembly file. The Assembler is split

into three sections which are performed in sequence to produce the final machine code.

These three sections are described below; the order of execution is dependent on the output

of the previous stages and is controlled by a scripted process to produce the final set of files

used by various other sections of the tool collection.

The Assembler scripts and libraries are made available in [93].

63

4. EXPERIMENTAL FRAMEWORK

4.3.2.2.1 Implementation Details .

First Pass

The first stage of the LE1 Assembler takes the VEX assembly generated and translates it to

create a new assembly file which adheres to the LE1 assembly specification. The assembly

which is generated at the end of this pass is split into distinct sections: Operations, Imports,

Data Labels, BSS Labels and Data Section.

The operations section contains all instructions, including scheduling, to implement the

C code input. Imports displays a list of functions and variables which are required by the

current file but not implemented within; these could be external and located within other

assembly files from the same application or required from libraries which need to be included

into the application. The data and BSS labels contains a list of all global variable names

along with their location within the data section. The data section is stored in 32-bit hex

format within the file. This pass also checks for a main function; as this is the start function

for all applications the main function is required to be at the first instruction as the default

behaviour of the LE1 is to start execution with a program counter of 0x0. If a main function

is found it is moved to the top of the operations section.

Mid Pass

The mid pass takes multiple assembly files populated in the first pass and concatenates

them together to produce a single assembly file in the same format as the files created by

the first pass, taking care to preserve memory addressing. The order in which the files are

concatenated requires that any file containing a main function be first, as this maintains the

requirement of starting execution from 0x0. A check is also performed to make sure only a

single main function is included. The data section is simply concatenated to create a single

contiguous memory block, the labels within this data are incremented so that all labels point

to correct data sections. The import section is then processed to remove any functions and

data items which have been included through the concatenation of these assembly files.

This pass is only required when more than one C file is compiled and the main or-

chestration script controls whether this is perfomed or not. After the mid pass is run the

orchestration script checks the list of imported functions which are required and if there are

any which are available within the LE1 library section they will be compiled through VEX

for the current machine model and included into the final single assembly file.

Second Pass

This is the final pass of the assembly and requires a single self contained assembly file with

no external dependencies. This pass finalises all instruction and data labels and produces

64

4. EXPERIMENTAL FRAMEWORK

the machine code based on the LE1 ISA. The output of this stage consists of a collection of

files as follows:

binaries/

dram.bin Binary file containing initialised LE1 data section

iram0.bin Binary file containing full instruction area of LE1

microblaze/

data.h Full data section stored in C byte array

inst.h Full instruction section stored in C byte array

le1 obj.h All instruction and data labels

output/

output.data.txt Text file showing data section

output.inst.txt Text file showing instruction section

output.le1.s Self contained LE1 Assembly file

The IRAM and DRAM binaries are used by the LE1 interpreted simulator to confirm

correct execution as well as produce execution heuristics. For execution on hardware three

C files are generated to be compiled for the MicroBlaze processor. These files include the

IRAM and DRAM stored in a byte array within C header files along with another file which

contains the addresses of functions and variables within these arrays. These addresses aid

in debugging the hardware system as global variables within the LE1 hardware can be read

and written using the names given in the application being executed. This allows the use

of variable names from the compiled application to be accessible from within the MiroBlaze

system to get/set global variables within the LE1 system. Some other text files are generated

to help debugging and matching assembly instructions to functions and program counters.

These include breakdowns of the instruction and data RAMs in plain text including the

assembly instructions, machine code syllables and program counters.

4.3.2.2.2 Libraries .

A selection of libraries have been implemented for use with the LE1 tool chain. These

are implemented in C and are included in the current application depending on whether

functionality is required. Currently the math library, string library and some dynamic

memory allocation are supported. Each function (for example, sin(), cos(), strcpy(), ...) is

implemented in separate files which are only included if required by the application. Each

such file needs to be compiled for the current hardware configuration. This is done automat-

ically through the orchestration script as shown in Figure 4.15. Separating each function

65

4. EXPERIMENTAL FRAMEWORK

means only required functions are available within the IRAM and helps in minimising the

IRAM size. A list of dependencies and available base functions is used by the scripted

assembly process; this list of available functions is queried with a list populated from the

Imports section of the assembly file. If available they are compiled for the current hardware

implementation and included in the IRAM. This method allows the users to define their

own library functions if required or to use the base implemented functions.

4.3.2.3 Orchestration

The compilation and assembly stages are fully automated through a single scripted process.

The transitions in Figure 4.15 are controlled through an orchestration script which copies

files into required locations and invokes the processes (displayed as rectangles) depending

on the outcome of previous stages. This simplifies the tool chain and also aids in a single

machine model being used throughout the flow to configure all aspects of the tool chain to

target a single design point.

4.3.2.4 Simulator

The LE1 Instruction Set Simulator (Insizzle) is a customisable, interpreted simulator which

executes instructions as the LE1 hardware would. It is used to confirm correct execution as

well as producing various output heuristics which can be used to inspect/profile the code

being executed. Insizzle was produced during the course of this thesis and was used for

extracting heuristics of application execution under alternative configurations of the LE1

processor.

Insizzle requires the instruction and data binary files produced by the Compilation and

Assembly stage along with the machine description in the LE1 XML configuration file. Ini-

tially, the XML configuration file is read which sets up the simulator to match the hardware

being targeted. There are various arguments which can be passed to Insizzle which alter

execution and provide more information output. These are displayed in the Appendix in

Table D.1.

Once execution is completed heuristics of the run are printed to the output along with

a file name “memoryDump.dat” which contains a full data section dump. This can be used

to retrieve global data variables to confirm correct execution as well as compare against a

known correct output. The heuristics printed to screen are displayed in the Appendix in

Table D.2.

The Insizzle source code is made available in [93].

66

4. EXPERIMENTAL FRAMEWORK

4.3.2.4.1 Implementation Details .

Insizzle was produced along side the creation of the LE1 hardware implementation and

aided in verification and validation of the LE1 RTL. It was also used to implement various

threading techniques prior to them being implemented in hardware, as it was easier to fault

find and finely tune ideas. It also functioned as a test bench for the XML configuration file

to confirm the implementation of this fully incorporated all aspects of the hardware design.

The simulator implements a set of control registers identical to that of the hardware as

specified in the programmer’s reference manual [84]. The simulator was written in C as a

single executable which is passed the instruction and data binaries along with a machine

model description (LE1 XML configuration file). The machine model is used to define the

simulator’s internal system registers which are in turn used to dynamically populate internal

storage and data structures. The simulator executes the IRAM as the hardware would, tak-

ing into account interlocks when fetching instruction bundles and servicing memory requests.

Each available hypercontext is queried each cycle to check its internal state, this internal

state defines whether it is ready, running, blocked or terminated. A hypercontext with

a state of ready defines that it is available to perform execution, running defines that

the hypercontext is currently executing instructions, blocked and terminated are used

in threaded mode to define states relating to synchronisations between threads and when

execution has completed within a hypercontext. The simulator has extra states to mimic

the execution of the hardware; these include a stall count state which can be set and is

decremented each cycle until zero to stop execution of instructions in a given hypercontext.

The instruction fetch section of the simulation uses a look ahead within the IRAM to

stall the execution for the correct number of cycles before allowing the instructions within

a packet to be executed. Through the use of the simulator, the instruction fetch has been

found to be a critical path within the LE1 execution, with around 10% of execution cycles

being the result of instruction fetch engine stalls. These stalls are incurred due to packing

of instructions to reduce the size of the IRAM. Instructions are grouped into packets and

each instruction within the packet can be executed in parallel. In order to minimise the

size of the IRAM a single bit within each instruction is used to denote the end of a packet.

This enables instruction packing within the IRAM and reduces the space required for the

IRAM as no-op instructions are not required to denote empty instruction packet slots. This

instruction packing results in the possibility of packets spanning multiple instruction rows

and the instruction fetch engine is tasked with extracting full packets from the IRAM before

instruction decoding is performed. Large immediates are encoded into the instruction RAM

as full 32 bit values with each instruction able to include a 32 bit immediate. This results

in a worst case of two additional cycles for the instruction fetch engine to retrieve a full

67

4. EXPERIMENTAL FRAMEWORK

Figure 4.16: Instruction packing and fetching example in LE1 system.

instruction packet from the IRAM. An example of this instruction fetching is shown in

Figure 4.16.

The example shows a worst case scenario using a two wide LE1 instruction fetch engine.

Three cycles would be required to retrieve the full instruction. Each instruction (inst0 and

inst1) include a 32 bit immediate (imm0 and imm1) resulting in a full instruction packet

of four 32 bit words. In the first cycle only inst0 would be retrieved, the instruction fetch

engine would know this included a 32 bit immediate along with the fact the “packet end

bit” not being set. The second cycle would retrieve imm0 and inst1, this time the “packet

end bit” is set within inst1, however, this also includes a 32 bit immediate. The final cycle

would retrieve imm1 which completes the packet, this is then passed to the next stage of

the pipeline to be decoded. This process incurred a two cycle stall due to the extra fetches

required to generate the full instruction packet.

In order to partially hide stalls incurred by the the instruction fetch engine the memory

system and instruction fetch engine run in parallel. If execution is stalled due to the memory

banking system, where more than one memory operation attempts to read or write to a single

bank, the instruction fetch engine can continue to fetch the next instruction packet to make

the next instruction available for execution once the memory is retrieved.

If running, and not stalled, the simulator retrieves its current packet of instructions

and executes them in the order they are specified in the IRAM. This is the only difference

between the simulator and hardware, as the hardware would execute the instructions in

parallel. However, this does not affect execution due to there being no data-dependencies

between registers used within the instructions. Loads and stores are pushed onto a memory

access queue which is serviced at the end of each system-wide cycle. This servicing of the

memory request queue takes into account the number of memory banks available in the

system and either provides data to the requesting hypercontext or stalls the hypercontext

until the memory operation can be serviced by the load/store unit.

The simulator also implements a set of system calls, such as file I/O, which allow a wider

range of application code to be compiled and run under simulation to retrieve execution

heuristics before having to modify code to work in the hardware implementation without

file I/O.

68

4. EXPERIMENTAL FRAMEWORK

There are two modes of execution available:

A) only the state of a single hypercontext within the system is set to running and is exe-

cuting instruction at time zero, the other available hypercontexts are set as ready. This is

used in PThread mode to allow the creation of threads through the ISA extensions based

on the PThread library.

B) all available hypercontexts have a running state and begin execution at 0x0 within the

instruction RAM, this is used in both single core and CPUID mode.

The Insizzle simulator produces an overall cycle count of an application for a given LE1

XML configuration file and this figure can be used to predict the actual execution time of

the LE1 system in hardware.

In order to confirm the heuristics output of Insizzle were inline with the hardware im-

plementation, instrumentation was included within the hardware to allow clock cycles to be

measured. Various test applications and system configurations were executed and the results

compared from both simulator and hardware execution. With only a single load/store unit

instantiated, resulting in only one memory operation per cycle, the total cycles reported

by both the simulator and hardware are exact. When more than one memory operation is

performed each cycle, which can be due to either multiple load/store units in a single core

or multiple cores executing in parallel, the results differ; with Insizzle reporting a higher

number of cycles than the hardware.

This difference in the reported cycle counts in simulation and execution on hardware is

a result of how the memory system is simulated. As cores are simulated in a specific order

each cycle (first to last) with memory operations pushed onto a queue when executed there

is an order bias which is not present in the hardware. This results in a slight deviation in

cycle counts produced by Insizzle, with Insizzle reporting a worst-case cycle count.

From the heuristics generated from Insizzle an estimate of the hardware execution cycles

can be made. Insizzle reports the number of stall events as the result of memory conflicts,

using this value along with the total execution cycles gives a margin of error in which the

hardware execution cycles resides. Although the simulation of the memory system is not

perfect it allows for initial conclusions to be drawn from heuristics regarding execution time

which can be used to guide optimal hardware generation for specific applications.

The simulator executes at around 1.8MHz (per hypercontext) and is only 3.5% of the

speed of the hardware running at 50MHz. However the ability to display each executed

instruction allows deeper investigation of the executed cycles and a richer amount of infor-

mation regarding execution. The simulator is also configurable and allows investigations

into various LE1 configurations without the need to synthesise the hardware system, which

can be a very time-consuming process.

69

4. EXPERIMENTAL FRAMEWORK

4.3.3 Modelling

The three methods for system modelling in UML for a statically customisable multicore

architecture were described previously in section 4.2.2. They focus on the three sections of

a system from the modelling perspective, application, architecture and mapping and can

be used singularly or all together to allow the application developer to produce a PIUML

model.

This section describes the implementation details of the proposed methodologies. Finally,

an example using all three modelling methods together is presented and discussed. One of

the limitations of UML modelling tools when exporting the UML model to other applications

is the loss of diagrammatic information. Each UML tool vendor uses different ways to store

diagram information and there is no standard way of exporting this data. The behavioural

synthesis tool requires its input in the form of an XMI structure, this file is exported from

the UML modelling tool and it is this file which is modified by the tools and processes to

transform a PIUML to a PSUML model. This XMI structure includes only the underlying

UML model which has been captured in a UML modelling tool by the application developer.

Modifications are made directly to this XMI structure through the use of XML parsers and

scripts to perform the tasks required. Due to the lack of diagram import option in the

UML modelling tools some extra work was performed to visualise possible static mappings

available based on the input UML model. This is described in more detail below.

The methodology used to design applications in UML uses a subset of the UML spec-

ification which is outlined below. The architecture which the application is mapped to is

also captured in UML using a similar style along with elements from the MARTE profile to

stereotype classes and objects as hardware elements.

The behaviour of an application is created using UML classes and Class Diagrams. A

class is seen as a containing element and includes variables and operations which are available

within the class itself. Ports are also included within classes, and are used to transfer data

into and out of these classes. The Class Diagram is used to specify various object-oriented

aspects of the application: associations, dependencies, etc. Ports are required to have a

type which is in the form of an interface. An interface in UML is similar to a class which

includes only operation definitions, it defines the public functions available within a class.

The functions defined within the interface are accessible to external objects through ports on

the class. The behaviour is included using both UML state machines and action code. State

machines capture behavioural flow in a graphical form and are used to schedule behaviour

depending on the current state of an object. Action code can be included within the state

machines where it can be tagged onto transitions and used to perform entry and exit actions

within states. Action code can also be included within operations in a class similarly to

70

4. EXPERIMENTAL FRAMEWORK

conventional programming languages. Behaviour within state machines can be modified

through the use of signals and signal events. A signal event is used to trigger a transition

from one internal state to another within the state machines. Signals are linked to operations

within an interface and allow non-blocking calls to be performed between objects.

Composite Structure Diagrams are used to define the communication structure of an

application. Classes are instantiated in the form of objects which contain the behaviour and

ports of the class. Using connectors the ports are then connected together to specify the

channels which objects communicate through. This results in a complete application view

in UML.

It is at this level which the architecture is also captured using the MARTE profile to

stereotype classes as either a CPU (HwComputingResource) or a processor core (HwProces-

sor) and then using Allocate arrows to map the application elements to the architecture.

4.3.3.1 Architecture

Using the LE1 XML configuration file presented in 4.3.1.1 along with the XMI structure

of the UML model it is possible to modify the underlying architecture within the model to

match that of the physical architecture being targeted. The steps for modifying the archi-

tecture section of XMI structure are displayed below. The process has been implemented in

Perl and can be found in [93].

1. Read the LE1 XML configuration file and store the number of available context in the

architecture.

2. Read XMI structure.

3. Located the HwComputingResource with in the stored structure.

4. Within the HwComputingResource count the number of HwProcessors and check for

items tagged with wildcard multiplicity.

5. If any HwProcessors are tagged with a wildcard multiplicity and the total number is

less than is available within the physical architecture insert new cores and stereotype

them using MARTE profile.

6. Else If the number of available cores within the physical architecture is less than that

specified in the XMI structure return an error.

7. Write XMI structure to file.

This results in a new XMI structure where the number of HwProcessors within the UML

model matches that of the underlying multicore architecture being targeted.

71

4. EXPERIMENTAL FRAMEWORK

4.3.3.2 Application

The modification of the application within the model requires additions to both the structure

and behaviour of the model. Two methods, as described in section 4.2.2.2, are referred to

here as RoundRobin and Split, where RoundRobin passes calls to subsequent replicated

objects and Split executes a single operation across multiple available objects and waits for

all to finish before proceeding. The overall process of this modification is shown below; for

both RoundRobin and Split this process is similar with only step 6 being different. An

implementation of this process, written in Perl, can be found in [93].

1. Read XMI structure.

2. Record the number of objects within the application and cores within the architecture.

3. Find objects within the architecture tagged with a wildcard multiplicity.

4. Calculate the number of times to replicate this object.

5. Find the class which is the base of the object to be replicated.

6. Perform RoundRobin or Split.

7. Create new XMI model containing new objects.

Step 6 using the RoundRobin method:

1. Find the Interface which the input port(s) of the object to be replicated uses.

2. Create a new class (Fork) which implements all operations in this interface.

- Generate input port(s), same number as on the object to be replicated.

- Generate output port(s), number of input ports on object to be replicated multiplied

by the number of times to replicate the object.

- For each operation create an attribute to define the last object which was called.

- Create behaviour for each operation to perform a round robin calling mechanism.

3. Find the Interface which the output port(s) of the object to be replicated uses.

4. Create a new class (Join) which implements all operations in this interface.

- Generate input port(s), same number as output ports in Fork.

- Generate output port(s), same number as output ports in object to be replicated.

- Create behaviour for each operation to pass data directly from input to output port.

5. Instantiate both Fork and Join classes within the application.

6. Reconnect all connections from object to be replicated to the Fork and Join objects.

72

4. EXPERIMENTAL FRAMEWORK

7. Remove object to be replicated from application.

8. Create multiple instances of class which should be replicated.

9. Connect output ports of Fork to input ports of new objects and their output ports to

the input ports of Join.

10. Make sure there is a mapping from the application to the CPU, this allows full mapping

permutations.

Step 6 using the Split method, this requires the operations being split to have a predefined

set of arguments. These arguments are used to split the computation across all replications

of the wildcard object. They include the data set, the size of each item to be processed

and the number of items to be processed. Using these arguments the fork object splits

computation across each available object.

1. Find the interface which the input port(s) of the object to be replicated uses.

2. Create a new class (Fork) which implements all operations in this interface.

- Generate input port(s), same number as on the object to be replicated.

- Generate output port(s), number of input ports on object to be replicated multiplied

by the number of times to replicate the object.

- Create an attribute to define the number of available objects to perform computation.

- Each Operation is then implemented to include a call to each available object using

the start, size of data items, number of available objects and their id.

3. Find the Interface which the output port(s) of the object to be replicated uses.

4. Create a new class (Join) which implements all operations in this interface.

- Generate input port(s), same number as output ports in Fork.

- Generate output port(s), same number as output ports in object to be replicated.

- Create an attribute to define the number of available objects to perform computation.

- Create an attribute for each operation to be used as a counter to increment for each

call received.

- Create behaviour for each operation to increment the operations counter. If all are

finished pass data directly from input to output port, else do nothing.

5. Instantiate both Fork and Join classes within the application.

6. Reconnect all connections from object to be replicated to the Fork and Join objects.

7. Remove object to be replicated from application.

73

4. EXPERIMENTAL FRAMEWORK

8. Create multiple instances of class which should be replicated.

9. Connect output ports of Fork to input ports of new objects and their output ports to

the input ports of Join.

10. Make sure there is a mapping from the application to the CPU, this allows full mapping

permutations.

The use of either RoundRobin or Split is dependent on the type of application being modified.

The inclusion of the Fork and Join objects result in an overhead to perform computation

which alters control flow. However, when investigating the amount of work required to

modify the UML models for specific architectures the trade off between design time and

computation overhead will be investigated.

The usage of both RoundRobin and Split methods for processing data within real appli-

cations is presented in chapter 6.

4.3.3.3 Mapping

The process of translating a PIUML model using adjustable mappings to that of a statically

mapped PSUML model is split into two processes. Firstly a process reads the XMI structure

and generates a list of all possible static mapping permutations along with a set of images

displaying these static mappings. The second process then takes this list of static mappings

along with a number defining which mapping to implement. The original XMI structure is

then modified and a single statically mapped PSUML model is generated.

Implementation details of these two processes is described in detail below. Both are

made available in [93].

4.3.3.3.1 Read Allocations .

The read allocations process which generates all possible static mapping permutations:

1. Read XMI structure.

2. Create a list of all UML classes.

3. Traverse XMI structure to find the Application section, store each object within the

application.

4. Find MARTE HwComputingResource stereotypes, produce a list of available HwPro-

cessors contained.

5. Find MARTE Allocate stereotypes, find the UML dependency they link to.

74

4. EXPERIMENTAL FRAMEWORK

6. Using identified dependencies find which level of the application and architecture sec-

tions they use.

7. Calculate which level of the Application the allocation arrow starts at:

- Object: create a reference to either a single core or all cores within an CPU.

- Application: create a reference for each available object to either a single core or all

cores within a CPU.

8. This results in a list for each object within the application of the possible cores within

the CPU it could be mapped to.

9. Remove any duplicate entries of cores in the references.

10. Using this list loop through and generate all possible permutations of objects to cores.

11. Generate an XML file containing all of these possible permutations.

12. If specified create an SVG image of each possible mapping, showing the application,

architecture and mapping section in a graphical manner.

4.3.3.3.2 Write Static Allocation .

After the Read Allocations process a single XML file is generated containing all of the

possible static mappings of the UML model. This output is then used by this process, along

with a user specified design to create a new XMI structure containing a single, statically

mapped system.

The Write Static Allocations process generates a statically mapped PSUML model:

1. Read XMI structure.

2. Remove all instances of MARTE Allocate stereotypes from XMI structure and the

UML dependencies these link to.

3. Read XML file generated in the read allocations process.

4. Use passed mapping id to specify an available mapping.

5. Generate new UML dependencies to match the given mapping and attach to XMI

structure.

6. Stereotype these new UML dependencies with MARTE Allocate tag.

7. Write XMI structure to file.

75

4. EXPERIMENTAL FRAMEWORK

4.4 Example Flow

Using all three methods, described in the previous section, together results in a PIUML

model which can be modified to target multiple architectural instantiations of a hardware

template. The processes must be run in the correct order to fully utilise the underlying

architecture. Firstly the architecture section should be expanded, replacing any cores tagged

with wildcard multiplicities with extra cores to match that of the architectural instance being

targeted. Following this, the application section is expanded to generate extra objects to

exploit parallelism within the application. The number of times the object is replicated is

calculated using the number of unmapped cores within the architecture section. Finally, with

a fully expanded architecture and application section of the system, the mapping process

is performed in order to generate a list of all possible static mappings. Then, using one of

these possible mappings, a PSUML model is produced which aims to fully utilise the current

instantiation of the architecture.

An example of the tool flow from UML, using the design rules presented in this section,

down to simulation of a multicore LE1 processor in Insizzle is included in Appendix F. This

tool flow is used as a basis for investigations using various applications in chapter 6.

4.5 Summary

This chapter introduced the hardware architecture and the software tool chain which targets

it. The hardware system, which is implemented on a single FPGA, is composed of a con-

figurable multicore VLIW processor which communicates with a scalar CPU through a bus.

The scalar CPU acts as a master on the bus to load instructions and data RAMs into the

VLIW and control the execution of all available cores. The LE1 VLIW CMP includes a sub-

set of the PThread library which is implemented in hardware extensions to perform thread

management tasks. The software tool chain targeting this hardware system and PThread

implementation is comprised of multiple compilation and assembly sections. These work

together to produce a single binary which executes on the scalar CPU and automatically

loads and executes the VLIW CMP.

Also introduced are the novel UML design rules which provide a means to produce high

level models to target the multicore hardware system resulting in a single PIUML model able

to be refined to generate a PSUML model for a specific architecture without the requirement

of the application developer redesigning the initial UML model.

The UML design notations include:

Architecture Wildcard: This enables the application developer to tag architectural

elements with a wildcard multiplicity to define possible expansions. For example, a core

76

4. EXPERIMENTAL FRAMEWORK

within a CPU with a wildcard multiplicity represents one or more cores. This notation is

used along with a physical implementation where the number of cores is known to replicate

the cores tagged with wildcard multiplicities so that the architecture matches that being

targeted.

Application Wildcard: Similar to the architecture wildcard, application objects tagged

with a wildcard multiplicity define a section of an application which can be replicated. This

represents a section of an application which can be performed in parallel. Two methods

of using this notation are shown which are based on different thread library techniques for

performing parallel tasks.

Adjustable Mapping: This allows the application developer to specify the mapping

of an application to an architecture at a higher abstraction level which can then be refined

to a PSUML model.

To link the system generated in UML to the underlying architecture and tool chain, which

only accepts C as an input language, another tool is required to transform the application

generated in UML to a usable format for the compiler. A behavioural synthesis tool is used

for this job, it takes a UML model exported into an XMI structure and generates both

hardware (VHDL or Verilog) and software (C or C++) implementations of the model. This

is a key tool used to verify that the UML design rules which are defined produce correct

models as well as to investigate the difference in performance compared with hand crafted

UML models.

The work presented in this chapter is expanded on in chapter 5 which introduces the

tool chain of an FP7 project. This project uses the tools and a selection of the design

rules presented here, along with a Design Space Exploration (DSE) tool. The adjustable

mapping design notation is used in the UML models as an input to the tool chain and the

DSE interacts with the generated static mappings. The DSE tool specifies which static

mapping to generate and uses the resulting statically mapped PSUML model to gather

heuristics regarding design sizes and execution time.

The concepts of both hardware threading and UML modelling described in this chapter

are then investigated in chapter 6 and results are compared with alternative platforms and

implementations.

77

5. IMPLEMENTATION AND USAGE

5

Implementation and Usage

5.1 Chapter Objectives

This chapter introduces a tool flow which is currently implemented and being used within

the ENOSYS FP7 project (intEgrated modelliNg and synthesis tOol flow for embedded

SYStems design) [94].

The ENOSYS project tool flow is focused on using UML as a high level input language to

model applications destined for hardware/software co-design. Tools and modelling method-

ologies developed within this thesis are used in the tool flow to enable automated design

space exploration. The design space exploration aims to generate optimised UML models

using alternative mappings across the hardware and software domains based on an initial

UML model. These mappings are synthesised, compiled and executed guided by a design

space exploration tool which uses area and execution metrics to prune the available design

space.

The UML design notations presented in this thesis have been extended and modified to

aid in this design space exploration across both the hardware and software domain. These

modifications are introduced and discussed in this chapter.

5.2 ENOSYS Project

The main objective of the ENOSYS project is to reduce design and development cost as

well as shortening the time to market of electronic products [94]. The project proposes

the modelling and synthesis of embedded systems through a novel design methodology and

enhancement of existing tools presented within a tool flow based on both commercial and

research tools. The project consortium consists of four commercial companies and two

78

5. IMPLEMENTATION AND USAGE

Figure 5.1: High-level block diagram of the ENOSYS tool flow [95]

universities; two of the four commercial companies offer tools and the other two design case

studies to present the tool flow and ENOSYS methodology. The two universities also offer

tools used within the project.

5.2.1 Tool Flow

A high level block diagram of the ENOSYS tool flow is show in Figure 5.1, the arrows

represent data transfer between tools, which are displayed as boxes. The Jink Design Space

Explorer (DSE) works as an orchestrator to control this flow of information exchanged

between tools. The functionality of the tools incorporated within the project are described

below.

5.2.1.1 Design Space Explorer

The design space exploration of the ENOSYS flow is conducted by Jink [96]. The DSE

initialises necessary files and invokes tools in the correct order, as defined within the flow as

well as performing housekeeping to ensure a single architectural template is used through

out a single design iteration.

79

5. IMPLEMENTATION AND USAGE

Jink performs design space exploration around a platform-independent UML model (PI-

UML). This design uses the static and adjustable mapping design notation presented as a

contribution of this thesis.

The Jink tool evaluates alternative application mapping across architectures to produce

best case designs based on end-user requirements. This is achieved through interaction

with the PIUML to platform-specific UML (PSUML) model translation process presented

in chapter 4 to generate a list of all possible static mappings which allows the intelligent

DSE to iterate through all PSUML models based on the adjustable mappings of the original

PIUML model.

Jink also uses the LE1 XML configuration file to produce the physical hardware of

the LE1 system which is included into a System-on-Chip (SoC) and the machine code for

executing on the multicore LE1 system.

Finally, the DSE parses the output logs and report files from tools within the flow

and extracts design characteristics and metrics associated with compilation, synthesis and

execution. This data is stored in a database which is available to the user as well as being

used by the exploration engine to prune the search space and automatically produce an ideal

static mapping of the UML model.

5.2.1.2 Modelling

The ENOSYS project presents a subset of the UML and MARTE specification to be used for

system design. The ENOSYS modelling language uses two concepts from UML: Composite

Structure and State Machine Diagrams. This selection enables the capture of structure and

behaviour of an application, respectively. Three concepts from the MARTE profile are also

included, two to capture the architecture of a system: the Allocate and Hardware Resource

Modelling (HRM), which includes HwProcesor, HwResource and HwComputationResource,

and the Value Specification Language (VSL) used to capture non-functional properties of a

system used for requirements and traceability throughout the tool flow.

The Modelio [97] UML capture tool, provided by one of the commercial partners within

the ENOSYS project, is used along with the ENOSYS modelling language for design entry.

5.2.1.3 Behavioural Synthesis

The behavioural synthesis tool used within the project uses UML models captured using

the ENOSYS modelling language and produces custom hardware blocks, multicore C code

and the communication protocols for cross-domain message passing based on the mapping

defined in the UML model.

FalconML [85], provided by Axilica, another commercial partner within the ENOSYS

80

5. IMPLEMENTATION AND USAGE

project, provides this functionality and produces both VHDL RTL and C code to be syn-

thesised and compiled to produce an implementation of the input UML model.

The split of the application captured in UML into either hardware or software is depen-

dent on the mappings defined in the UML model. FalconML requires a PSUML model to

perform the RTL and/or C code generation correctly.

The C code generated includes FalconML wrapper code which implements event queues

for each available core within an architecture. The mapped application objects then execute

on specific cores. If more than a single object is instantiated on a single core the objects are

interleaved using these FalconML internal event queues.

5.2.1.4 Source Code Optimisation

An optimisation tool is also included in the ENOSYS tool flow. ACOT [98] is a source-to-

source transformation tool which optimises the C code generated by FalconML. High and

low level optimisations are performed including loop unrolling, intra-block vectorization and

algebraic simplification. These optimisations are managed by the Jink DSE which configures

the level of optimisation performed throughout the code.

This section of the tool flow takes code generated by FalconML and produces optimised

C code which is then compiled for the LE1 CMP.

5.2.1.5 Compilation

The compilation stages of the ENOSYS flow consist of the LE1 Tool Collection and the

MicroBlaze GCC compiler [92]. The LE1 system, which is the target programmable plat-

form within the ENOSYS project, is implemented as part of the SoC shown in Figures 5.2

and 5.3. The LE1 tool collection is required to produce machine code for this hardware

implementation. The SoC consists of a MicroBlaze processor which is a master on the PLB

along with the LE1 and FalconML hardware blocks, connected as slaves. The MicroBlaze

initialises these slaves and initiates execution in both the hardware and software sections of

the synthesised UML model. Other peripherals are also connected to the SoC, including a

UART for console logging from the MicroBlaze as well as memory blocks and controllers.

The C code generated by FalconML and ACOT is required to be compiled for the LE1

VLIW CMP. This produces machine code to execute on the LE1 in two formats; binary files

and C header files.

The binary files are used by the LE1 instruction set simulator to perform initial execution

to ensure correct execution and extract performance metrics (including execution time).

These metrics are stored and used by the DSE to perform exploration around both LE1

configurations and ACOT optimisations.

81

5. IMPLEMENTATION AND USAGE

Figure 5.2: ENOSYS System-on-Chip consisting of MicroBlaze (microblaze 0), FalconML

(falconml plb 0) and LE1 (vc plb 0) hardware blocks (highlighted).

Figure 5.3: Block diagram of ENOSYS System-on-Chip consisting of MicroBlaze, FalconML

Hardware Block, multiple LE1 and other peripherals; UART, JTAG, SRAM and PLB Bridge

to connect LE1 and FalconML to PLB Bus

82

5. IMPLEMENTATION AND USAGE

The C header files are included into a MicroBlaze program used to initialise the LE1

VLIW CMP executing in hardware. The MicroBlaze program loads the instruction and

data RAMs into the LE1 processor(s) and modifies control registers to start execution of

the code on the LE1.

This program is also used to extract execution metrics from the physical LE1 implemen-

tation once execution has ceased. The MicroBlaze program is pre-written and uses the low

level LE1 API included in Appendix B.

5.2.2 Contributions

The ENOSYS project targets a hardware/software co-designed system consisting of a mul-

ticore VLIW processor and custom hardware accelerators. The behavioural synthesis tool

generates the hardware blocks, multicore software and the communication process to per-

form message passing between these. The project utilises both the LE1 Tool Collection and

the mapping methodologies developed in this thesis.

The static and adjustable mapping methodology developed for multicore processors is

extended to target the hardware blocks available through the ENOSYS project tool flow.

The process of adjustable mapping as described previously is extended to include the

concept of HwResources. These MARTE stereotyped objects within the architecture section

of the system are treated similarly to that of the processor cores (HwProcessor) where

mappings of objects to a HwResource defines that the object is always instantiated as a

hardware block and mappings from the application to a HwResource define a mapping

which is dependent on any other mappings within the system.

Figure 5.4 shows examples of static and adjustable mappings used across the hardware

and software domain.

Figure 5.4(a) shows a static mapping from an object within App to a HwResource, object

i0 will always be instantiated as a hardware block.

An adjustable mapping is shown in Figure 5.4(b) where a single mapping from App to a

HwResource defines that any unmapped objects within App will be instantiated as hardware

blocks. In this example there are no other mappings resulting in both objects i0 and i1 being

instantiated as hardware blocks.

When mappings based around the processor and cores as discussed in chapter 4 are

included in the UML model, as shown in Figure 5.4(c), which includes a static mapping from

object i1 to a HwProcessor, the adjustable mapping to the HwResource results in only object

i0 being instantiated as a hardware block. A final example, Figure 5.4(d), shows adjustable

mappings from the application to both a HwResource and HwComputingResource. Both

objects within App can be statically mapped to the hardware block or either core within

the CPU.

83

5. IMPLEMENTATION AND USAGE

(a) Static Mapping - Object directly mapped to

HwResource

(b) Adjustable Mapping - Application mapped to

HwResource

(c) Static and Adjustable Mapping - Application

mapped to HwResource and Object mapped to Hw-

Processor

(d) Adjustable Mapping - Application mapped to

both HwResource and HwComputingResource

Figure 5.4: Examples of Static and Adjustable mapping used in ENOSYS project

The difference occurs in how FalconML treats mappings to a HwResource and a HwPro-

cessor, with the behaviour of objects being generated in VHDL RTL or C code, respectively.

The mappings shown in Figure 5.4 would not be recognised by FalconML as the UML model

must be statically mapped PSUML to produce a valid output in both hardware and software.

The research conducted in this thesis around the adjustable mapping does not include

investigations into hardware/software co-design as performed in the ENOSYS project. The

reason for this is due to scope and implementation. The architecture and tool chain devel-

oped in this thesis consists of the multicore VLIW processor with research conducted around

parallelism. The inclusion of custom hardware blocks to perform computation in parallel

with the multicore processor increases the complexity of the implemented UML model. This

results in difficulties in simulation and hardware execution as a full SoC must be simulated

84

5. IMPLEMENTATION AND USAGE

along with the communication bus to retrieve heuristics with which to perform analysis.

The adjustable mapping notation presented in this thesis has been extended within the

ENOSYS project to include the concept of hardware blocks. This extension to the notation

provides the ENOSYS project a process with which to create PIUML models for the target

hardware/software co-design systems which can be explored by an automated tool. Along

with this a transformation processes to create PSUML models from a PIUML model using

these adjustable mappings within the ENOSYS project was generated and is being utilised

by the DSE flow.

The concentration of this thesis on only the software domain enables conclusions to be

drawn regarding both the modelling techniques and VLIW processor which are the contri-

butions of this thesis.

5.3 Summary

This chapter introduced a European project which utilises contributions of the research and

development performed in this thesis. The ENOSYS FP7 project presents a tool flow which

uses UML as a high level input language to model applications destined for hardware/soft-

ware co-design.

The contributions from this thesis utilised in this project are:

LE1 Tool Collection: The LE1 VLIW CMP forms the multicore processor of the

target architecture and the tools developed are required for producing machine code to

execute on the hardware processors. The XML configuration file which defines the LE1

structure is also a key part of the tool flow as the DSE tool modifies and creates new

instances and configurations of the LE1 processors when performing exploration around the

available architecture platform.

Adjustable Mapping: The design methodology of specifying a mapping at a higher

level of abstraction to define adjustable mappings is used to allow single UML models to be

explored without the requirement of modifying the initial model. The DSE also invokes the

translations processes developed (see Appendix E) and uses the generated static mapping

permutations to explore valid PSUML models mapping the original application across the

hardware and software domains.

The use of these concepts and tools within the ENOSYS project presents a level of

dissemination and displays that the research contributions of this thesis provide addition

and improvement to real-world tool flow implementations.

85

6. EXPERIMENTS

6

Experiments

6.1 Chapter Objectives

This chapter presents investigations into both hardware POSIX Thread (PThread) manage-

ment and novel UML notations presented previously within this thesis. Firstly, two soft-core

processors which support the PThread library are introduced, the are used as comparison

points with the LE1 VLIW hardware PThread implementation. The MicroBlaze and Leon3

processors are introduced in section 6.2 and an investigation in the overhead of utilising

the PThread library to perform thread management is presented. Both processors sup-

port Interleaved MultiThreading (IMT) which time-multiplexes multiple threads on a single

core/CPU; this is extended, in the case of the Leon3, to implement a Chip Multiprocessor

(CMP) platform for a more direct comparison with the LE1 VLIW CMP.

A selection of benchmarks written in C was executed on the available architectures for

various hardware configurations, ranging up to eight cores. The benchmarks are threaded

using the PThread library at different levels and both fine and coarse-grained threading

is investigated. The fine-grained threading includes multiple calls to the PThread library

to perform tasks in parallel whereas the coarse-grained threading generates a single thread

per available core/CPU and specifies which data should be computed within each active

thread. The results of execution are evaluated in relation to a single core/CPU to compare

the overhead of the PThread library used to perform thread management.

The coarse-grained threaded benchmarks are also executed using the CPUID threading

method. The results from these runs are then compared with the PThread execution and

the usability of this method discussed with respect to the PThread library implementations.

The novel UML notations are then presented and investigated. The main benefit of the

wildcard multiplicity and adjustable mapping UML notations is to reduce application devel-

86

6. EXPERIMENTS

oper interaction with the UML modelling tool by producing a single platform-independent

UML (PIUML) model that can be transformed to platform-specific UML (PSUML) models

to utilise a statically configurable architecture. Due to the nature of UML modelling tools

requiring the application developer to input and modify the behaviour and structure of a

system through a Graphical User Interface (GUI) a method of quantifying this work has to

be defined to allow comparisons and conclusions to be made regarding the possible benefits

of the proposed UML notations. This is performed by capturing the mouse and keyboard

interactions of the application developer when generating a UML model through the UML

tool GUI. A custom program was developed to capture mouse and keyboard events per-

formed by the application developer when generating both architecture specific models as

well as utilising the UML design notations within a model. An overview of this process of

collecting and evaluating this data is presented in section 6.5.1.

A selection of base UML models have been generated to perform comparisons of the

proposed UML notation with respect to the standard process of manually modifying UML

models to fully utilise a modifiable architecture. The underlying behavioural of the UML

models are kept constant across the various benchmarks with the structure being modified

to capture configurable architectures and to specify parallel sections of an application. The

UML systems generated for these comparisons are detailed in section 6.5.

Benchmarks created in both C and UML include parallelism defined statically at compile

time. The number of threads explicitly created is dependent on the number of cores/CPUs

available, this allows investigations in the benefits of performing parallel execution at a fine-

granularity but does not touch on the issue of load-balancing. In some of the benchmarks

the amount of work performed in each thread is not equal and a method of interleaving

the computation to spread the load across all threads is used, this is described further

in section 6.4.1. Ideally a dynamic scheduler able to balance the computation across all

available threads would have been used for this purpose but was out of the scope of this

research.

6.2 Comparison Platforms

Four programmable architectures are used to perform comparisons with the parallelism

methodologies proposed in this thesis. The MicroBlaze [91] and Leon3 [99] are two scalar

soft-core processors; the Leon3 also has a multiprocessor configuration, named the Leon3MP.

Finally the LE1 VLIW CMP as introduced in chapter 4. All architectures are synthesised

for a Xilinx ML605 FPGA development board.

The MicroBlaze is a scalar, soft-core processor available from Xilinx [100] and is included

in the Xilinx XPS tools used for the FPGA device. The processor is highly configurable and

87

6. EXPERIMENTS

can be optimised for either area or performance. The MicroBlaze used in this study is the

performance optimised design consisting of a five stage instruction pipeline. This processor

includes PThread library support through the inclusion of the Xilinx Kernel which is used

to perform timing and context switching through IMT.

The Leon3 is a soft-core microprocessor based on the SPARC-V8 RISC architecture

available through Gaisler Research [101]. The Leon3 is a single core processor which can

also be synthesised in a multiprocessor configuration, named the Leon3MP.

Both the single and multiprocessor configurations are used as comparison points. The

Leon3 includes a thread library developed by Florida State University (FSU-pthread) [102]

which implements general PThread standards in the form of thread management, mutual

exclusions and conditional variables. Similar to that of the MicroBlaze this is an IMT im-

plementation and uses context switching to execute multiple threads. The PThread library

does not support the Leon3MP, however, an implementation has been developed to provide

similar thread management functionality to that in the LE1 CMP.

The Leon3MP system allows up to sixteen CPUs to be instantiated within a system;

there are some limitations in this architecture which require CPU0 to be the master CPU,

all other CPUs can be activated at any time through the use of an interrupt register. How-

ever, if any CPU exits or throws an exception the whole system hits a software breakpoint

which ceases all execution. Using a set of global arrays and data structures a method of

performing thread creation and synchronisation across the multiple CPUs has been im-

plemented. A subset of the PThread library operations are implemented (pthread create,

pthread exit and pthread join) to make this Leon3MP threading implementation similar to

that of the LE1 CMP PThread hardware implementation. At the start of execution a single

CPU (CPU0) is active. This CPU uses system configuration registers to ascertain the num-

ber of available CPUs within the current system. Using this information a global state table

is initialised; this includes the state of each CPU along with function and argument pointers.

The other available CPUs in the system are then started. However, they do not execute

this initialisation routine and instead are directed to a function where they poll the state

table entry relating to their CPU identifier. On the execution of a thread create operation

the global state table is used to locate a currently inactive CPU; once found the global state

of the selected CPU is updated to a busy status and the function and argument pointers

are initialised based on values passed to the create operation. Once a function pointer is

set the selected CPU begins execution of that function and once complete the CPU updates

the global state table, to allow subsequent threads to be allocated to it and returns to the

polling loop. This global state table allows PThread operations to poll the states and either

send tasks to an available CPU or wait for a specified CPU to finish execution. This very

basic functionality allows the implementation of a pthread create operation which initialises

88

6. EXPERIMENTS

Table 6.1: Processor configurations used within the experiments in this chapter.

Processor Number of cores Threading Library Threading Type

MicroBlaze 1 PThread Interleaved

Leon3 1 PThread Interleaved

Leon3MP up to 16 custom PThread sub-

set & CPUID

Chip-Multiprocessing

LE1 CMP up to 8 hardware PThread

subset & CPUID

Chip-Multiprocessing

required threads on separate CPUs within the system and a pthread join operation which

checks the global status of all CPUs to perform synchronisation.

This configuration allows the comparison of the LE1 CMP hardware PThread imple-

mentation with a CMP system able to execute the same benchmarks. The modifications to

the Leon3MP initialisation along with the implementation of global state and the subset of

PThread operations are included in [93].

Also available within the Leon3MP system is some custom assembly to return the current

processor identifier; this allows a comparison with applications executing on the LE1 CMP

in CPUID mode with the Leon3MP and is also used to only allow CPU0 to perform the

initialisation routine in the PThread library implementation. A list of the available processor

systems and their configurations is depicted in Table 6.1. These configurations form the basis

of comparison data into parallelism in the LE1 CMP using both a hardware PThread and

the CPUID technique.

The PThread libraries available for the MicroBlaze and Leon3 provide a valid comparison

point as both implementations include a full PThread library on readily available soft core

processors. The main difference between these and the LE1 and Leon3MP PThread imple-

mentation is that the latter provides CMP parallelism and the former IMT. The LE1 and

Leon3MP however require a larger portion of the FPGA fabric due to multiple cores/CPUs

instantiated. The development of the software PThread library subset for the Leon3MP

system allows a more direct comparison point as this, similarly to the LE1, supports CMP.

The execution time of each application is collected from simulations and execution on

hardware in order to perform comparisons between the different processors and library im-

plementations as well as investigate the speed up of instantiating extra cores to perform exe-

cution. All software PThread implementations require initialisation prior to using PThread

operations; this setup time is not included within the extracted execution time. This allows

the time spent performing the computation for each benchmark to be the main focus of the

89

6. EXPERIMENTS

results generated leading to conclusions into the overhead of the alternative implementations

of thread management.

The following sections make use of the architectural platforms introduced. Initially

the timing overhead of using the PThread library to perform simple thread creation and

synchronisation is investigated across all platforms and then benchmark applications are

executed to perform a more in-depth comparison.

6.3 Micro-Benchmarks

The PThread library operations include a time penalty for the management of threads. To

perform an initial investigation in the use of software threading libraries versus the proposed

LE1 CMP hardware implementation three tests were created. These tests are executed on

all platforms to enable comparisons between the alternative PThread implementations. The

tests perform thread creation and synchronisation and use available timing mechanisms to

retrieve either the number of clock cycles or absolute times to perform the specified task.

The three tests performed investigate the overhead of creating and synchronising threads

in the alternative systems. These figures can be used to evaluate the granularity of the par-

allelism which can be extracted from an application. The three tests are described below:

A) Create

The results of this test show the time elapsed between the master thread issuing a pthread create

operation and the slave thread beginning execution. A timer is started prior the the

pthread create operation and stopped within the slave thread.

B) Join

The elapsed time from the slave thread completing to the master thread being aware of the

termination of the slave thread through a pthread join operation is calculated in this test.

A timer is started and the slave thread exits; the master thread performs a pthread join

operation and, once it is made aware of the termination of the slave thread, the timer is

stopped from the master thread.

C) Create & Join

The slave thread in this test executes an empty function and the results show the accumu-

lated time taken for both previous tests. A timer is started, the master thread performs a

pthread create operation directly followed by a pthread join; once the pthread join is com-

pleted the timer is stopped.

90

6. EXPERIMENTS

The PThread libraries used on the processor platforms is as follows:

• MicroBlaze: Software PThread implementation, Xilinx Kernel PThread library.

• Leon3: Software PThread implementation, Florida State University PThread library.

• Leon3MP: Custom PThread implementation, see Appendix G.

• LE1 CMP: Hardware PThread implementation.

The MicroBlaze figures are generated using the XPS Timer module and library calls

[103]; this provides the number of clock cycles taken to perform a given task. The Leon3

and Leon3MP figures are extracted using the clock() function available through the sparc-

elf-gcc compiler and Leon hardware. This function returns the number of microseconds

since the start of execution. This method provides figures which include a margin of error;

the higher the frequency of the implementation the higher the possible error. In this study

frequencies of 75 and 120 MHz were used, resulting in possible errors of±37.5 and±60 cycles,

respectively. Finally, the LE1 results are generated through the Instruction Set Simulator

(Insizzle) using the clock() function which returns the number of clock cycles since the start

of execution. The simulator executes a worst-case cycle-accurate simulation, in terms of

memory access and instruction fetching as described in the chapter 4. The LE1 used in this

test is a dual context system with both contexts consisting of a single hypercontext with

two issue width, two ALUs, two multiply units and a single LSU channel. A common shared

DRAM is also included with a single memory bank.

Due to the non-deterministic nature of the software implementations of the PThread

library and the context switching required in the IMT systems the tests were executed 1000

times and the mean time taken to execute used. For each of the systems investigated the

creation and synchronisation times have been extracted and are shown in Table 6.2 with

derived figures displayed in italics. These derived figures convert clock cycles to time taken

in µseconds to enable easy comparisons between the different methods of heuristic extraction

across the available platforms.

All tests are carried out as best case scenarios consisting of at most two threads being

active at any time in the user space; a single executing master thread creates a single slave

thread and then performs a synchronisation on this slave thread.

91

6.
E

X
P

E
R

IM
E

N
T

S

Table 6.2: Execution time of PThread libraries available on various architectures.

Processor Implementation Create

(µ Seconds)

Join

(µ Seconds)

Create & Join

(µ Seconds)

MicroBlaze IMT @ 75MHz 29.133 18.907 47.227

MicroBlaze IMT @ 150MHz 21.693 12.913 34.193

Leon3 IMT @ 75MHz 208.000 4788.000 4987.000

Leon3 IMT @ 120MHz 153.000 4844.000 4989.000

Leon3MP CMP @ 75MHz 2.000 1.000 3.000

Leon3MP CMP @ 120MHz 2.000 0.000 2.000

LE1 CMP @ 50MHz 0.640 0.640 1.280

Leon3MP CMP @ 75MHz based on MicroBlaze 29.000 18.000 47.000

Leon3MP CMP @ 120MHz based on MicroBlaze 18.000 11.000 30.000

Leon3MP CMP @ 75MHz based on Leon3 206.000 4781.000 4988.000

Leon3MP CMP @ 120MHz based on Leon3 129.000 2988.000 3118.000

92

6. EXPERIMENTS

The MicroBlaze, Leon3 and Leon3MP systems were executed at both 75MHz and at the

highest frequency available for each configuration. The 75MHz results are used to perform

comparisons and the 150MHz and 120MHz are shown to provide the shortest PThread

management times possible. The LE1 system is simulated at 50MHz in order to incorporate

up to eight cores (used for later benchmarks) and the SoC required to perform execution on

a Virtex 6 FPGA device.

Unlike the software implementations the times gathered from the hardware implementa-

tion of the LE1 PThreads were always consistent due to the management being performed

in hardware without any conflicts for computational resource. This resulted in an overall

time of 1.280 µs to create and synchronise with the created thread.

As can be seen from the results the MicroBlaze and Leon3 implementations which per-

form the thread management in software using IMT perform a factor of 25 and 3,800 times

worse than the LE1 hardware CMP implementation, respectively. This is due to only a sin-

gle thread able to execute at any time, resulting in the interleaved execution of the master

and slave threads on the single CPU. This is due to only a single thread able to execute

at any time, resulting in the interleaved execution of the master and slave threads on the

single CPU. A thread performing execution management is also active (Xilinx Kernel on the

MicroBlaze and FSU-pthread Kernel on the Leon3) leading to three threads of execution

being interleaved in the benchmarks. This results in higher latencies between the creation

and synchronisation routines as they are not executed immediately and have to wait until

they are scheduled to execute. This differs from the CMP implementation where each thread

is executed on a separate CPU with no contention for execution.

It is interesting to point out that due to the clock() function of the Leon3MP system

calculating in µs and the speed of which the PThread functions tested performed the results

are not exact. As a result of this the Leon3MP implementation clocking at 120MHz displays

a time of 0 seconds for the Join test. This is one of the drawbacks of using the Leon3MP

timing method instead of being able to extract cycle counts directly from the hardware

processor(s).

The MicroBlaze and Leon3 processors execute their PThread libraries under IMT. A

single core/CPU performs execution with all active threads time multiplexed on the single

core. Due to this, it is not valid to perform comparisons between the MicroBlaze or Leon3

with CMP threading implementations, such as the Leon3MP and LE1. The execution

time of IMT is not reduced with the inclusion of more threads, instead more computation

in the single core is required as thread management must be performed to interleave the

computation of each thread onto the single core.

In order to “simulate” the MicroBlaze and Leon3 performing CMP threading their thread

create and join times recorded in this micro-benchmark study are replicated in the Leon3MP

93

6. EXPERIMENTS

threading library. Stalls were added to make the latencies of the Leon3MP thread create and

join operations match those of the MicroBlaze and Leon3 processors and enable investiga-

tions into the advantages of performing thread management in hardware. The bottom four

rows of Table 6.2 display the Leon3MP system including these stalls in the thread create and

join operations to match the times the MicroBlaze and Leon3 processor systems reported.

Parallel threading can lead to a decrease in execution time, although this is only true

when the amount of work performed in the created thread is greater than the amount

of work required to perform creation and synchronisation of the thread. If this is not

true the possible performance increase by performing a task in parallel is cancelled out

by the thread management overhead. Shorter thread creation and synchronisation times

enable exploration into the granularity of parallelism. In most real-life applications it can

be difficult to identify sections of code which can be executed out of order and have no

data-dependencies. With the LE1 hardware PThread implementation as long as the section

of the application being parallelised executes for more than 1.280 µs the use of the thread

library results in an overall execution time decrease. Compared with that of 34.193 and

4987.000 micro seconds on the MicroBlaze and Leon3 systems, respectively.

6.4 C benchmarks

This section introduces a set of C applications used to perform comparisons across the

alternative hardware platforms and software implementations of PThreads. The applications

have been chosen for their ease of threading due to the limited subset of the PThread

primitives they use (only create, join and exit).

The first section presents applications which use a subset of the PThread library to

perform explicit Thread Level Parallelism using both fine and coarse-grained thread creation

and synchronisation. This is performed to highlight the differences between the alternative

implementations of thread management and how the latencies of the thread creation and

synchronisation operations affect execution times. This is followed by a selection of the

PThread applications modified to use the CPUID instruction; this implementation differ

as there is no predefined synchronisation methods. This requires either the use of hand

written, application specific synchronisation techniques or the use of fully data-independent

algorithms.

All results are extracted from executing the benchmark applications on four platform

configurations:

A) Leon3MP: with custom software PThread implementation & CPUID.

B) Leon3MP: with software thread management modified to simulate the thread creation

and synchronisation times of the MicroBlaze.

94

6. EXPERIMENTS

C) Leon3MP: with software thread management modified to simulate the thread creation

and synchronisation times of the Leon3.

D) LE1 VLIW CMP: with custom hardware PThread implementation & CPUID.

The CMP architectures are evaluated with a varying number of physical cores/CPUs (from

one up to eight) and the benchmarks themselves perform alternative methods of threading.

6.4.1 POSIX Thread

These benchmarks are threaded using PThread library primitives at two levels of granular-

ity: fine and coarse-grained. In the coarse-grained category a single pthread create operation

is executed per available core/CPU at the beginning of the application. Each thread then

performs the computation tasked to it and finally pthread join operations are used to syn-

chronise the active threads. In each case the number of pthread create and pthread join

operations executed is equal to:

(Number of Cores− 1) (6.1)

This allows the benchmarks to be threaded without the overheads of utilising the PThread

library management interfering with the overall execution times, or more truthfully, with

only a negligible amount of overhead.

The fine-grained threaded benchmarks are designed to use the PThread library as much

as possible. Within loops and other data independent sections of code multiple threads

are created and then synchronised. Where the number of pthread create and pthread join

operations executed is equal to:

(Size / Number of Cores) ∗ (Number of Cores− 1) (6.2)

Size is different across the benchmarks and will be defined within the descriptions of each.

This aggressive use of the PThread operations demonstrates how using a threading library

with long latency leads to a degradation in overall execution time when the computation

being performed within a thread takes less time than the overall management time of the

thread.

Each benchmark is executed across multiple configurations of the architectures, where the

number of available cores/CPUs is modified from one up to eight. Each benchmark is writ-

ten to modify the number of threads created based on the number of physical cores/CPUs

available as shown in Equations 6.1 and 6.2. For example, the coarse-grained benchmarks

will always create a thread of execution for each core/CPU within the architecture. Each

thread will then compute an equal, if possible, fraction of the workload. This implementa-

tion, in best case scenario should lead to a linear decrease in the total execution time. The

95

6. EXPERIMENTS

fine-grained benchmarks differ in that they are not threaded at the highest level; at certain

points within the code multiple threads are created to utilise available resources within the

architecture. These threads compute their fraction of the workload and are then synchro-

nised, this may occur multiple times within a loop, resulting in the PThread operations

being called numerous times within a single benchmark. In a best case scenario this would

lead to a speed up as described in Amdhal’s Law which takes into account both serial and

parallel sections of a program.

In both cases the best case scenario does not take into account the overhead of requiring

thread management to perform creation and synchronisation of threads. The following

benchmarks and execution results are used to perform an investigation into the effect of this

on execution time.

6.4.1.1 Mandelbrot Set

The Mandelbrot Set is a mathematical set of points whose boundary is a distinctive and

easily recognisable two-dimensional fractal shape named after the mathematician Benoit B.

Mandelbrot [104, 105].

The Mandelbrot Set was chosen as a benchmark as it is highly parallel and truly data-

independent. Each point within the set can be calculated in parallel based on a predefined

magnification setting and origin co-ordinates. A second set of co-ordinates is then passed

to calculate the pixel value at a specific position. Due to this the Mandelbrot code is used

through all of the example parallel techniques presented in this thesis. In this PThread

example a 160 by 480 Mandelbrot fractal is computed using a 10 colour palette and a

maximum iteration value of 100. The computation required is not equal per pixel; with the

maximum iterations per pixel set at 100 there is a possible difference of x100 depending

on the pixel position within the image. Originally the work load was split into contiguous

sections of the image which resulted in large differences between the computation performed

by each thread. As a result of this the computation is split on a row basis throughout the

output image. This results in an interleaved output with the computation performed across

each thread more equally balanced.

In this benchmark the coarse-grained threading is performed by the master thread gen-

erating a new thread within each available core/CPU. This thread is then tasked to compute

a section of the output image. The speed up of including extra threads on the available plat-

forms is shown in Figure 6.1. The cycle counts extracted while executing this benchmark

for the available platforms are shown in Table I.1 along with the speed up of adding extra

cores/CPUs and threads compared with the single core/thread execution in Table I.3.

The fine-grained threading uses multiple PThread operations; the number of instances

is derived from Equation 6.2 where Size is equal to the number of pixels within the output

96

6. EXPERIMENTS

Figure 6.1: Mandelbrot PThread Execution Results

image which in this case is 76,800 (based on a 160 x 480 image). The master thread iterates

through the full set of output pixels and creates new threads for each. It then computes

a pixel value itself and synchronises with all other threads. This is performed in a loop

until all output pixels have been generated. This results in zero PThread operations being

executed in the single core/CPU benchmark and up to 67,200 PThread operations pairs

(both pthread create and pthread join) in the eight core/CPU benchmark. The speed up of

including extra threads on the available platforms is shown in Figure 6.1. The cycle counts

extracted while executing this benchmark for the available platforms is shown in Table I.2

along with the speed up of added extra cores/CPUs and threads compared with the single

core/thread execution in Table I.4.

To show that overall execution time increases when using IMT this benchmark was

executed on the MicroBlaze and Leon3 processors. This is the result of only a single compu-

tation unit performing execution with each thread and the thread management being time

multiplexed. There is no benefit in this method of threading and an overall overhead is

incurred by this multiplexing. Tables I.1 and I.2 show the results obtained from execution

on these platforms. As can be seen, adding additional threads on the MicroBlaze results in

a worst case increase in overall execution time of 0.029% compared with the single thread

execution. The Leon3 performs worse, due to the larger latencies of the pthread create and

pthread join operations, with a worst case of 6.321% increase in execution time compared

with single thread execution of the benchmark. The fine-grained benchmarks display an

97

6. EXPERIMENTS

even worse trait; the number of PThread operations executed made it unable to retrieve

heuristics from the Leon3 platform. The cycle counts from the MicroBlaze were captured

from this fine-grained benchmark and showed an execution time increase of 16.085% com-

pared with a single thread. These results show what was discussed previously. Due to only

having a single core/CPU available for computing the benchmark the IMT implementations

result in an increased overall execution time. The use of IMT in these instances is well

suited to performing context switching to check for user inputs and display outputs, rather

than the parallel computation which is being performed by the LE1 CMP and Leon3MP.

6.4.1.2 JPEG Decode

This JPEG decoder is based on a small C implementation called NanoJPEG [106]. This

implementation was modified to remove dynamic memory allocation and file I/O to enable

it to be executed on the embedded processors used for comparisons in this study. A 64 x 64

pixel JPEG image of Lena was used as an input data set for this benchmark.

The JPEG decoder is a good example of a real-life application. Due to the nature of

decoding within the JPEG specification there are data-dependencies between sections of the

encoded image; macro blocks are used within the decode process where pixel values being

computed may rely on the computation of other pixels within the same or adjacent macro

blocks.

The coarse-grained benchmark takes the form of decoding eight JPEG images, with a

JPEG decoder being instantiated in each thread. These eight instances all decode a separate

image which allow the computation to be parallelised across the available cores/CPUs within

the architecture. The speed up of including extra threads on the available platforms is shown

in Figure 6.2. The execution cycle counts over the multiple cores/CPUs is shown in Table I.5

along with the speed up compared with a single core/CPU in Table I.7.

A single function was found to be independent of order; at the end of decoding a single

macro block an inverse discrete cosine transform is performed on each column within a macro

block (colIDCT). This function is called eight times in a loop for each column within the

macro block. This loop was modified to split the work over all available cores and then use

a unique identifier along with the total number of parallel threads to specify whether or not

to perform the computation. This resulted in the fine-grained threading benchmark, using

a slightly modified Equation 6.2, where “Size / Number of Cores” is set to the number of

macro blocks within the image. This fine-grained threading is performed on a single 64 by 64

image being decoded resulting in 96 macro blocks and up to 672 PThread operations pairs

(both pthread create and pthread join) in the eight core/CPU benchmark. As the amount

of computation performed within the function is small it is a perfect example to show the

advantage of having a threading library with a small time overhead for thread management.

98

6. EXPERIMENTS

Figure 6.2: JPEG Decode PThread Execution Results

The speed up of including extra threads on the available platforms is shown in Figure 6.2.

The results for the available platforms is shown in Table I.6 along with the multicore speed

up with respect to single core/CPU execution in Table I.8.

6.4.1.3 Sobel Filter

The Sobel Filter is an image processing algorithm used in edge detection. The input is an

image and the output is a greyscale image displaying “edges” within the image, this type of

filtering would be used as the first stage in feature detection to preprocess images. Each pixel

within the input image is used in calculations with its surrounding pixels and two masks are

used to find horizontal and vertical transitions to detect edges and corners. This algorithm

requires a lot of data reading, however, the algorithm itself has no data-dependencies and

each pixel value in the output image can be calculated independently. The inputs are an

image of size 640 by 480 and two 3 by 3 item mask arrays which are used for each pixel.

The coarse-grained threading is performed based on Equation 6.1, resulting in-between

zero and seven PThread operation pairs (pthread create and pthread join). This example

is split in an interleaved fashion similarly to the Mandelbrot Set; each thread executes a

full row of the input image and then moves down a set number of rows. The speed up of

including extra threads on the available platforms is shown in Figure 6.3. The cycle counts

extracted while executing this benchmark are shown in Table I.9 along with the multicore

speed up compared with the single core/CPU execution in Table I.11.

99

6. EXPERIMENTS

Figure 6.3: Sobel Filter PThread Execution Results

The fine-grained threading is also performed similarly to the Mandelbrot Set benchmark.

The only difference being the number of PThread operation pairs executed due to the

difference in image sizes. Size is defined using a 640 by 480 pixel image, however, the

actual algorithm ignores a single pixel border which results in 304,964 pixels (based on a

638 x 478 image). This leads to up to 267,768 pthread create and pthread join operations

when eight cores/CPUs are available. The speed up of including extra threads on the

available platforms is shown in Figure 6.3. The cycle counts extracted while executing this

benchmark are shown in Table I.10 along with the multicore speed up compared with the

single core/CPU in Table I.12.

6.4.1.4 Data Encryption Standard

The Data Encryption Standard (DES) was developed in the early 1970s and published as

an official standard in 1977. It has since been surpassed by other such standards as it is

considered insecure due to the key size being small enough to be susceptible to brute force

attacks. The algorithm takes a 64bit key to generate a set of 16 48bit sub-keys which are

used to encrypt 64bit blocks of plaintext, through a 16 stage Feistel Network, into 64bit

blocks of ciphertext. This benchmark was chosen due to the possibility of parallelising the

DES algorithm across multiple threads with each 64bit plaintext and ciphertext pair being

data-independent from any other block.

Similarly to the previous benchmarks this is parallelised using both the coarse and fine-

100

6. EXPERIMENTS

Figure 6.4: Data Encryption Standard PThread Execution Results

grained threading. The DES benchmark processes 64KB of data, resulting in 8,192 blocks

of 64bits to encrypt. In the coarse-grained benchmark a thread is instantiated within each

available core/CPU and then works across the input data using its knowledge of the total

number of threads and the size of the data to be encrypted. The speed up of including extra

threads on the available platforms is shown in Figure 6.4. The cycle counts extracted while

executing this benchmark for the available platforms is shown in Table I.13 along with the

CMP speed compared with the single core/CPU execution in Table I.15.

In the fine-grained threading the maximum number of PThread library operations pairs

executed is 7,168, based on 8,192 blocks. The speed up of including extra threads on the

available platforms is shown in Figure 6.4. The cycle counts extracted while executing

this benchmark for the available platforms is shown in Table I.14 along with the speed up

of added extra cores/CPUs and threads compared with the single core/CPU execution in

Table I.16.

6.4.1.5 Execution Results

The above benchmarks were executed across two of the architectures defined in section 6.2.

The first architecture is the Leon3MP which included eight CPUs, a 32KB instruction cache

and a 16KB data cache per CPU and a system clock of 75MHz. The second architecture

is the LE1 VLIW CMP clocked at 50MHz consisting of eight homogeneous contexts, each

comprised of a two issue width VLIW with two ALU, two multiply units and a single

101

6. EXPERIMENTS

Load/Store channel. A common shared DRAM is also included split into two memory

banks.

The benchmarks were compiled through both sparc-elf-gcc and the LE1 Tool Collection

with optimisation levels -O3 using simulated floating point support where required.

Due to the overhead of the PThread libraries on both processors using IMT, retrieving the

execution times for the benchmarks was troublesome as a result of timer registers overflowing

and the way which timers were implemented. When clocked at 75MHz the MicroBlaze timer

overflowed after 57 seconds, as a result of a 32bit register being used to track clock cycles.

For the benchmarks executed in this study this was not sufficient. To enable executions to

be timed a separate process, running as a thread, was required to track this overflow and

increment a second counter. Introducing this extra thread would add extra computation and

interleaving of threads, resulting in the MicroBlaze performing more work than the other

processors. The Leon3 timers in IMT resulted in inconsistent numbers being returned. It

was discovered that the timer only incremented for CPU0 while it was executing resulting

in the interleaving of computation to other threads not being counted. Due to available

threads not necessarily performing the same amount of work this resulted in unusable data.

As a result of these timer limitations in the MicroBlaze and Leon3 these architectures are

not included. Instead the Leon3MP executing the custom PThread library to simulate the

pthread create and pthread join times recorded in the micro-benchmarks (Table 6.2) for the

MicroBlaze and Leon3 were used. This enables investigations into how the latencies of the

thread management operations affects overall execution time of the benchmarks. Removing

the work required to multiplex threads on a single processor when threading using IMT

also enables more direct comparisons to be made as all implementations are based on CMP

architectures. This results in timing differences being due to the different latencies of the

thread management operations, which is of interest in this study.

Each bar chart below (Figures 6.5 - 6.9) shows all benchmarks being executed on a single

architecture and configuration, with each bar displaying the speed up for the given number

of cores/CPUs relative to the same benchmark being executed on single core/CPUs without

the use of PThread library operations.

The results from running the above benchmarks on the Leon3MP architecture using the

custom PThread library are shown in Figure 6.5. The Mandelbrot Set, Sobel Filter and

DES benchmarks show a near linear speed up when including extra CPUs in both the fine

and coarse grained threaded mode. There is a slight difference in the implementations which

utilise the fine-grained parallelism; for example directly comparing the two, the speed up in

the fine-grained benchmark is a factor of 0.05 less than the coarse-grained benchmark. This

is due to the increased number of PThread library calls and thus the increased overhead

incurred for thread creation and synchronisation.

102

6. EXPERIMENTS

Figure 6.5: Benchmarks run on Leon3MP architecture displaying speed up relative to a

single CPU when extra CPUs are available to perform computation.

Table 6.3: Example of how JPEG images (a - h) are distributed across available CPUs in

execution of JPEG coarse Grain benchmark.

Benchmark Threads
CPU

1 2 3 4 5 6 7 8

4 a, e b, f c, g d, h - - - -

5 a, f b, g c, h d e - - -

6 a, g b, h c d e f - -

7 a, h b c d e f g -

8 a b c d e f g h

The JPEG Decode benchmark displays different behaviour and is a result of the data-

dependent computation within the JPEG decoder. In the coarse-grained JPEG benchmark

a total of eight separate JPEG images are decoded. Each image must be decoded in its

entirety on a CPU and due to this the full workload of eight images is not able to be split

equally across all CPUs. This is evident from the data displayed in the bar chart as the

execution on 5, 6 and 7 CPUs perform worse than on 4 CPUs. This is due to available CPUs

idling as a result of the uneven split of the workload over the available architecture. This

split of execution over the available CPUs is displayed in Table 6.3. This shows the JPEG

images (a - h) and which CPU performs its decode; as can be seen in the execution with 5,

6 and 7 CPUs the distribution of the workload is not equal.

103

6. EXPERIMENTS

Figure 6.6: Benchmarks run on Leon3MP architecture simulating the pthread create and

pthread join operation times of the MicroBlaze PThread library. Graph shows speed up

relative to a single CPU when extra CPUs are available to perform computation.

The fine-grained JPEG benchmark displays a similar trait to that of the coarse-grained

JPEG where 5, 6 and 7 CPUs perform worse than the 4 CPU implementation. This is

the result of a similar uneven split of computation across the CPUs. Within the colIDCT

function being parallelised a loop iterates 8 times over a macro block. This benchmark

also displays that the amount of work performed within the created threads very closely

matches that of the overhead of the PThread operations and so the inclusion of the thread

management does not offer great benefits. All execution runs including the PThread creation

and synchronisation operations show a speed up of between 0.919 and 0.956 times compared

to a single CPU. Taking into account the FPGA resources required to implement up to

eight CPUs versus a single CPU and the increase in performance gained it would be more

favourable to perform the execution on a single CPU.

The execution speed up of the Leon3MP including stall cycles to simulate the PThread

library calls of the MicroBlaze is shown in Figure 6.6. The results of the coarse-grained

threading of all benchmarks, are consistent with those of the Leon3MP execution results.

This is due to the negligible overhead of the thread management in comparison to the amount

of computation performed within the created threads. This overhead is shown to have an

effect on the fine-grained benchmarks on this architecture. The Mandelbrot Set and DES

104

6. EXPERIMENTS

benchmarks display a similar trend as previously seen on the Leon3MP, however, the speed

up factor is not as great due to this overhead. Alternatively the Sobel Filter results display

a minimal execution speed up with the addition of extra CPUs. This is due to the amount

of work being performed being very close to the total overhead of the thread management

and thus resulting in a stalemate where creating new threads does not provide any great

speed up.

The JPEG Decode results display a negative trend to that seen previously. This again

is due to the work being performed in the generated threads compared to the overhead

of creating and synchronising those threads. In this case the thread management time

outweighs the time taken to perform computation and thus the inclusion of extra threads

results in a degradation of total execution time.

Executing the benchmarks on the Leon3MP with the custom PThread library while

simulating the thread management times of the Leon3 FSU PThread library requires two

graphs. This is due to the performance difference between threading at the two levels of

granularity. The coarse-grained threading is shown in Figure 6.7 where similar trends are

seen as in the previous results. The fine grained threading is shown in Figure 6.8 where in all

benchmarks the inclusion of extra threads results in a significant increase of execution time.

This is due, once again, to the overhead of using the PThread library to perform thread

management. In the Leon3 PThread library, as shown in Table 6.2 the times recorded for

this implementation were a factor of 100 and 1600 times greater than that of the MicroBlaze

and custom PThread subset implementation, respectively. Due to this large overhead all

benchmarks suffer when fine-grained threading is implemented.

The final architecture on which the PThread benchmarks are implemented on is the

LE1 VLIW CMP using the hardware PThread support. As the PThread operation timings

(shown in Table 6.2) are very close to those of the Leon3MP custom PThread library the

results in the LE1 speed up shown in Figure 6.9 are very similar to that of the Leon3MP

results. There are some fluctuations in the LE1 results and these are due to the nature of

the VLIW instruction packing and fetching. There are times when the VLIW requires to

be stalled to fully fetch an instruction packet, as the instruction fetch within the LE1 can

take a maximum of three cycles to produce a complete instruction packet when the latter

spans three IRAM lines. This can be seen in the fine-grain Mandelbrot Set results where

the use of two threads takes 48% of the time of the single thread to complete execution.

This is a greater than linear speed up which should not be possible, however, looking at

the actual execution results this can be explained as follows: in the single thread run 13%

of the total cycles were a result of the instruction fetch pipeline stalling to retrieve a full

instruction packet. In the dual thread execution less than 6% of each threads execution

cycles are due to this same effect. As a result of the parallel nature of the threads and each

105

6. EXPERIMENTS

Figure 6.7: Benchmarks run on Leon3MP architecture simulating the pthread create and

pthread join operation times of the Leon3 PThread library. Graph shows speed up relative

to a single CPU when extra CPUs are available to perform computation.

Figure 6.8: Benchmarks run on Leon3MP architecture with pthread create and pthread join

times simulating that of the Leon3 PThread library. Graph shows speed up relative to a

single CPU when extra CPUs are available to perform computation.

106

6. EXPERIMENTS

Figure 6.9: Benchmarks run on LE1 architecture showing speed up of multiple threads exe-

cuting in parallel relative to a single thread of execution. Each bar represents the number of

physical cores available for parallel execution, the number of PThread operations performed

in each is described in section 6.4.1.

physical core having its own IRAM and instruction fetch unit all execution is performed in

parallel resulting in the stalls being hidden as other cores are able to carry on executing.

Another reason for the difference is down to the compilation and assembly stage, as each

benchmark is different, the single thread code did not have any PThread calls in, resulting

in the compiler being able to optimise the code differently. This in itself results in the

instructions being packed differently which in turn can increase or decrease execution time.

6.4.2 CPUID

A selection of the benchmarks from the PThread implementation was modified to use an-

other form of thread management available in both the LE1 VLIW CMP and Leon3MP

architectures. The CPUID methodology enables thread parallelism with code being written

explicitly to execute on each available core/CPU. In the PThread method a single “master”

thread begins execution and creates and synchronises threads throughout the application.

In the CPUID method all cores/CPUs begin execution simultaneously from the entry point

of the application, with control flow being specified explicitly for each available core/CPU

within the code being executed.

107

6. EXPERIMENTS

6.4.2.1 Benchmarks

The CPUID benchmarks use the same base code as the PThread benchmarks. All that is

altered is the main function; this is changed to retrieve the executing cores/CPUs unique

identifier. This unique identifier is then used to modify the control flow of the application

to allow a single thread to perform initialisation and all others to simply compute their

section of data. All CPUID benchmarks are parallelised at a coarse-grain, this is due to the

lack of synchronisation operations as required in the fine-grained threading performed in the

PThread benchmarks.

An example of the code used in the CPUID benchmarks is shown in Figure 6.10. Each

core/CPU begins execution of the main function; each retrieves its own unique identifier

and a single core/CPU is then used as a MASTER which performs any initialisation tasks.

While this is taking place all other cores/CPUs are waiting for the global variable init to be

set before being able to perform their specified task. Once this variable has been set by the

MASTER core/CPU each calls the cpuid parallelism function along with their own unique

identifier. This function uses the unique identifier to set status, a global state table, used to

store the status of all active cores/CPUS. This allows a basic form of synchronisation and

can be used to check the status of all available cores/CPUs within the architecture. SIZE is

used to define the number of times the computation is to be performed; this is iterated over

and this value is used along with the current thread CPUID and total number of active

threads to check whether the current core/CPU should perform computation. Finally the

global state table used for synchronisation is modified to a DONE status. This global status

is used in these benchmarks to check computation is complete before calculating execution

time and performing error checking.

The four benchmarks use the example code structure, shown in Figure 6.10, over different

data sizes; the JPEG decoder is parallelised over a set of eight images which are decoded,

so SIZE in this case is set to 8 and the same pattern as shown in Table 6.3 is seen. For the

Mandelbrot Set SIZE is set to the height of the output image (160) which results in each

thread computing single rows of the output image which are offset by the current CPUID.

Similarly the Sobel Filter uses the height of the image to iterate through and split the

computation across the available threads and finally the DES benchmark uses the number

of 64bit messages to be encrypted as the quantum of parallelism.

6.4.2.2 Execution Results

The above benchmarks were executed on both the LE1 VLIW CMP and the Leon3MP

architectures. In each benchmark a single core/CPU takes control of the system using

a global state table to perform synchronisation. All other active cores/CPUs wait until

108

6. EXPERIMENTS

v o l a t i l e int i n i t = 0 ;

void main (void) {
int id = getCPUID () ;

i f (id == MASTER) {
/∗ Perform i n i t i a l i s a t i o n ta sk s ∗/
i n i t = 1 ;

}

whi le (! i n i t) { }

c p u i d p a r a l l e i s m (id) ;

}

void c p u i d p a r a l l e l i s m (unsigned int id) {
int i ;

s t a t u s [id] = BUSY;

f o r (i=0 ; i<SIZE;++ i) {
i f (! ((i + id) % THREAD)) {

/∗ Perform Computation ∗/
}

}
s t a t u s [id] = DONE;

}

Figure 6.10: Code example of using CPUID operation to define parallelism within an appli-

cation.

this master has completed system initialisation. The master is tasked with setting up any

input data which is required by the benchmark, setting the global state table for each other

core/CPU then starting a timer. Each core/CPU then performs a selection of the overall

computation using a unique identifier to specify what should be performed. Once complete

each core/CPU sets its associated global state to a completed status. The master is also used

to perform computation; once completed it is tasked with waiting for all other cores/CPUs

to complete execution by polling the global state table. Once each is finished the master

stops a timer and checks for correct execution by comparing against a known correct result.

109

6. EXPERIMENTS

This results in the time recorded only including the actual parallelised computation time.

Similarly to the PThread benchmarks the cycle counts extracted from each architecture

configuration and benchmark are shown in Appendix J.3 and J.4 and the speed up gained

by including extra threads/cores relative to a single thread performing execution is shown

in Figure 6.11 and 6.12 below.

The results for both the LE1 and Leon3MP architectures are very closely matched to

the results of the same benchmarks executed using the coarse-grained parallel PThread

code. This is due to the overhead of the PThread operations being negligible in terms of

the overall workload performed. As well as this the CPUID benchmarks include sections

of code used for synchronisation to check that required computation has completed on all

cores/CPUs. This is similar in theory to the pthread join operation. Essentially, the use of

the CPUID benchmarks does not have any advantage in these benchmarks as the overhead

of using the PThread library operations to perform coarse-grained thread management does

not greatly affect the overall execution time. Due to this it is far more useful to use the

PThread library to manage parallelism as the library is highly portable. As an example,

the CPUID benchmarks being executed on the LE1 and Leon3MP are not the same; each

implements a different operation to return a unique identifier for each thread and so the

benchmarks required modifications to work on each architecture. The extra code required

to perform parallel tasks and keep cores/CPUs in sync has already been implemented and

tested within the PThread library, as well at other threading libraries such as OpenMP and

MPI. However, the LE1 CPUID operation is used in the next section by the behavioural

synthesis tool to split the UML models over available cores. FalconML implements custom

event queues to split computation across multiple cores and uses the CPUID operation to

direct the control flow of each core to execute correct events in the queues based on their

unique identifiers.

6.5 Unified Modelling Language

A selection of benchmarks was developed using both the PIUML model design notations

proposed in this thesis and PSUML models which require the application developer to make

direct modifications to the UML models based on the target architecture. The UML entry

tool used is Modelio and the behavioural synthesis tool to convert the UML models into C

code for the LE1 VLIW CMP is FalconML. This section is split into three sub sections:

A) Firstly methods of quantifying interactions with the UML design tool required for gen-

erating models is discussed and introduced.

B) The creation of benchmark UML models.

C) Finally the UML models are synthesised and executed and the results are discussed.

110

6. EXPERIMENTS

Figure 6.11: Benchmarks run on LE1 architecture showing speed up of multiple cores relative

to a single core using CPUID instruction to split computation across available cores. Graph

source data available in Appendix J.1

Figure 6.12: Benchmarks run on Leon3MP architecture showing speed up of multiple CPUs

relative to a single CPU using CPUID instruction to split computation across available

CPUs. Graph source data available in Appendix J.2

111

6. EXPERIMENTS

6.5.1 Quantifying UML Capture

The method of quantifying the work required by the application developer within the UML

modelling tool logs the user interactions during the creation of the UML model and evaluates

them in terms of events.

The initial creation of the base systems within the UML modelling tool is recorded,

followed by the work required to modify the models directly to generate PSUML models as

well as using the proposed UML notations in PIUML models. These hand crafted models

(PSUML) are then executed and their performance compared with automatically generated

statically mapped UML models based on the the PIUML models. The extra work performed

by the application developer to create PSUML models will then be compared to the PIUML

model creation.

The events captured will include:

A) Mouse Events - any mouse button interaction.

B) Keyboard Events - any time the keyboard is used.

(Keyboard interactions are registered as a single event between use of the mouse. This was

decided not to factor in the length of variable names or action code required to generate a

functional UML model.)

A custom program was created to capture required events from multiple input devices.

Utilising library functionality from the X window system (X11) [107] and the XInput li-

brary [108] the program connects to a number of desired input devices through the X11

system and listens for the events specified above. A single log file is generated contain-

ing events from all devices. The data contained within this log file is then summarised to

produce a total number of user interaction events required to generate the model. A cus-

tom program was required to be developed as there were no tools available which could log

multiple input devices at the same time. The program code is included in Appendix H.

All UML model creation will be logged using this developed program. This will allow

an investigation into the benefits of utilising the proposed UML design notations to create

PIUML models compared to the creation of PSUML models. All UML models were produced

by a single application developer after familiarising themselves with the Modelio GUI. This

was performed to ensure that only user events related to the generation of the models were

captured and removes any anomalies which may have been introduced by multiple users or

becoming more familiar with the tool during model creation.

6.5.2 UML Creation

The benchmarks created in UML use the same behaviour as the previous PThread and

CPUID benchmarks. The core behaviour of each benchmark was implemented within a

112

6. EXPERIMENTS

single UML class with input and output ports. This enabled the core behaviour to be

instantiated multiple times within a single UML model and mapped to separate cores within

the target architecture. Six base UML models were generated, two for each benchmark; this

allowed the implementation of the RobinRobin and Split methods of parallelism, previously

introduced in section 4.3.3.1. Two base models were required due to the differences in the

behaviour and interface for both RoundRobin and Split methodologies.

The UML models generated for each benchmark include the behaviour of the application

captured using classes, attributes, ports, operations, interfaces and state machines. Once

completed the models were checked to ensure that behaviour was correct by running the

behavioural synthesis tool on the unmapped model to produce a single core application.

These base models were then replicated and modified to generate multiple PSUML models

along with a single PIUML model. In order to make creation and execution simpler all

models include a Source and Sink class; these classes generate input data as well as consume

output data resulting in each model having a consistent input and output data stream. The

user events required to generate the base models were captured and used as a reference when

investigating the extra work required to manually map the model to specific architectures.

The base class diagrams of the Mandelbrot Set, Sobel Filter and DES benchmarks are

shown in Figures 6.13, 6.14 and 6.15, respectively. Each shows the attributes and operations

within the classes as well as the interfaces required to generate a valid model. The difference

between the RoundRobin and Split methodologies is captured within the behaviour of the

models and is not visible in these diagrams.

Each base model was then modified to include an architecture section; this architecture

ranged from three to eight cores. The minimum value three was chosen due to the inclusion

of Source and Sink classes which are instantiated and executed on their own cores, ensuring

these extra objects do not affect the execution of the benchmark being investigated. In each

case the architecture was generated within the UML model and Source and Sink objects were

instantiated along with multiple instances of the benchmark classes (DES alg, Mandelbrot,

Sob). The number of instantiated benchmark classes is equal to the number of available cores

minus two (taking into account the Source and Sink objects), which allows each object to

execute on individual cores.

At this point one of the parallel methodologies was performed based on the design of

the input UML model. Both the RoundRobin and Split methodologies were used to modify

the application to fully utilise the available architecture. The RoundRobin methodology

includes generating Fork and Join classes to perform execution; these modifications match

those described in section 4.3.3.1. The Split methodology differs and no extra classes were

generated; instead new ports were instantiated and modifications were made to the behaviour

within the existing classes to be aware of the newly instantiated objects and ports.

113

6. EXPERIMENTS

Figure 6.13: Class diagram showing the Mandelbrot Set captured in UML. Mandelbrot

provides all internal operations and attributes to generate the outcome of a single pixel

with the image based on id and the width and height of the image. i mandelbrot shows

the interface, realised by Mandelbrot, which provides a single operation (mand) to external

classes. The Source and Sink classes produce and consume data within the UML model.

In this example the Sink class includes a look up table to match the generate Mandelbrot

value to a colour for image generation.

Figure 6.14: Class diagram showing the Sobel Filter captured in UML. Sob provides internal

operations and attributes required to perform edge detection on a subset of pixel values

passed to the operation. i sobel shows the interface, realised by Sob, which provides a single

operation (sobel) to external classes. The Source and Sink Classes produce and consume

data within the UML model. This example performs edge detection using two 3 x 3 masks

(vertical and horizontal) on a 5 x 5 image.

114

6. EXPERIMENTS

Figure 6.15: Class diagram showing the DES captured in UML. DES alg provides all internal

operations and attributes to perform encryption of two 32bit integers used to generate a

64bit plaintext to be encrypted. i des alg shows the interface, realised by DES alg, which

provides a single operation (DES) to external Classes. The Source and Sink classes produce

and consume data within the UML model. This example encrypts 256 64bit messages.

Once these modifications had been made connectors were included between the available

ports to allow data flow between objects within the model. Following this each instantiated

object was statically mapped to a core within the architecture, resulting in a PSUML model

which could be passed to the behavioural synthesis tool to generate C code for execution on

the LE1 VLIW CMP.

Along with the PSUML models, a single PIUML model was generated. This was per-

formed by generating a three core architecture along with Source and Sink objects and single

instance of the benchmark class. A single core and the benchmark class were then modified

to include a wildcard multiplicity as described in chapter 4. The Source and Sink objects

were statically mapped to individual cores within the architecture (not including the core

115

6. EXPERIMENTS

marked with the wildcard multiplicity) and an adjustable mapping was generated between

the application and architecture sections of the model.

This resulting PIUML model was then transformed through the tools and scripts in-

troduced in chapter 4 to generate a statically mapped PSUML model to be passed to the

behavioural synthesis tool. The proposed UML modelling methodology results in multiple

possible static mappings which differ depending on the number of unmapped objects and

cores available. The number of possible mappings is equal to:

CoresObjects (6.3)

In the benchmarks used this results in one mapping possibility for the three core architectures

(31) and up to 32,768 possibilities for the eight core (85). As a result of this, diagrams of all

generated static mapping permutations are produced to allow the application developer to

visualise and choose which permutation to use. The execution runs in these examples use a

single object mapped to each core. The four core DES model processed by the transformation

scripts produces 17 images; Firstly the original mapping defined in the UML model is shown

in Figure 6.16 where source and fork are statically mapped to core i, sink and join are

statically mapped to core i2 and a final adjustable mapping occurs between TOP and

CompResc. The remaining images show all possible static mappings of the unmapped objects

(DES alg 0 and DES alg 1) onto all available cores (i, i2, i1 0 and i1 1). Two possible static

mappings are shown in Figure 6.17 and 6.18 where both DES alg objects are statically

mapped to individual cores. One of these images can then be referenced by the “Write

Static Allocations” script, section 4.3.3.3.2, to generate a statically mapped PSUML model

to be used by the behavioural synthesis tool.

The user events required to generate both PSUML and PIUML models were captured

in the same manner as with the base UML model. These results are shown along with the

events required to generate the base model in Figure 6.19 (All models were generated using

the same methods in the same UML Model capture tool).

As can be seen, the addition of extra architectural elements and objects results in more

user events required to generate the UML models. The RoundRobin models require a greater

number of user events compared with the Split models; this is due to extra classes (Fork

and Join) being created whereas the Split methodology required modifications only to the

underlying behaviour of the model.

The number of user events required to include extra cores in the target architecture is

similar across all of the benchmarks. This is a result of similar actions being required to make

the modifications (adding objects, classes, ports and connectors and mapping the application

elements to the architecture). As can be seen from the results, in some instances the number

of user events required to modify the UML models to utilise the target architecture is greater

116

6. EXPERIMENTS

source

sink

DES_alg_0

DES_alg_1

fork

join

TOP

<<HwProcessor>>

i

<<HwProcessor>>

i2

<<HwProcessor>>

i1_0

<<HwProcessor>>

i1_1

<<HwComputingResource>>

CompResc

Figure 6.16: Four core DES adjustable mapping output. Shows the current mapping within

the UML model which is used to generate the available static mappings.

source

sink

DES_alg_0

DES_alg_1

fork

join

TOP

<<HwProcessor>>

i

<<HwProcessor>>

i2

<<HwProcessor>>

i1_0

<<HwProcessor>>

i1_1

<<HwComputingResource>>

CompResc

Figure 6.17: One Example of the desired output from the alloc.pl (see Appendix E) script

showing generated objects DES alg 0 and DES alg 1 being statically mapped to individual

cores.

source

sink

DES_alg_0

DES_alg_1

fork

join

TOP

<<HwProcessor>>

i

<<HwProcessor>>

i2

<<HwProcessor>>

i1_0

<<HwProcessor>>

i1_1

<<HwComputingResource>>

CompResc

Figure 6.18: Alternative example of the desired output from the alloc.pl (see Appendix E)

script showing generated objects DES alg 0 and DES alg 1 being statically mapped to in-

dividual cores, different from Figure 6.17 in that the objects are mapped to opposite cores.

117

6. EXPERIMENTS

Figure 6.19: User events required to generate all UML designs for alternative architectures

using both the RoundRobin and Split design method. Full data set is included in Appendix K

than the user events required to generate the base behaviour of the model. This is evident

in both the Mandelbrot Set and Sobel Filter benchmarks. This shows that in the example

applications used in this study that, even with a small number of processor cores, the

application developer spends more time modelling the architecture and performing mapping

than focussing on the behaviour of the application.

There is a large jump between the number of events required to generate the three and

four core models for the RoundRobin benchmark. This is due to the three core model not

requiring Fork and Join classes as there is only a single instantiation of the class performing

the computation. The UML models containing four cores and above require these additional

classes to perform the fork and join and so require extra effort by the application developer

to include them within the model. This trend is not evident in the Split benchmarks due to

nature of these implementations requiring only extra ports to be instantiated.

Trends which can be seen from the captured user events showed a higher variation of

events required between the different models as more and more cores were added. This is due

to the nature of the UML modelling tool; with more user events the probability of making a

mistake is higher and so the deviation in the number of user events across the benchmarks is

seen to increase. In the RoundRobin models it takes an average of 100 user events to include

an extra core along with the instantiation of an extra object. The Split methodology takes

118

6. EXPERIMENTS

less, 70 user events, to perform the same task of including an extra core. This difference is

due to the Split model not requiring extra classes to be generated as discussed previously.

The results obtained from generating the PIUML models using the proposed UML no-

tations show the number of user events being slightly greater than that required to generate

a statically mapped three core UML models. This is due to these being essentially the same

model with the PIUML model requiring the extra work of tagging a single class and core

with a wildcard notation. This implementation of the PIUML model allows the application

developer to modify the base UML model with minimal user events and, once run through

the transformation scripts introduced in chapter 4 along with an LE1 XML configuration

file, the resulting UML model is automatically modified to fully utilise the underlying ar-

chitecture. In the examples here this can save on average 580 and 420 user events, for

RoundRobin and Split models, respectively, when comparing to generating the eight-core

UML models. This is a worst case look at the figures, however, the single PIUML model

can be used to generate all of the hand-crafted models presented here resulting in a lot of

saved effort for the application developer. The next section shows the execution results for

each of the generated models and investigates the execution times in relation to the number

of user events required to generate them.

6.5.3 Execution Results

All of the UML models described in the previous section were executed on the LE1 VLIW

CMP; the PIUML model utilising the proposed UML notation was used to produce six

models ranging from three to eight cores to match those of the PSUML models and their

execution cycle counts are shown in Figure 6.20. Results are also included in Tables L.1

and L.2 included in Appendix L.

The execution results are compared in three main forms. Firstly the RoundRobin and

Split methodologies are compared and similarities made between these and the granularity

of threading discussed previously in section 6.4.1. Then a comparison between the PSUML

and PIUML models is performed. This comparison is then extended to take into account

the user events required to generate the models.

The Split methodology displays a greater decrease in overall execution time; this is due to

the input data being split across the available cores once and each available core performing

an equal amount of computation. This is similar in nature to the coarse-grained threading

in which a single thread creates a thread of computation for each available core and then

synchronises once at the end.

Alternatively the RoundRobin method more closely matches fine-grained threading as

creation and synchronisation of the “threads” on available cores through the Fork and Join

objects occurs multiple times throughout execution. There is more computation required for

119

6. EXPERIMENTS

Figure 6.20: Execution cycles of UML Benchmarks on multicore LE1 up to eight cores.

Both user modified RoundRobin and Split design methods shown alongside output using

presented UML notations.

the creation and synchronisation of threads (previously referred to as thread management)

in the RoundRobin method than in the Split method as it occurs more frequently. This

results in a larger overhead in the former methodology. These two methods can be used

depending on the type of application and computation required. For example if a large

selection of data is available and ready for computation which can be readily parallelised

the Split method is the best to use, however in a data flow application with data items in a

stream, as long as they are truly independent of other data items, the RoundRobin method

can be used to fully utilise the available architecture.

Another comparison point can be made between the execution times of the PSUML and

PIUML models. Firstly, comparing RoundRobin execution results for both modelling ap-

proaches it can be seen that both sets of results are very similar. This is due to the statically

mapped models generated from the PIUML model being very similar to the PSUML models,

with the Fork and Join classes generated along with multiple instances of the other objects.

The fact that they are similar is not of any surprise, the one data point which stands

out are the three core results; on average the statically mapped models generated from the

PIUML model takes 15% longer to execute compared to the PSUML model. This is due

to the transformation scripts including the Fork and Join classes into the model, resulting

in the data having to pass through extra objects which are not required in the three core

120

6. EXPERIMENTS

case as only a single object (Mandlebrot, Sob or DES alg) is instantiated and so data can

be passed directly to this object.

Comparing the execution results between the two modelling approaches using the Split

methodology displays a different trend. In these cases the auto generated models always

perform worse than the hand generated models. This is the result of including extra classes to

perform the Fork and Join of the data sets. In the PSUML models these are not required as

the UML models are designed specifically for each available architecture resulting in optimal

models being produced. In the statically mapped models generated from a PIUML model

this is not the case as it was decided not to directly modify the structure and behaviour

of classes within the model; this results in extra computation required to parallelise the

computation across the architecture.

Comparing the PSUML and PIUML modelling approaches in terms of both user events

and execution time results in a trade off between design time and execution time. In the

RoundRobin examples the PIUML models would be a better approach to take. This is

due to the user events required to generate the PIUML models being similar to those to

generate a three core PSUML model with the execution time of this PIUML in all but

the three core statically mapped model being similar to the PSUML models. As described

previously the three core statically mapped model perform worse due to the inclusion of Fork

and Join classes which are not required in this case. The inclusion of these classes could be

easily removed from the PIUML to PSUML transformation scripts by checking the number

of objects being instantiated and only including them if required. The PIUML modelling

saves on average 378 user events per model created in this study while resulting in similar

execution results as the hand generated PSUML models. As a side note, there is no limit

to the number of cores which the tools can handle; this means that the same PIUML model

could be used to generate a four core or a four hundred core statically mapped model with

no extra work required by the application developer.

Comparing the Split models in the same way leads to a question of trade off; the statically

mapped models generated from the PIUML models performed worse in terms of execution

time than the PSUML models. This is a result of including extra classes to split the work-

load across available cores rather than directly modifying classes defined by the application

developer. If timing was an issue the PIUML models could be used primarily as a method

of testing the parallelism of an application on a target architecture. This method could be

initially used to find where the limits of the system lie, in terms of the amount of exploitable

parallelism within an application. A PSUML model could then be hand generated based

on the outcome of the PIUML modelling. This would benefit in time not being wasted

generating PSUML models which do not offer any benefit in terms of execution speed up.

121

6. EXPERIMENTS

6.6 Summary

This chapter presented investigations into the hardware PThread implementation as well as

the PIUML model notation.

Initial results showed that the hardware PThread implementation in the LE1 VLIW CMP

performs as well, if not better, than PThread libraries available on soft-core processors. The

hardware PThread implementation was a subset of the full PThread library and supports

only simple thread management operations. When compared with commercially available

software PThread libraries, including the Xilinx PThread library on the MicroBlaze and the

FSU PThread library on the Leon3, the LE1 hardware PThread implementation was found

to be a factor of 25 and 3,800 times faster, respectively.

The MicroBlaze and Leon3 processors execute interleaved multi-threading and as a means

of better comparison with the LE1 CMP a custom software PThread library which imple-

mented the same subset as the LE1 was created for another CMP, the Leon3MP. With the

Leon3MP clocked at 75MHz and the LE1 at 50MHz the hardware implementation was twice

as fast as the software implementation.

This software implementation was modified to simulate the thread create and synchro-

nise timings of the Leon3 and MicroBlaze processors based on initial micro-benchmarks, per-

formed in section 6.3. This enabled comparisons into the granularity of threading achievable

in a selection of benchmark applications.

Also presented is a selection of benchmarks written in C which were designed to utilise

the available PThread operations to display the advantage of having a fast PThread library

implementation. This fast implementation allowed threading to be performed at a fine gran-

ularity while still offering a decrease in overall execution time for all these benchmarks. The

benefits of this fine-grained threading allows smaller sections of applications to be threaded,

enabling explicit threading to be performed within large data-dependent applications at

small data independent sections throughout the code.

The LE1 also supports a CPUID mode of parallelism, which uses a unique identifier for

each core to modify the control flow of an application. This method was presented and

shown to offer similar results as the PThread implementation in coarse-grained threaded

applications. The main drawbacks of the CPUID method was the limitation in synchroni-

sation methods and the need to modify code to work across alternative architectures as no

standard CPUID operation is implemented. It was concluded that this method performed

adequately for parallelising computation across available cores but it was suggested that

using standard threading libraries would be more useful as they are supported by a larger

set of architectures and systems, resulting in portability across alternative architectures.

The proposed UML notation, which allows a single, platform-independent UML model

122

6. EXPERIMENTS

to be used to generate multiple statically mapped UML models was then investigated and

compared with UML models designed specifically for different architectures. Investigations

included comparisons of both work required by the application developer and execution

time between the PIUML and PSUML models. The use of three to eight core models was

investigated along with two alternate methods of designing parallel UML models. These

methods closely match the idea of fine and coarse-grained threading as investigated in the

PThread benchmarks. The UML model creation process was quantified through the use

of a program to log user events while generating the PSUML and PIUML models for each

architecture. It was found that the translation from PIUML to PSUML performed differently

when applied to the RoundRobin and Split methodologies. In the fine-grained method

(RoundRobin method) the statically mapped UML model generated through the use of

the PIUML design notation performed similarly to those which were designed for specific

architectures. Alternatively, the coarse-grained method (Split method) resulted in worse

performance due to the inclusion of extra classes into the model which were used to perform

the creation and synchronisation of threads.

The next chapter concludes this thesis, discusses the research performed as a whole and

suggests possible future work and extensions to the methodologies.

123

7. CONCLUSION

7

Conclusion

7.1 Chapter Objectives

This chapter concludes the research and development performed during the course of this

thesis. The contributions to knowledge are discussed along with possible further research

which would complement that already undertaken.

The work presented in this thesis includes an investigation into hardware thread manage-

ment along with a comparison with available threading libraries implemented for soft-core

processors on FPGAs. The thread management presented in this thesis uses hardware tables

and logic to create and synchronise threads within an application while reducing overheads

when compared to a software based approach. The hardware PThread primitives are made

available though custom instructions within the LE1 Very Long Instruction Word (VLIW)

processor resulting in standard PThread code being executable with no modifications. It

was shown that this method decreases overall execution time of thread management oper-

ations by a factor of between 25 and 3,800 when compared to the Leon3 and MicroBlaze

soft-core processors synthesised on the same FPGA platform.

This decrease in overhead allowed the use of threading at a fine-grained level where

small sections of an application can be performed in parallel to decrease overall execution

time. This fine-grained threading, implemented using software threading libraries available

on the Leon3 and MicroBlaze processors, resulted in an increase in execution time due to

the PThread library overheads outweighing the work being performed within the created

threads.

A second aspect of this research was the use of a Visual Programming Language (VPL) as

an input to a tool chain targeting a configurable multicore architecture. However, targeting

an architecture such as the LE1 using Unified Modelling Language (UML) required the

124

7. CONCLUSION

application developer to create models specifically for each architectural configuration. As a

result of this a set of design notations and processes was devised to allow a single, platform-

independent UML (PIUML) model to be automatically transformed to platform-specific

UML (PSUML) models. This was shown, in section 6.5.2, to decrease system design time

for large architectures while generating models which executed within 15% that of hand

generated models designed for specific architectural configurations.

7.2 Summary of Thesis Objectives

The objectives as defined in chapter 1 were:

• Investigate parallelism methodologies.

• Implement parallel execution in VLIW CMP.

Parallel methodologies were firstly investigated with background research identified in chap-

ter 2 followed by the implementation of a hardware threading mechanism described in chap-

ter 4.

The initial research into parallelism methodologies resulted in the focus into Thread Level

Parallelism (TLP). This was the result of a wealth of research in Instruction Level Parallelism

(ILP) suggesting that theoretical maximum in this form of parallelism had already been

achieved. It was decided to introduce TLP to an architecture which already exploited ILP

to benefit from both forms of parallelism.

A hardware PThread implementation was designed to reduce thread management over-

heads compared to software libraries available in soft-core processors. The benefit of this

is that parallelism is able to be extracted from within applications where it was not pos-

sible or difficult previously. For example, application developers attempting to parallelise

large, data-dependent sections of code are able to utilise parallel threads within small, data-

independent sections of the application to speed up execution. To incorporate ILP this

hardware PThread implementation was designed for the LE1 VLIW CMP resulting in both

implicit, from the ILP, and explicit, from the TLP, parallelism being exploited in the same

system.

The performance evaluation of PThreads implemented in both hardware and alternative

software libraries, including the Xilinx PThread and FSU PThread libraries, is shown in

chapter 6 which shows the hardware threading mechanism outperforming these software

libraries by a factor of 25 times.

• Design and Implement tool chain for unique VLIW CMP.

125

7. CONCLUSION

In relation to the previous objectives the LE1 VLIW CMP was targeted by the hardware

PThread implementation. This resulted in the requirement of developing the tool chain for

this processor, including assembly, libraries, simulation and configuration. The design and

implementation of the LE1 tool chain is detailed in chapter 4.

• Investigate high level system design in UML.

• Develop UML modelling technique for statically customisable multicore platforms.

High level modelling in the form of object-oriented design and VPLs were investigated in

chapter 2. Previous research suggested VPL reduced development time up to a factor of

four times when compared with conventional text based development. UML is currently the

de facto visual design language in both research and industry for software-intensive systems.

As a result of this UML was chosen as the VPL to focus on, and previous design styles and

methodologies were investigated.

The development of novel modelling techniques arose through targeting the statically

customisable LE1 processor. When targeting different architectural configurations of the

LE1 the application developer was required to directly modify both behaviour and structure

within the UML model to match that specific architecture.

Due to this, novel UML modelling notations were created, including adjustable mapping

and wildcard notations, to define a PIUML model which could then be refined to PSUML

models. Processes to perform transformations between these PIUML and PSUML models

were also generated. These novel design notations along with the transformation processes

are introduced and described in chapter 4.

• Develop UML applications to utilise UML modelling techniques and tool chain.

Finally, this objective relates to both the parallelism and modelling objectives. This was met

through the implementation of a selection of application in both C and UML as presented

in chapter 6.

7.3 Contributions

chapter 3 presents the research areas which were targeted in this thesis. The key areas of

work were:

• Investigation into hardware threads in the LE1 VLIW CMP.

• The capture of Platform-Independent UML models.

126

7. CONCLUSION

• Fully modifiable mappings for application mapping to statically customisable multicore

platforms in UML.

• Intelligently threading applications in UML.

• Development of UML benchmarks.

These areas led to three main contributions to knowledge:

A) Hardware PThread implementation

B) High level design notation for multicore architectures

C) Method of quantifying UML design creation to perform investigations into design.

The Hardware PThread implementation allows multiple threads of execution to be managed

on the LE1 VLIW CMP. This implementation enabled threading to be used at a finer grain

than is possible through using two software PThread library implementations. This was

due to less overhead, in terms of computation and time, in the hardware implementation

when compared with the software PThread libraries of soft-core processors. As a result the

management of threads could occur more frequently which enables threading within small

loops to be performed while achieving an overall decrease in execution time.

Due to the LE1 VLIW CMP being designed to be highly configurable in terms of both

VLIW elements, for example issue width and number of execution units, as well as the

number of cores being instantiated, system design in UML initially posed a problem. This

was due to the nature of the UML itself, where each time the underlying architecture was

modified, the UML model required modification to fully utilise this new architecture. This

was being handled in text based languages through the use of pre-processor macros to

define constants and data sizes at compilation time. This idea was transferred to the UML

modelling domain in the form of wildcard multiplicities and the modifiable mapping level.

These allowed a single UML model to be modified to fully utilise a given architecture.

Finally, quantifying the creation of UML models played a key role in the conclusions

made within the previous chapter. By logging the user interactions required to create UML

models it was possible to perform comparisons between the amount of work required and the

actual execution time of the UML models once synthesised to run on the multicore VLIW

system. Previous research on using VPL over text based languages relies on a qualitative

output from application developers to explain how they found the use of a VPL rather than

the text based design. The inclusion of quantifiable data adds an extra layer of scientific

rigour and allows both a simple comparison between alternative design methods, as used

here, as well as in-depth studies into user interfaces and how user friendly they truly are.

127

7. CONCLUSION

7.4 Findings

This section introduces the finding generated as a result of the research performed in this

thesis. Firstly the investigation and development of TLP is described. This is followed by

an overview of the use of the LE1 VLIW and its impact on the overall research. Finally the

use of UML as a high level design language for the multicore VLIW system is discusses.

7.4.1 Parallelism

Initial tests showed that the hardware PThread implementation in the LE1 VLIW CMP

performs as well, if not better, than PThread libraries available for other soft-core processors.

The hardware PThread implementation is only a subset of the full PThread library and

supports only simple thread management operations. Due to this, a software version of this

subset was created to make a more direct comparison with other software libraries. This

custom software implementation was modified to match the timing results of thread creation

and synchronisation operations identified from initial experiments in section 6.3. Using both

the unmodified software implementation and two versions designed to simulate the thread

creation and synchronisation time of the MicroBlaze and Leon3, the LE1 hardware PThread

implementation was found to be a factor of 25 and 3,800 times faster than the single core

IMT-based software libraries; it was also found to be twice as fast as the limited software

implementation running on the Leon3MP at 75MHz versus the LE1 at 50MHz.

Also presented is a selection of benchmarks written in C designed for the hardware and

software PThread implementations. The hardware implementation allowed threading to be

used at a finer granularity while demonstrating a decrease in overall execution time for all C

benchmarks. This ability to perform explicit thread parallelism at a finer granularity enables

the application developer to extract a higher amount of parallelism within applications. This

is a result of lower latencies associated with the hardware PThread implementation compared

with the software libraries investigated.

7.4.2 Very Long Instruction Word Processor

The use of the LE1 VLIW CMP played a key role in all aspects of the research undertaken.

It was the extensibility and configurability of the processor that led to the new UML design

notation and the subsequent reduction in the amount of time required to generate UML

models for that architecture.

The XML configuration file, used to define the machine description of the LE1 VLIW

CMP, enabled the LE1 to be utilised within both the novel UML design processes and

automated design space exploration, see chapter 5. It is used within the UML design notation

128

7. CONCLUSION

transformations to instantiate the correct number of cores within the UML model based on

the target architecture and is used within the ENOSYS project to enable configuration by

a design space explorer.

Finally, the ability to extend the LE1 instruction set architecture to include custom

instructions enabled the development and implementation of the hardware PThread library

subset, resulting in investigations being performed into the benefits of low latency thread

creation and synchronisation operations.

7.4.3 High Level Design

The UML notations presented in this thesis attempt to reduce the amount of work required

by the application developer when producing UML models targeting a statically config-

urable architecture. This is achieved through a process of developing a single PIUML model

which is then able to be refined to produce PSUML models which fully utilise a specified

architecture. The UML model design process was quantified through the logging of user

events required to generate valid UML models for each architecture and using the proposed

design notations. It was found that there was a substantial decrease in the amount of work

required to generate PIUML models when compared to hand generated PSUML models.

However, the resulting execution times differed depending on the type of parallelism being

extracted, ranging between 1 and 1.15 times the execution cycles of the hand generated

PSUML models.

7.5 Limitations of Research

Aspects of this research and development effort come with certain limitations. Firstly the

UML benchmarks presented in chapter 6 were slightly limited in terms of computation and

full usage of the UML specification. This was partly due to the learning curve of using both

the UML standard and the tools required to generate valid UML models. The models were

similar in terms of their structure and ease of performing computation in parallel; a single

class implemented to perform certain computation with multiple instances of that class being

connected to source and sink objects, the latter used to produce and consume data. A large

UML application with only a subsection of the model being executed in parallel would have

been ideal to test the usability of the proposed methods. However, there were no UML

model benchmarks available for this purpose.

Another limitation came from the behavioural synthesis tool, FalconML. This required

UML model exported in specific XMI structures which resulted in limiting the number of

UML input tools which could be used. The generation of UML models was also limited to

129

7. CONCLUSION

a small subsection of the UML specification as supported by FalconML.

This resulted in the use of multiple simple UML models based on a similar structure

which allowed the testing of the wildcard multiplicities and static and adjustable mapping

notations. However, these UML benchmarks are not as close to the realistic usage of UML

as investigated by the industrial partners in the ENOSYS project. The partners are also

using a subset of the novel UML notations defined in chapter 4, those being the adjustable

and static mapping. This then is used to perform design space exploration using the Jink

tool to exhaustively explore their implementation space by mapping these models on the

LE1 VLIW CMP, described in chapter 5

Another slight limitation was the unavailability of a PThread library on a soft-core CMP.

The PThread operation times simulated for both the Leon3 and MicroBlaze, as presented

in section 6.3, were taken from the processors executing IMT where each active thread was

executing in a time interleaved nature. These micro-benchmarks were performed in a best

case scenario where at most two threads were active, resulting in the least overhead possible

for the tests.

To perform a more direct comparison with the LE1 VLIW CMP hardware PThreads a

subset of the PThread library was implemented in software to execute on the Leon3MP CMP.

This Leon3MP software PThread implementation was then used to simulate the PThread

operation times extracted from the Leon3 and MicroBlaze IMT processors. This enabled

an investigation into the granularity of explicit parallelism which can be extracted from

applications in relation to the latencies of thread management operations.

Finally, the usage of a single UML modelling tool and a single behavioural synthesis

tool implies that the results cannot truly be said to be universal. Although it is worth

noting that the behavioural synthesis tool, FalconML, is extremely novel and there are no

alternative tools offering similar functionality available at the time of writing. All models

were produced using a single modelling tool, Modelio, by a single application developer.

Although other UML modelling tools are available their use is not introduced in this thesis.

This was performed to reduce the number of external variables in an attempt to produce

repeatable, reliable results and conclusions with respect to the benefits of the novel UML

modelling techniques introduced.

7.6 Further Research

As an extension to the previous section outlining the limitations of this research new research

avenues could include the development of larger UML models taken through the tool chain

and using the proposed UML notations. It is expected that with the inclusion of more

cores and unmapped objects within a model the complexity of generating all possible static

130

7. CONCLUSION

mappings grows exponentially. This would result in a large amount of time required to

generate all possible static mappings, which in turns leads to a large amount of time to

process these possible static mapping through the entire tool chain and perform simulation

or execution on the hardware system.

As described in section 6.1 the benchmarks are limited due to their statically compiled

threads. An extension of the current work could investigate the use of load-balancing to

schedule threads at run time rather than at compile time. This should achieve a more equal

spread of computation across all available hardware resources and in theory reduce execution

time.

Further possible research in the hardware PThreads could include the implementation

of additional PThread primitives, such as mutual exclusions and conditional variables. The

inclusion of these PThread constructs would allow more complex applications to be executed

on the LE1 VLIW hardware. If implemented in a similar style, through the inclusion of

hardware tables, finite-state machines and custom instructions, the overhead compared to

software implementations could lead to speed improvements over more applications. The

execution of more complex code with mutual exclusions and conditional variables would also

allow the investigation into threading at a more coarse-grained level with data dependencies

between threads.

131

8. PUBLICATIONS

8

Publications

The following are publications that have resulted from the work presented in this thesis. All

publications have been reviewed and published in either conference proceedings or journals.

As mentioned, part of the research effort was used within the ENOSYS European FP7

project which resulted in internal documentation being produced to meet the project re-

quirements. These documents are listed below along with their dissemination level and this

authors direct contributions:

ENOSYS:

D2.5: The LE1 VLIW Processor and Tools - Public

Documentation regarding the LE1 Tool Collection and configurations.

132

[1] David Stevens, Nicky Glynn, Panagiotis Galiatsatos, Vassilios Chouliaras, and Dionysis

Reisis. Evaluating the performance of a configurable, extensible VLIW processor in

FFT execution. In Electronics, Circuits, and Systems, 2009. ICECS 2009. 16th IEEE

International Conference on, pages 771–774, June 2009.

[2] David Stevens and Vassilios Chouliaras. LE1: A Parameterizable VLIW Chip-

Multiprocessor with Hardware PThreads Support. In IEEE Computer Society Annual

Symposium on VLSI, pages 122–126, July 2010.

[3] Vassilios Chouliaras, George Lentaris, Dionysis Reisis, and David Stevens. Customizing

a VLIW Chip Multiprocessor for Motion Estimation Algorithms. In Architecture of

Computing Systems, 2011. ARCS 2011. 24th International Conference on, February

2011.

[4] David Stevens, Vassilios Chouliaras, Vicente Azorin-Peris, Jia Zheng, Angelos Echiadis.,

and Sijung Hu. BioThreads: A Novel VLIW-Based Chip Multiprocessor for Accelerating

Biomedical Image Processing Applications. IEEE Transactions on Biomedical Circuits

and Systems, November 2011.

[5] Mark Milward, David Stevens, and Vassilios Chouliaras. Embedded UML Design Flow

to the Configurable LE1 MultiCore VLIW processor. In Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, July 2012.

133

REFERENCES

References

[1] Object Management Group. Unified Modeling Language Specification. http://www.

omg.org/spec/UML/, June 2011.

[2] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. Computers,

IEEE Transactions on, C-21(9):948 –960, sept. 1972.

[3] B. Ramakrishna Rau and Joseph A. Fisher. Instruction-Level Parallel Processing:

History, Overview and Perspective, 1992.

[4] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.

IBM Journal of Research and Development, 11(1):25 –33, jan. 1967.

[5] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: Maximiz-

ing on-chip parallelism. In Computer Architecture, 1995. Proceedings., 22nd Annual

International Symposium on, pages 392 –403, june 1995.

[6] The MPI Forum. MPI: A message passing interface. In Supercomputing ’93. Proceed-

ings, pages 878 – 883, nov. 1993.

[7] Hewlet Packard. Hewlett Packard Labs. http://www.hpl.hp.com/, 2013.

[8] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing - a VLIW

approach to architecture, compilers, and tools. Morgan Kaufmann, 2005.

[9] Binu Mathew. The Computer Engineering Handbook, chapter Very Large Instruction

Word Architectures. CRC Press, December 2001.

[10] Intel. Intel Itanium Family Specifications. http://www.intel.com/content/www/us/

en/processors/itanium/itanium-processor-9000-sequence/Specifications.

html, 2013.

[11] J.-W. van de Waerdt, S. Vassiliadis, Sanjeev Das, S. Mirolo, C. Yen, B. Zhong,

C. Basto, J.-P. van Itegem, Dinesh Amirtharaj, Kulbhushan Kalra, P. Rodriguez,

134

REFERENCES

and H. van Antwerpen. The TM3270 media-processor. In Microarchitecture, 2005.

MICRO-38. Proceedings. 38th Annual IEEE/ACM International Symposium on, pages

12 pp. –342, nov. 2005.

[12] N. Seshan. High VelociTI processing [Texas Instruments VLIW DSP architecture].

Signal Processing Magazine, IEEE, 15(2):86 –101, 117, mar 1998.

[13] Object Management Group. Object Management Group Homepage. http://www.

omg.org/, 2013.

[14] Safouan Taha, Ansgar Radermacher, Sebastien Gerard, and Jean-Luc Dekeyser. An

Open Framework for Detailed Hardware Modeling. In International Symposium on

Industrial Embedded Systems, pages 118 – 125, 2007.

[15] Object Management Group. UML Profile For MARTE: Modeling And Analysis Of

Real-Time Embedded Systems. http://www.omg.org/spec/MARTE/, June 2011.

[16] Object Management Group. MOF 2 XMI Mapping. http://www.omg.org/spec/XMI/,

August 2011.

[17] Margaret Burnett, Adele Goldberg, and Ted Lewis. Visual Object-Oriented Program-

ming : Concepts and Environments. Manning Publications Co., 1994.

[18] National Instruments. LabVIEW [Computer Program]. http://www.ni.com/

labview/, 2013.

[19] S. Konrad, H. Goldsby, K. Lopez, and B.H.C. Cheng. Visualizing Requirements in

UML Models. In Requirements Engineering Visualization, 2006. REV ’06. First In-

ternational Workshop on, page 1, sept. 2006.

[20] V. del Bianco, L. Lavazza, and M. Mauri. Model checking UML specifications of

real time software. In Engineering of Complex Computer Systems, 2002. Proceedings.

Eighth IEEE International Conference on, pages 203 –212, dec. 2002.

[21] A. Baruzzo and M. Comini. A Methodology for UML Models V&V. In Software

Testing, Verification, and Validation, 2008 1st International Conference on, pages

513 –516, april 2008.

[22] R. Bendraou, J.-M. Jézéquel, M.-P. Gervais, and X. Blanc. A Comparison of Six

UML-Based Languages for Software Process Modeling. Software Engineering, IEEE

Transactions on, 36(5):662 –675, sept.-oct. 2010.

135

REFERENCES

[23] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language

User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-

Wesley Professional, 2005.

[24] Grant Edmund Marin and Dr. Wolfgang Muller. UML for SoC Design. Springer,

2005.

[25] Perdita Stevens and Rob Pooley. Using UML : Software Engineering with Objects and

Components. Addison-Wesley, 1999.

[26] Bernd Oesterich. Developing Software with UML : Object-Oriented Analysis and De-

sign in Practice. Pearson Education Limited, 2002.

[27] Safouan Taha, Ansgar Radermacher, Sebastien Gerard, and Jean-Luc Dekeyser. An

Open Framework for Detailed Hardware Modeling. In International Symposium on

Industrial Embedded Systems, pages 118 – 125, 2007.

[28] Elvinia Riccobene, Patrizia Scandurra, Sara Bocchio, and Alberto Rosti. A Model-

driven Co-design Flow for Embedded Systems. In FDL’06, pages 345–351, 2006.

[29] Peter Green, Martyn Edwards, and Salah Essa. HaSoC - Towards a New Method for

System-on-a-chip Development. Design Automation for Embedded Systems, 6(4):333–

353, 2002.

[30] James Rumbaugh and Branislav Selic. Using UML for Modelling Complex Real-Time

Systems. IBM, 2003.

[31] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah, Anne Etien,

Philippe Marquet, and Jean-Luc Dekeyser. A Model-Driven Design Framework for

Massively Parallel Embedded Systems. ACM Transactions in Embedded Computing

Systems (TECS), 10(4), November 2011.

[32] Imran Rafiq Quadri, Abdoulaye Gamatié, Pierre Boulet, Samy Meftali, and Jean-Luc

Dekeyser. Expressing embedded systems configurations at high abstraction levels with

UML MARTE profile: Advantages, limitations and alternatives, 2012.

[33] P. Kukkala, J. Riihimaki, M. Hannikainen, T.D. Hamalainen, and K. Kronlof. UML

2.0 profile for embedded system design. In Design, Automation and Test in Europe,

2005. Proceedings, pages 710 – 715 Vol. 2, march 2005.

[34] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko Hännikäinen,

Timo D. Hämäläinen, Jouni Riihimäki, and Kimmo Kuusilinna. UML-based mul-

tiprocessor SoC design framework. ACM Trans. Embed. Comput. Syst., 5:281–320,

May 2006.

136

REFERENCES

[35] Christina Dorotska, Bernd Steinbach, and Dominik Fröhlich. Synthesis of UML-Models

for Reconfigurable Hardware. In UML-SoC, pages 24–29, 2005.

[36] Lun Li, Frank P. Coyle, and Mitchell A. Thornton. UML to SystemVerilog Synthesis

for Embedded System Models with Support for Assertion Generation. In ECSI Forum

on Design Languages, 2007.

[37] Dag Björklund and Johan Lilius. From UML Behavioral Descriptions to Efficient

Synthesizable VHDL. In 20th IEEE NORCHIP Conference, 2002.

[38] Mauro Prevostini, M. Lajolo, and A. S. Basu. UML Specifications Towards a Codesign

Environment. In FDL’04, pages 313–325, 2004.

[39] Leandro Soares Indrusiak, Imran Quadri, Ian Gray, Neil Audsley, and Andrey

Sadovykh. A MARTE Subset to Enable Application-Platform Co-simulation

and Schedulability Analysis of NoC-based Embedded Systems. In Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Work-

shop on, July 2012.

[40] A. Wendell Rodrigues, Frederic Guyomarch, and Jean-Luc Dekeyser. An MDE Ap-

proach for Automatic Code Generation from UML/MARTE to OpenCL. In Computing

in Science and Engineering, 2012.

[41] Khronos OpenCL Working Group. The OpenCL Specification. http://www.khronos.

org/opencl/, November 2011.

[42] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programma-

bility. McGraw-Hill, 1993.

[43] Bil Lewis and Daniel J. Berg. PThreads Primer. SunSoft Press, 1996.

[44] OpenMP Architecture Review Board. OpenMP Application Program Interface.

OpenMP Architecture Review Board, May 2008.

[45] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer

conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[46] David W. Wall. Limits of instruction-level parallelism. SIGARCH Comput. Archit.

News, 19(2):176–188, April 1991.

[47] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. SIGARCH

Comput. Archit. News, 20(2):46–57, April 1992.

137

REFERENCES

[48] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, Woody Lichtenstein,

Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg. The multiflow trace

scheduling compiler. The Journal of Supercomputing, 7(1-2):51–142, 1993.

[49] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Proceedings

of the IEEE, 83(12):1609 –1624, dec 1995.

[50] Emre Özer, Thomas M. Conte, and Saurabh Sharma. Weld: A Multithreading Tech-

nique Towards Latency-Tolerant VLIW Processors. In Proceedings of the 8th Interna-

tional Conference on High Performance Computing, HiPC ’01, pages 192–203, London,

UK, UK, 2001. Springer-Verlag.

[51] E. Ozer and T.M. Conte. High-performance and low-cost dual-thread VLIW processor

using Weld architecture paradigm. Parallel and Distributed Systems, IEEE Transac-

tions on, 16(12):1132 – 1142, dec. 2005.

[52] Pradeep K. Dubey, Kevin O’Brien, Kathryn M. O’Brien, and Charles Barton. Single-

program speculative multithreading (SPSM) architecture: compiler-assisted fine-

grained multithreading. In Proceedings of the IFIP WG10.3 working conference on

Parallel architectures and compilation techniques, PACT ’95, pages 109–121, Manch-

ester, UK, UK, 1995. IFIP Working Group on Algol.

[53] Sanghoon Lee, D. Tiwari, Y. Solihin, and J. Tuck. HAQu: Hardware-accelerated

queueing for fine-grained threading on a chip multiprocessor. In High Performance

Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on, pages

99 –110, feb. 2011.

[54] K.D. Underwood, K.S. Hemmert, A. Rodrigues, R. Murphy, and R. Brightwell. A

Hardware Acceleration Unit for MPI Queue Processing. In Parallel and Distributed

Processing Symposium, 2005. Proceedings. 19th IEEE International, page 96b, april

2005.

[55] Burton J. Smith. Architecture and applications of the HEP multiprocessor computer

system. In Advances in Laser Scanning Technology, SPIE Proceedings, volume 298,

page 241, 1981.

[56] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield,

and Burton Smith. The Tera computer system. SIGARCH Comput. Archit. News,

18(3b):1–6, June 1990.

[57] A. Agarwal, J. Kubiatowicz, D. Kranz, B.H. Lim, D. Yeung, G. D’Souza, and

M. Parkin. Sparcle: an evolutionary processor design for large-scale multiprocessors.

Micro, IEEE, 13(3):48 –61, june 1993.

138

REFERENCES

[58] W. Grunewald and T. Ungerer. A multithreaded processor designed for distributed

shared memory systems. In Advances in Parallel and Distributed Computing, 1997.

Proceedings, pages 206 –213, mar 1997.

[59] E.A. Lee. The problem with threads. Computer, 39(5):33 – 42, may 2006.

[60] J. Diaz, C. Munoz-Caro, and A. Nino. A Survey of Parallel Programming Models

and Tools in the Multi and Many-Core Era. Parallel and Distributed Systems, IEEE

Transactions on, 23(8):1369 –1386, aug. 2012.

[61] Anant Agarwal and Markus Levy. The kill rule for multicore. In Proceedings of the

44th annual Design Automation Conference, DAC ’07, pages 750–753, New York, NY,

USA, 2007. ACM.

[62] Jenn-Yuan Tsai, Jian Huang, C. Amlo, D.J. Lilja, and Pen-Chung Yew. The su-

perthreaded processor architecture. Computers, IEEE Transactions on, 48(9):881 –

902, sep 1999.

[63] Theo Ungerer, Borut Robič, and Jurij Šilc. A Survey of Processors with Explicit

Multithreading. ACM Comput. Surv., 35:29–63, March 2003.

[64] Sotirios G. Ziavras, Alexandros V. Gerbessiotis, and Rohan Bafna. Coprocessor design

to support MPI primitives in configurable multiprocessors. Integr. VLSI J., 40(3):235–

252, April 2007.

[65] M. Gupta, F. Sanchez, and J. Llosa. Merge Logic for Clustered Multithreaded VLIW

Processors. In Digital System Design Architectures, Methods and Tools, 2007. DSD

2007. 10th Euromicro Conference on, pages 353 –360, aug. 2007.

[66] Hewlet Packard Labs. VEX Tools [Computer Program]. http://www.hpl.hp.com/

downloads/vex/, 2004.

[67] University of Michigan the CCCP Group. Trimaran: A Compiler and Simulator

for Research on Embedded and EPIC Architectures [Computer Program]. http://

trimaran.org/docs/trimaran4_manual.pdf, April 2007.

[68] Stanford University The SUIF Group. The SUIF 2 Compiler System [Computer Pro-

gram]. http://suif.stanford.edu/suif/suif2, 1999.

[69] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization [Computer

Program]. Master’s thesis, Computer Science Dept., University of Illinois at Urbana-

Champaign, Urbana, IL, Dec 2002.

139

REFERENCES

[70] ARM. ARM: Mali Graphics Hardware. http://www.arm.com/products/

multimedia/mali-graphics-hardware/, 2013.

[71] Marco Garatti, Roberto Costa, Stefano Crespi-Reghizzi, and Erven Rohou. The Im-

pact of Alias Analysis on VLIW Scheduling. In Proceedings of the 4th International

Symposium on High Performance Computing, ISHPC ’02, pages 93–105, London, UK,

UK, 2002. Springer-Verlag.

[72] David Z. Maze. A Flexible Compilation Infrastructure for VLIW and SIMD Architec-

tures, 2001.

[73] Tom Olson. Mali-400 MP: A Scalable GPU for Mobile Devices. http:

//www.highperformancegraphics.org/previous/www_2010/media/Hot3D/

HPG2010_Hot3D_ARM.pdf, 2010.

[74] B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel processing: his-

tory, overview, and perspective. J. Supercomput., 7(1-2):9–50, May 1993.

[75] S. Banerjee, H.R. Sheikh, L.K. John, B.L. Evans, and A.C. Bovik. VLIW DSP vs.

superscalar implementation of a baseline 11.263 video encoder. In Signals, Systems

and Computers, 2000. Conference Record of the Thirty-Fourth Asilomar Conference

on, volume 2, pages 1665 –1669 vol.2, 29 2000-nov. 1 2000.

[76] D. Talla, L.K. John, V. Lapinskii, and B.L. Evans. Evaluating signal processing and

multimedia applications on SIMD, VLIW and superscalar architectures. In Computer

Design, 2000. Proceedings. 2000 International Conference on, pages 163 –172, 2000.

[77] R.P. Colwell, R.P. Nix, J.J. O’Donnell, D.B. Papworth, and P.K. Rodman. A VLIW

architecture for a trace scheduling compiler. Computers, IEEE Transactions on,

37(8):967 –979, aug 1988.

[78] Shyh-Kwei Chen, W. Kent Fuchs, and W.-M.W. Hwu. An Analytical Approach to

Scheduling Code for Superscalar and VLIW Architectures. In Parallel Processing,

1994. ICPP 1994. International Conference on, volume 1, pages 285 –292, aug. 1994.

[79] Soo-Mook Moon and kemal Ebcioglu. On Performance and Efficiency of VLIW and

Superscalar. In Parallel Processing, 1993. ICPP 1993. International Conference on,

volume 2, pages 283 –287, aug. 1993.

[80] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoll, and F.M.O. Homewood. Lx: a

technology platform for customizable VLIW embedded processing. In Computer Ar-

chitecture, 2000. Proceedings of the 27th International Symposium on, pages 203 –213,

june 2000.

140

REFERENCES

[81] A.K. Jones, R. Hoare, D. Kusic, J. Stander, G. Mehta, and J. Fazekas. A VLIW

Processor With Hardware Functions: Increasing Performance While Reducing Power.

Circuits and Systems II: Express Briefs, IEEE Transactions on, 53(11):1250 –1254,

nov. 2006.

[82] P. S. Paolucci, P. Kajfasz, P. Bonnot, B. Candaele, D. Maufroid, E. Pastorelli, A. Ric-

ciardi, Y. Fusella, and E. Guarino. mAgic-FPU and MADE: A customizable VLIW

core and the modular VLIW processor architecture description environment. Com-

puter Physics Communications, 139:132–143, September 2001.

[83] Stephan Suijkerbuijk and Ben H. H. Juurlink. Implementing Hardware Multithreading

in a VLIW Architecture. In S. Q. Zheng, editor, IASTED PDCS, pages 674–679.

IASTED/ACTA Press, 2005.

[84] Vassilios Chouliaras. VThreads Programmer’s Reference Manual v1.3.7. Unpublished,

Jan 2011.

[85] Axilica. FalconML [Computer Program]. http://axilica.com, 2013.

[86] Xilinx. ML605 Hardware User Guide. http://www.xilinx.com/support/

documentation/boards_and_kits/ug534.pdf, June 2012.

[87] David Stevens and Vassilios Chouliaras. LE1: A parameterizable VLIW chip-

multiprocessor with hardware PThreads support. In VLSI (ISVLSI), 2010 IEEE

Computer Society Annual Symposium on, pages 122–126, July 2010.

[88] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth, and Paul K.

Rodman. A VLIW Architecture For a Trace Scheduling Compiler. IEEE Transactions

On Computers, 37(8), August 1988.

[89] B. Ramakrishna Rau, Vinod Kathail, and Shail Aditya. Machine-description driven

compilers for EPIC and VLIW processors. Design Automation for Embedded Systems.

Technical report, 1999.

[90] Vassilios A. Chouliaras, K Koutsomyti, T Jacobs, S Parr, David Mulvaney, and Robert

Thomson. SystemC-defined SIMD instructions for high performance SoC architec-

tures. In Electronics, Circuits and Systems (ICECS), 2006 IEEE International Con-

ference on, 2006.

[91] Xilinx Inc. LogiCORE IP MicroBlaze Micro Controller System (v1.1) [Product Spec-

ification]. Online, April 2012.

141

REFERENCES

[92] Xilinx. MicroBlaze Gnu Compiler Collection [Computer Program]. http://www.

xilinx.com/tools/microblaze.htm, August 2012.

[93] David Stevens. Thesis Appendix [Code]. http://davestevens.github.com/

appendix, April 2013.

[94] ENOSYS. ENOSYS White Paper. http://www.enosys-project.eu/downloads,

November 2011.

[95] Mark Milward, David Stevens, and Vassilios Chouliaras. Embedded UML De-

sign Flow to the Configurable LE1 MultiCore VLIW processor. In Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Work-

shop on, July 2012.

[96] Mark Milward. Jink Design Space Explorer [Computer Program]. Unpublished, 2013.

[97] Softeam. Modelio[Computer Program]. http://softeam.com, 2013.

[98] University of Peloponnese. ACOT [Computer Program]. http://pelopas.uop.gr/

UK/, 2013.

[99] Aeroflex Gaisler. LEON3 Multiprocessing CPU Core [Product Sheet]. Online, Febru-

ary 2010.

[100] Xilinx. Xilinx Inc. http://www.xilinx.com/, 2013.

[101] Aeroflex Gaisler. Aeroflex Gaisler. http://www.gaisler.com/, 2013.

[102] Florida State University. Florida state university’s pthread (FSU-pthread) prototype

library [Computer Program]. Packaged with Sparc-elf-gcc, 2000.

[103] Xilinx Inc. LogiCORE IP XPS Timer/Counter (v1.02a) [Product Specification]. On-

line, April 2010.

[104] Benôıt B. Mandelbrot. Fractal aspects of the iteration of z → λz(1 − z) for com-

plex λ and z. 357(1):249–259, December 1980. International conference on nonlinear

dynamics.

[105] F. K. Musgrave and B. B. Mandelbrot. The art of fractal landscapes. IBM Journal of

Research and Development, 35(4):535 –540, july 1991.

[106] Martin J. Fiedler. NanoJPEG: a compact JPEG decoder [Computer Program]. http:

//keyj.emphy.de/nanojpeg/, 2012.

142

REFERENCES

[107] X.Org Foundation. The X Window System - X provides windowing on computer

displays and manages keyboard, pointing device control functions and touchscreens

[Computer Program]. http://www.x.org/, 1987.

[108] Philip Langdale. XInput - utility to configure and test X input devices [Computer Pro-

gram]. http://www.x.org/archive/X11R7.5/doc/man/man1/xinput.1.html, 2008.

143

REFERENCES

Appendix

This Appendix is also available online at http://davestevens.github.com/appendix

where all source code and other files are available to download or view in full.

144

APPENDIX A. LE1 XML CONFIGURATION FILE

Appendix A

LE1 XML Configuration File

LE1 XML Configuration File.

XML file for configuring hardware and software sections of the LE1 tool collection.

<galaxy>

<systems>1</ systems>

<type>homogeneous</ type>

<system>

<context s>2</ context s>

<SCALARSYS PRESENT>1</SCALARSYS PRESENT>

<PERIPH PRESENT>0</PERIPH PRESENT>

<DARCH>DRAM SHARED</DARCH>

<DRAM BLK SIZE>1</DRAM BLK SIZE>

<DRAM SIZE>0x100</DRAM SIZE>

<STACK SIZE>0xa</STACK SIZE>

<DRAM BANKS>1</DRAM BANKS>

<context>

<ISSUE WIDTH MAX>4</ISSUE WIDTH MAX>

<ISA PRSPCTV>VT32PP</ISA PRSPCTV>

<IARCH>IFE SIMPLE IRAM PRIV</IARCH>

<CLUST TEMPL>1</CLUST TEMPL>

<HYPERCONTEXTS>1</HYPERCONTEXTS>

<IFETCH WIDTH>4</IFETCH WIDTH>

<IRAM SIZE>0x100</IRAM SIZE>

<c lusterTemplate>

<SCORE PRESENT>1</SCORE PRESENT>

<VCORE PRESENT>0</VCORE PRESENT>

<FPCORE PRESENT>0</FPCORE PRESENT>

<CCORE PRESENT>0</CCORE PRESENT>

<INSTANTIATE>1</INSTANTIATE>

145

APPENDIX A. LE1 XML CONFIGURATION FILE

<INSTANCES>1</INSTANCES>

<ISSUE WIDTH>4</ISSUE WIDTH>

<S GPR FILE SIZE>64</S GPR FILE SIZE>

<S FPR FILE SIZE>0</S FPR FILE SIZE>

<S VR FILE SIZE>0</S VR FILE SIZE>

<S PR FILE SIZE>8</S PR FILE SIZE>

<IALUS>4</IALUS>

<IMULTS>2</IMULTS>

<LSU CHANNELS>1</LSU CHANNELS>

<BRUS>1</BRUS>

</ c lusterTemplate>

<hypercontext>

<c l u s t e r>0 0</ c l u s t e r>

</ hypercontext>

</ context>

</ system>

</ galaxy>

Listing A.1: LE1 XML Machine Model configuration file.

146

APPENDIX B. LE1 API AVAILABLE WITHIN MICROBLAZE

Appendix B

LE1 API available within

MicroBlaze

The set cpu() function sets the control registers within the LE1 to match those defined in

“current”. “current” is a structure containing

typede f s t r u c t {
i n t sys ; /∗ system ∗/
i n t c ; /∗ context ∗/
i n t hc ; /∗ hypercontext ∗/
i n t c l ; /∗ c l u s t e r ∗/

} currentT ;

currentT cur rent ;

void

s e t cpu (currentT cur rent) ;

The ctrl wait() function polls the CTRL REG within the current LE1, as specified

through the set cpu() function. A do while loop polls the CTRL REG and prints each

time 1M loops have been performed. (NB: This figure does not give the number of LE1

cycles executed).

void

c t r l w a i t (void) ;

The load iram() function takes “inst length” bytes as pointed to by “instructions” and

populates the LE1 instruction RAM. “context id” is used set the current LE1 being targeted

147

APPENDIX B. LE1 API AVAILABLE WITHIN MICROBLAZE

using the set cpu() function. Instructions are written to the LE1, read back and checked for

consistency. If read instruction differs from written instruction an error is printed and the

program exits.

void

load i ram (char ∗ i n s t r u c t i o n s , i n t i n s t l e n g t h , i n t c o n t e x t i d) ;

The load dram() function takes “data length” bytes as pointed to by “data” and pop-

ulates the LE1 data RAM. Data items are written to the LE1, read back and checked for

consistency. If read data item differs from written instruction an error is printed and the

program exits. If “MEMCHECK” is specified at compile time the LE1 data RAM not

initialised is zeroed out, this is for means of performing a comparison after execution.

void

load dram (char ∗data , i n t data l ength) ;

The run application() function initialises the stack pointer with in the current LE1 spec-

ified by “context id” and writes to a control register to start the LE1 executing instructions

from the instruction RAM. The stack pointer is calculated using: ((“mem top” - 0x100) -

(“stack size” * “context id”)). Where “mem top” is the size of the data RAM within the

LE1 and “stack size” is the number of bytes allocated for each contexts stack. This function

starts the LE1 context and then calls ctrl wait(), then returns after the LE1 has completed

execution.

void

r u n a p p l i c a t i o n (i n t context id , i n t mem top , i n t s t a c k s i z e) ;

The get max context() function performs a write and then read back to all LE1 instruc-

tion RAMs to compute the number of valid LE1 contexts in the current system.

Returns the number of contexts available within the current LE1 hardware configuration.

i n t

get max contexts (void) ;

The ctrl wait multicontext() function is similar to ctrl wait() function except is loops

from zero to “max context” until all LE1 context complete execution.

148

APPENDIX B. LE1 API AVAILABLE WITHIN MICROBLAZE

void

c t r l w a i t m u l t i c o n t e x t (unsigned max context) ;

The run application multicontext() function is similar to the run application() function

except it starts all available LE1 contexts as specified by “max context” and then calls the

ctrl wait multicontext() function. When all contexts have completed execution the function

returns.

void

r u n a p p l i c a t i o n m u l t i c o n t e x t (i n t max contexts , i n t mem top , i n t s t a c k s i z e) ;

Available if “MEMCHECK” is specified at compile time. This function compares the

LE1 data RAM with an array of known correct data RAM which can be produced by the

Instruction Set Simulator.

Returns 0 on completion with zero errors or -1 otherwise.

i n t

check dram af te r (void) ;

The dbg wr() function simply writes “wrdata” to the address specified by “addr”.

void

dbg wr (i n t addr , i n t wrdata) ;

The dbg rd() function simply reads from the address specified by “addr”.

Return the value read from the LE1 at address “addr”.

i n t

dbg rd (i n t addr) ;

The busy wait() function blocks until the busy register is clear. This is used after reads

and writes to ensure data is correct.

void

busy wait (void) ;

149

APPENDIX B. LE1 API AVAILABLE WITHIN MICROBLAZE

The write special() function writes “data” to “special” registers within the LE1 space.

(For example; the program counter).

void

w r i t e s p e c i a l (i n t s p e c i a l r e g , i n t data) ;

The write cr() function writes “data” to the control register specified by “ctrl reg”.

void

w r i t e c r (i n t c t r l r e g , i n t data) ;

The read cr() function reads from control space registers specified by “ctrl reg”.

Return the value of the register specified by “ctrl reg”.

i n t

r e a d c r (i n t c t r l r e g) ;

The grp wr() function directly writes “wrdata” to the general purpose register specified

by “reg”.

void

grp wr (i n t reg , i n t wrdata) ;

150

APPENDIX C. LE1 ASSEMBLER

Appendix C

LE1 Assembler

The LE1 Assembler used to translate the assembly output from VEX to match the LE1

Instruct Set Architecture. It is formed of a selection of scripts and library code to perform

this translation and produce LE1 machine code from running a single script.

An diagram of LE1 Assembler scripts is shown in Figure C.1.

The code can be found online at http://davestevens.github.com/appendix

151

APPENDIX C. LE1 ASSEMBLER

Figure C.1: LE1 Assembler scripts orchestration.

152

APPENDIX D. INSIZZLE

Appendix D

Insizzle

Insizzle is the LE1 VLIW CMP interpreted Instruction Set Simulator. Insizzle provides

cycle accurate simulation of the LE1 hardware implementation.

There are two modes of simulation which match the different experiment executions per-

formed throughout the thesis:

A) PThread mode: A single context begins execution, all other are able to have threads

created on them.

B) CPUID mode: All contexts in the system begin execution from entry point of the appli-

cation.

The argument list for Insizzle are shown in Table D.1 and the heuristics produced after

successful execution are explained in Table D.2.

The code can be found online at http://davestevens.github.com/appendix

153

APPENDIX D. INSIZZLE

Table D.1: Insizzle arguments for LE1 Instruction Set Simulator.

Argument Description Required

model.xml LE1 XML configuration file True

-similarIRAM In a multi-context system all instruction

RAMS are filled with iram0.bin

False

-stack=%d During execution there may be stack size

warnings, it is possible to set the stack

sizes at command line lever rather than

editing the machine model

False

-printout Displays all instructions being executed

along with inputs and outputs (Produces

a lot of data)

False

154

APPENDIX D. INSIZZLE

Table D.2: Description of heuristics from Insizzle Execution.

Name Description

Start Time Timestamp of when Insizzle began execution

End Time Timestamp of when Insizzle completed execution

Total Time Time in seconds taken for Insizzle to complete execu-

tion on host machine

Per Hypercontext

cycleCount Total number of cycles since 0 before HALT operation

was executed

stallCount Number of cycles where the hypercontext was stalled

due to pipe refills, memory access, etc.

nopCount Number of No-Ops executed

idleCount In pthread mode the number of cycles waiting on other

hypercontext (pthread join)

bundleCount[ARRAY] Total cycle count broken down into bundle counts

decodeStallCount Number of cycles stalled due to instruction decoding

stalls

branchTaken Number of branches taken

branchNotTaken Number of branches not taken

controlFlowChange Number of times control flow was altered due to call,

branch, goto

memoryAccessCount Number of cycles stalled due to memory conflicts

155

APPENDIX E. MODELLING MODIFICATION IMPLEMENTATIONS

Appendix E

Modelling Modification

Implementations

Methods presented in chapter 4 used for transforming a Platform-Independent UML model

to Platform-Specific UML models Implemented in Perl are explained here:

The code can be found online at http://davestevens.github.com/appendix

E.1 Modifiable Architecture

arch.pl

Script to modify the Architecture section of the UML model in XMI format using the

wildcard multiplicity notation, HwProcessors are found and replicated.

Requires an XMI file, LE1 XML file and output file name.

Generates an XMI file with modified architecture section to match that which is defined in

the LE1 XML file.

E.2 Modifiable Application

appl rr.pl

Script to modify the Application section of the UML model in XMI format using the wild-

card multiplicity notation. Objects within the top level class are replicated along with the

creation of surrounding structure to communicate with input and output objects. This

method includes a fork object which passes subsequent calls to available replicated objects

in a round robin manor and a join object which passes calls from multiple objects to a single

156

APPENDIX E. MODELLING MODIFICATION IMPLEMENTATIONS

output port.

Requires an XMI file, name of top level class and output file name.

Generates an XMI file with extended application section.

appl split.pl

Script to modify the Application section of the UML model in XMI format using the wildcard

multiplicity notation. Objects within the top level class are replicated along with the creation

of surrounding structure to communicate with input and output objects. This method

includes a fork object which splits a data section over all available replicated objects and a

fork object which waits for all forked jobs to complete before passing data to output port.

Requires an XMI file, name of top level class and output file name.

Generates an XMI file with extended application section.

E.3 Modifiable Allocations

alloc.pl

Script to calculate all possible static mappings based on the input UML model. Requires

an XMI file, name of top level class, output file name and optionally a directory to generate

images in. Generates an XML file containing permutations of all possible static mapping

bases on the input UML model. Also generates an image associated with each mapping if

required, this enables the viewing off generated static mappings.

E.4 Platform-Specific UML Model Creation

writeStatic.pl

Script to generate a statically mapped UML model, using the XML output from the alloc.pl

script and permutation number to generate. It removes all mappings and UML dependencies

and generates one of the static mappings defined in the XML file. Requires an XMI file,

XML file and permutation to generate. Generates an XMI file containing the statically

mapped platform-specific UML model specified by the permutation number in the XML

file.

E.5 Miscellaneous

global.pl

Global functions to set MARTE tags dependent on the version used to export XMI, parse

command line arguments and setup global variables.

157

APPENDIX F. FULL FLOW EXAMPLE

Appendix F

Full Flow Example

UML to simulation on Insizzle, the LE1 Instruction Set Simulator. All files discussed can

be found online at http://davestevens.github.com/appendix

F.1 UML Model

Creation of UML model within Modelio using the UML design notations defined in chap-

ter 4. Example is based on a Sobel Filter UML model. The Class diagram showing the

overall behaviour of the model is shown in Figure F.1 with the structure of the model shown

in Figure F.2. The Class diagram display internal operations, attributes and ports of the

classes along with interfaces and their realisations contained within the model. The Com-

posite Structure diagram displays the structure of the system captured in the UML model,

Figure F.2 displays three objects within a single top level class along with their ports and

connections in the application section of the model. Also shown is the architecture section

and the mappings between the application and architecture sections. It is in this diagram

where the UML notations defined within this thesis are included with the “Sob” object

and “i1” HwProcessor being tagged with a wildcard multiplicity as well as the static and

adjustable mappings between the application and architecture sections of the model.

Classes within the UML model require state machines to define their overall behaviour,

these are shown in Figure F.3(a) and F.3(b). The Source class state machine is shown in

Figure F.3(a) where an initialisation operation is executed to put the class into a known state

followed by an operation to start passing data to the Sobel Filter class. These are linked to

transitions within the state machine with no triggers, resulting in them being executed once

the class is instantiated as an object within the application. Figure F.3(b) shows the state

158

APPENDIX F. FULL FLOW EXAMPLE

Figure F.1: Class diagram of Sobel Filer UML model

Figure F.2: Composite Structure of Sobel Filter UML model

machine associated with the Sobel Filter class. This differs from the Source state machine

in that initially the class transitions to “State” and then waits for a trigger before taking

159

APPENDIX F. FULL FLOW EXAMPLE

(a) State machine linked to the Source Class within

the UML model.

(b) State machine linked to the Sobel Filter Class

within the UML model.

Figure F.3: State machines defining behaviour of Classes within the UML model used for

full tool chain example.

a transition back to the same state. This is used allow a continuous flow of information to

be passed to the object instantiated from the Sobel Filter class. Each time the transition is

triggered an internal operation is called with the passed data which is then computed within

the object.

F.2 UML Notation

Running the exported XMI file through the scripts defined above.

As seen in Figure F.2 above the part within “TOP” named “i1” which is typed as “Sob”

has a wildcard multiplicity, there is also an object typed as a “HwProcessor” within the

HwComputingResource which is tagged with a wildcard multiplicity. This results in a UML

model which can be modified to be executed on a base system with three or more cores. For

ease of displaying all possibilities a four core LE1 base system was used, this results in 16

possible permutations of static mappings, these permutations are displayed in Table F.1.

To generate these permutations of the possible static mappings the following scripts are

executed:

Firstly the architecture section is expanded to match that of “le1/4core.xml” which

contains a 4 core LE1 system:

160

APPENDIX F. FULL FLOW EXAMPLE

Table F.1: Possible permutations of statically mapped UML models based on execution on

a 4 core LE1 base system.

Permutation
Core

i i2 i1 0 i1 1

0 i, Sob 0, Sob 1, fork i2, join

1 i, Sob 0, fork i2, join, Sob 1

2 i, Sob 0, fork i2, join Sob 1

3 i, Sob 0, fork i2, join Sob 1

4 i, Sob 1, fork i2, join, Sob 0

5 i, fork i2, join, Sob 0, Sob 1

6 i, fork i2, join, Sob 0 Sob 1

7 i, fork i2, join, Sob 0 Sob 1

8 i, Sob 1, fork i2, join Sob 0

9 i, fork i2, join, Sob 1 Sob 0

10 i, fork i2, join Sob 0, Sob 1

11 i, fork i2, join Sob 0 Sob 1

12 i, Sob 1, fork i2, join Sob 0

13 i, fork i2, join, Sob 1 Sob 0

14 i, fork i2, join Sob 1 Sob 0

15 i, fork i2, join Sob 0, Sob 1

p e r l arch . p l − i Sobe l roundrob in wi ldca rd . xmi − l l e 1 /4 core . xml −o

Sobe l r oundrob in w i ldca rd a r ch . xmi −t TOP

Then the application is expanded using the RoundRobin method:

p e r l a p p l r r . p l − i Sobe l r oundrob in w i ldca rd a r ch . xmi −o

Sobe l r oundrob in w i ldca rd app l . xmi −t TOP

The allocations are then read and all possible static mappings are generated. “out-

161

APPENDIX F. FULL FLOW EXAMPLE

i

i2

Sob_0

Sob_1

fork

join

TOP

<<HwProcessor>>

i

<<HwProcessor>>

i2

<<HwProcessor>>

i1_0

<<HwProcessor>>

i1_1

<<HwComputingResource>>

CompResc

Figure F.4: Mapping example generated by the alloc script

put images” is a directory which is populated with images showing all possible permuta-

tions.

p e r l a l l o c . p l − i Sobe l r oundrob in w i ldca rd app l . xmi −o

Sobe l roundrob in wi ldca rd . xml −s output images −t TOP

Finally, a statically mapped UML model is generated. Note in this example “11” is

passed, resulting in the example shown in Figure F.4 being generated:

p e r l w r i t e S t a t i c . p l Sobe l r oundrob in w i ldca rd app l . xmi

Sobe l roundrob in wi ldca rd . xml 11 > S o b e l r o u n d r o b i n w i l d c a r d s e t . xmi

F.3 FalconML

The generated XMI model is then ran through FalconML in order to generate the multicore

C code required to execute on the LE1 system:

f a l conml −modelio −t a r g e t c −top TOP −mult i co re −use memory pool

S o b e l r o u n d r o b i n w i l d c a r d s e t . xmi f a l c o n m l o u t p u t d i r e c t o r y

This produces a set of C files required to implement the UML model which is synthesised

by FalconML.

162

APPENDIX F. FULL FLOW EXAMPLE

F.4 LE1 Tool Collection

The generated C code is then passed to the LE1 Tool Collection which produces machine

code for the LE1, the flags passed to the tool collection are shown below:

p e r l generate . p l f a l c o n m l o u t p u t d i r e c t o r y −s y s c a l l −DNUM EVENT QUEUES=4 −
pthread −cpuid −DNDEBUG −xmlMM=l e 1 /4 core . xml −DMEM POOL SIZE=100000

This generates a set of files required for both simulation and execution on a hardware

instantiation of the LE1.

F.5 Insizzle

The compiled LE1 machine code can then be executed on either the Simulator or on the

synthesised LE1 hardware. Shown here is the execution under simulation, run using:

. / INSIZZLE machinemodel/model . xml −similarIRAM

The output from Insizzle displays the heuristics of each available core, in this case four,

including the instruction types which were executed and the number of cycles spent stalling.

I n s i z z l e (c1e194a)

PID : 17031

(send SIGUSR1 s i g n a l to produce s t a t e dump)

homogeneous system

Galaxy setup completed .

P lease s p e c i f y the l o c a t i o n o f the dram binary f o r system 0

> f i l e : b i n a r i e s /dram . bin

S i z e o f b i n a r i e s /dram . bin i s 0 x845e4

r equ i r ed s i z e i s : 67107840 bytes

LOADING BINARY

Please s p e c i f y the l o c a t i o n o f the iram binary f o r system 0 , context 0

> f i l e : b i n a r i e s / iram0 . bin

S i z e o f b i n a r i e s / iram0 . bin i s 0xecb8

r equ i r ed s i z e i s : 262144 bytes

LOADING BINARY

Please s p e c i f y the l o c a t i o n o f the iram binary f o r system 0 , context 1

> f i l e : b i n a r i e s / iram0 . bin

S i z e o f b i n a r i e s / iram0 . bin i s 0xecb8

r equ i r ed s i z e i s : 262144 bytes

LOADING BINARY

Please s p e c i f y the l o c a t i o n o f the iram binary f o r system 0 , context 2

163

APPENDIX F. FULL FLOW EXAMPLE

> f i l e : b i n a r i e s / iram0 . bin

S i z e o f b i n a r i e s / iram0 . bin i s 0xecb8

r equ i r ed s i z e i s : 262144 bytes

LOADING BINARY

Please s p e c i f y the l o c a t i o n o f the iram binary f o r system 0 , context 3

> f i l e : b i n a r i e s / iram0 . bin

S i z e o f b i n a r i e s / iram0 . bin i s 0xecb8

r equ i r ed s i z e i s : 262144 bytes

LOADING BINARY

Using Stack S i z e / hypercontext o f 256 KiB

s t a r t : 5005

done : 1192857

HALT operat i on r e c e i v e d from [0] [2] [0] at c y c l e 1193186

HALT operat i on r e c e i v e d from [0] [0] [0] at c y c l e 1193846

HALT operat i on r e c e i v e d from [0] [3] [0] at c y c l e 1194340

HALT operat i on r e c e i v e d from [0] [1] [0] at c y c l e 1194898

Star t Time : 1355935756

End Time : 1355935758

Total Time : 2 (seconds)

performance s t a t i s t i c s

galaxy : 0

system : 0

context : 0

hypercontext : 0

Cycle breakdown

cycleCount : 1193847

s ta l lCount : 429751

nopCount : 235835

id leCount : 0

[0] = 429751

[1] = 571430

[2] = 81076

[3] = 40586

[4] = 10764

decodeSta l lCount : 42547

branchTaken : 5485

branchNotTaken : 48699

controlFlowChange :129068

memoryAccessCount :31787

performance s t a t i s t i c s

galaxy : 0

system : 0

context : 1

hypercontext : 0

Cycle breakdown

cycleCount : 1194899

s ta l lCount : 319013

164

APPENDIX F. FULL FLOW EXAMPLE

nopCount : 246914

id leCount : 0

[0] = 319013

[1] = 491020

[2] = 288829

[3] = 19274

[4] = 5449

decodeSta l lCount : 119729

branchTaken : 14002

branchNotTaken : 5213

controlFlowChange :66428

memoryAccessCount :37891

performance s t a t i s t i c s

galaxy : 0

system : 0

context : 2

hypercontext : 0

Cycle breakdown

cycleCount : 1193187

s ta l lCount : 332141

nopCount : 254575

id leCount : 0

[0] = 332141

[1] = 523382

[2] = 184318

[3] = 36710

[4] = 29267

decodeSta l lCount : 96878

branchTaken : 10502

branchNotTaken : 27922

controlFlowChange :78421

memoryAccessCount :46843

performance s t a t i s t i c s

galaxy : 0

system : 0

context : 3

hypercontext : 0

Cycle breakdown

cycleCount : 1194341

s ta l lCount : 329992

nopCount : 251704

id leCount : 0

[0] = 329992

[1] = 519368

[2] = 182639

[3] = 36112

[4] = 28347

165

APPENDIX F. FULL FLOW EXAMPLE

decodeSta l lCount : 95407

branchTaken : 10448

branchNotTaken : 28249

controlFlowChange :78195

memoryAccessCount :52970

f i l ename : memoryDump 0 . dat

Listing F.1: Insizzle simulation output

166

APPENDIX G. LEON3MP SMT MODIFICATIONS

Appendix G

Leon3MP SMT Modifications

This section includes the Assembly and C code written to modify the Leon3MP system to

make it able to execute a small section of the PThread library.

The code can be found online at http://davestevens.github.com/appendix

crt0.S

Assembly boot loader of Leon3MP system modified to set stack pointer registers for each

CPU in relation to their CPUID as well as only formatting global memory if CPUID is 0.

leon3mp pthread.h

Header file defining available PThread functions in the Leon3MP system.

leon3mp pthread.c

Implementation of available PThread functions in the Leon3MP system. Also included are

the sections of code used to stall the functions in order to match the execution times of the

functions in other library implementations.

platform.h

Header file defining global structures and arrays for Leon3MP PThread platform.

platform.c

Implementation of platform initialisation and cleanup. CPU0 initialises all other available

CPUs and then executes main body of code. CPU0 is seen as the master thread in this

implementation.

167

APPENDIX H. X11 USER INTERACTION CAPTURE

Appendix H

X11 User Interaction Capture

Program code for capturing multiple input devices through the use of the X11 library.

The code can be found online at http://davestevens.github.com/appendix

capture.h

Header file including required X11 library files along and definitions of functions to capture

devices.

capture.c

Implementation device capture, check specified devices and log key and button presses and

releases.

main.c

Implementation to full system to specify input devices to log and then pull all event from

X11 event queue and display information as specified.

168

APPENDIX I. PTHREAD EXECUTION RESULTS

Appendix I

PThread Execution Results

The cycle counts produced through execution of example applications on alternative archi-

tectures as presented in chapter 6 are included in full here.

169

A
P

P
E

N
D

IX
I.

P
T

H
R

E
A

D
E

X
E

C
U

T
IO

N
R

E
S

U
L
T

S

Table I.1: Execution of Mandelbrot Set threading using coarse grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

MicroBlaze 991532686 991579915 991610684 991639734 991684602 991727341 991783111 991817892

Leon3 1469380425 1484432700 1500021675 1502281500 1518018375 1552456800 1554512400 1562260200

Leon3MP 1468194900 737993925 496522875 373056375 301424550 252809400 217061850 191365950

Leon3MP (MicroBlaze) 1468194675 737995950 496529700 373061100 301430700 252818325 217071450 191375850

Leon3MP (Leon3) 1468194900 738009375 497271900 373790100 302517300 253574100 218529525 193535700

LE1 476779180 240094118 161549508 121351939 98032077 82282386 70631182 62231733

Table I.2: Execution of Mandelbrot Set threading using fine grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

MicroBlaze 993694500 1127692136 1137219430 1142472937 1146155580 1149012033 1152451534 1153533971

Leon3 - - - - - - - -

Leon3MP 1470098025 758702700 517788825 396089250 323202750 274188225 244403400 212340600

Leon3MP (MicroBlaze) 1470097875 884308350 686935950 587614650 526643625 485837100 462268350 434414475

Leon3MP (Leon3) 1470098025 15126905100 19679977050 21955768875 23320747800 24231221025 25030385025 25369155750

LE1 516154855 247990545 169700908 130393276 106514808 90550611 80816031 70432697

170

APPENDIX I. PTHREAD EXECUTION RESULTS

Table I.3: Coarse grain Mandelbrot Set execution speed up relative to execution on a single

core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

MicroBlaze 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Leon3 0.990 0.979 0.978 0.968 0.946 0.945 0.941

Leon3MP 1.988 2.959 3.937 4.878 5.814 6.757 7.692

Leon3MP (MicroBlaze) 1.988 2.959 3.937 4.878 5.814 6.757 7.692

Leon3MP (Leon3) 1.988 2.950 3.922 4.854 5.780 6.711 7.576

LE1 1.984 2.950 3.922 4.854 5.780 6.757 7.634

Table I.4: Fine grain Mandelbrot Set execution speed up relative to execution on a single

core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

MicroBlaze 0.881 0.874 0.870 0.867 0.865 0.862 0.861

Leon3 - - - - - - -

Leon3MP 1.938 2.841 3.717 4.545 5.348 6.024 6.944

Leon3MP (MicroBlaze) 1.661 2.141 2.500 2.793 3.030 3.185 3.378

Leon3MP (Leon3) 0.097 0.075 0.067 0.063 0.061 0.059 0.058

LE1 2.083 3.040 3.953 4.854 5.714 6.369 7.353

171

A
P

P
E

N
D

IX
I.

P
T

H
R

E
A

D
E

X
E

C
U

T
IO

N
R

E
S

U
L
T

S

Table I.5: Execution of JPEG Decode threading using coarse grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

Leon3MP 27261300 16758225 14366775 12392475 12513900 12821700 13427250 11237250

Leon3MP (MicroBlaze) 27264000 16781400 14517750 12405450 12553500 12898950 13501050 11310975

Leon3MP (Leon3) 27264375 17142375 15190725 13370400 13959150 14698050 15630225 13818150

LE1 30209314 16769381 13917679 10826805 10929481 11046915 11243771 8482569

Table I.6: Execution of JPEG Decode threading using fine grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

Leon3MP 3131325 2954775 2948925 2879025 2950725 2993250 2987175 2979375

Leon3MP (MicroBlaze) 3131250 3227475 3542325 3787275 4160700 4501200 4798725 5083350

Leon3MP (Leon3) 3131325 38860650 74803950 110685525 146694900 182665425 218602200 254518725

LE1 3450056 3335499 3345276 3297675 3331164 3339996 3350652 3314955

172

APPENDIX I. PTHREAD EXECUTION RESULTS

Table I.7: Coarse grain JPEG Decode execution speed up relative to execution on a single

core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

Leon3MP 1.626 1.898 2.198 2.179 2.128 2.028 2.427

Leon3MP (MicroBlaze) 1.623 1.880 2.198 2.174 2.114 2.020 2.410

Leon3MP (Leon3) 1.590 1.795 2.041 1.953 1.855 1.745 1.972

LE1 1.802 2.169 2.793 2.762 2.732 2.688 3.559

Table I.8: Fine grain JPEG Decode execution speed up relative to execution on a single

core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

Leon3MP 1.059 1.062 1.088 1.062 1.046 1.048 1.052

Leon3MP (MicroBlaze) 0.970 0.884 0.826 0.752 0.695 0.652 0.616

Leon3MP (Leon3) 0.081 0.042 0.028 0.021 0.017 0.014 0.012

LE1 1.034 1.031 1.046 1.035 1.033 1.030 1.041

173

A
P

P
E

N
D

IX
I.

P
T

H
R

E
A

D
E

X
E

C
U

T
IO

N
R

E
S

U
L
T

S

Table I.9: Execution of Sobel Filter threading using coarse grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

Leon3MP 1215757950 611657400 412095075 311247525 253304775 214910175 190099725 171595875

Leon3MP (MicroBlaze) 1470910500 739912275 498852375 377528550 307923525 262305450 233432775 212422800

Leon3MP (Leon3) 1470910350 740272950 498902925 377814375 308647800 263350800 233908875 214051200

LE1 927618395 479936069 326716224 256128948 210709074 183354844 165937056 153249931

Table I.10: Execution of Sobel Filter threading using fine grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

Leon3MP 1234326300 669003225 475069275 378237300 318999600 279668775 253175325 236765325

Leon3MP (MicroBlaze) 1234324875 1172965050 1143620175 1136656425 1124633925 1120754625 1121373300 1111458000

Leon3MP (Leon3) 1234324800 57768775875 76722624375 86290815900 91956927225 96035451525 99051313500 100462736775

LE1 928530875 513599925 364332540 289351733 248155821 221338729 204067780 191785239

174

APPENDIX I. PTHREAD EXECUTION RESULTS

Table I.11: Coarse grain Sobel Filter execution speed up relative to execution on a single

core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

Leon3MP 1.988 2.950 3.906 4.808 5.650 6.410 7.092

Leon3MP (MicroBlaze) 1.988 2.950 3.891 4.785 5.618 6.289 6.944

Leon3MP (Leon3) 1.988 2.950 3.891 4.762 5.587 6.289 6.849

LE1 1.934 2.841 3.623 4.405 5.051 5.587 6.061

Table I.12: Fine grain Sobel Filter execution speed up relative to execution on a single

core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

Leon3MP 1.845 2.597 3.268 3.876 4.405 4.878 5.208

Leon3MP (MicroBlaze) 1.053 1.079 1.086 1.098 1.101 1.101 1.111

Leon3MP (Leon3) 0.021 0.016 0.014 0.013 0.013 0.012 0.012

LE1 1.808 2.551 3.205 3.745 4.202 4.545 4.831

175

A
P

P
E

N
D

IX
I.

P
T

H
R

E
A

D
E

X
E

C
U

T
IO

N
R

E
S

U
L
T

S

Table I.13: Execution of DES threading using coarse grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

Leon3MP 168063600 84592125 57748875 42839025 36732825 30140250 26487975 23575575

Leon3MP (MicroBlaze) 168063300 84596175 57735600 42857775 35055750 29847825 25952925 23295900

Leon3MP (Leon3) 168062850 84970425 58454475 44066100 36519000 31197750 27936375 25735500

LE1 159629352 82779262 59900716 48102747 37932640 33379314 30071727 27787002

Table I.14: Execution of DES threading using fine grain PThread operations on available architectures.

Platform
Cores / CPUs

1 2 3 4 5 6 7 8

Leon3MP 167117400 85335150 60366450 46602525 39548325 33885375 30563250 27192525

Leon3MP (MicroBlaze) 167117775 98931075 76645275 64048050 57768375 52594050 49749675 46803375

Leon3MP (Leon3) 167117625 1619264550 2104054650 2344526325 2491062300 2587476300 2657341275 2707097100

LE1 159858703 77750224 58088911 42391540 35793100 31598587 29865978 27720625

176

APPENDIX I. PTHREAD EXECUTION RESULTS

Table I.15: Coarse grain DES execution speed up relative to execution on a single core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

Leon3MP 1.988 2.907 3.922 4.566 5.587 6.329 7.143

Leon3MP (MicroBlaze) 1.988 2.907 3.922 4.785 5.618 6.494 7.194

Leon3MP (Leon3) 1.976 2.874 3.817 4.608 5.376 6.024 6.536

LE1 1.927 2.667 3.322 4.202 4.785 5.319 5.747

Table I.16: Fine grain DES execution speed up relative to execution on a single core/CPU.

Platform
Cores / CPUs

2 3 4 5 6 7 8

Leon3MP 1.957 2.770 3.584 4.219 4.926 5.464 6.135

Leon3MP (MicroBlaze) 1.689 2.179 2.611 2.890 3.175 3.356 3.571

Leon3MP (Leon3) 0.103 0.079 0.071 0.067 0.065 0.063 0.062

LE1 2.058 2.755 3.774 4.464 5.051 5.348 5.780

177

APPENDIX J. CPUID EXECUTION RESULTS

Appendix J

CPUID Execution Results

The cycle counts produced through execution of example applications on alternative archi-

tectures as presented in chapter 6 are included in full here.

Table J.1: Speed up of benchmarks on the LE1 using CPUID to perform parallelism, relative

to execution on a single core.

Platform
Cores

2 3 4 5 6 7 8

Mandelbrot Set 1.996 2.959 3.953 4.878 5.650 6.757 7.692

JPEG Decode 1.802 2.165 2.778 2.732 2.725 2.667 3.559

Sobel Filter 1.931 2.801 3.610 4.348 5.025 5.556 6.024

DES 2.079 2.747 3.472 4.405 4.902 5.464 5.814

Table J.2: Speed up of benchmarks on the Leon3MP using CPUID to perform parallelism,

relative to execution on a single CPU.

Platform
CPUs

2 3 4 5 6 7 8

Mandelbrot Set 1.988 2.959 3.937 4.878 5.814 6.757 7.692

JPEG Decode 1.631 1.866 2.203 2.151 2.105 2.008 2.415

Sobel Filter 1.988 2.950 3.906 4.808 5.650 6.410 7.092

DES 1.988 2.899 3.817 4.651 5.348 6.410 7.143

178

A
P

P
E

N
D

IX
J
.

C
P

U
ID

E
X

E
C

U
T

IO
N

R
E

S
U

L
T

S

Table J.3: Cycle counts of all benchmarks executing on the LE1 using CPUID to perform parallelism within the applications.

Platform
Cores

1 2 3 4 5 6 7 8

Mandelbrot 476626084 238930539 161218988 120771547 97844959 84144576 70479738 61959510

JPEG Decode 30209399 16767078 13947885 10878791 11042612 11074709 11320455 8483213

Sobel Filter 928635366 481397691 331330070 256990751 213244923 184479216 167426393 153812096

DES 159629373 76786266 58128430 45911083 36222177 32625919 29244886 27503813

Table J.4: Cycle counts of all benchmarks executing on the Leon3MP using CPUID to perform parallelism within the applications.

Platform
CPUs

1 2 3 4 5 6 7 8

Mandelbrot 1468183725 737982900 496525050 373049100 301430025 252815400 217068450 191362350

JPEG Decode 27161700 16655400 14569425 12322875 12620475 12905550 13523400 11243025

Sobel Filter 1215660450 611568150 412035225 311183250 253327275 214915425 190203150 171625650

DES 166939050 84047700 57654000 43768275 35834100 31263975 26042325 23332950

179

APPENDIX K. UML CREATION RESULTS

Appendix K

UML Creation Results

User events logged while generating UML benchmarks for various architectural specifica-

tions. Both user events, as described in chapter 6, and time are included. Percentages are

shown relative to the figures extracted for the creation of the base model and show the

amount of extra work required to modify the UML model to fully utilise the underlying

architecture. Although a similar trend is seen between the time and user events the reason

for the different in percentage of time to generate the base model is due to the user events

only logging a single keyboard event when inputting action code into an operation which,

depending on the size of the operation, could take many seconds.

Table K.1: Statistics generated from generation of multiple Mandelbrot Set UML models

using RoundRobin design, includes both User Events and Time Taken.

Configuration User Events Time (Seconds) User Events (%) Time (%)

Base 630 1905 100 100

3 Core 142 74 23 4

4 Core 440 521 70 27

5 Core 571 656 91 34

6 Core 655 668 104 35

7 Core 662 743 105 39

8 Core 740 826 117 43

Wildcard 159 97 25 5

180

APPENDIX K. UML CREATION RESULTS

Table K.2: Statistics generated from generation of multiple Mandelbrot Set UML models

using Split design, includes both User Events and Time Taken.

Configuration User Events Time (Seconds) User Events (%) Time (%)

Base 593 1776 100 100

3 Core 152 63 26 4

4 Core 293 209 49 12

5 Core 339 274 57 15

6 Core 395 342 67 19

7 Core 507 414 85 23

8 Core 564 463 95 26

Wildcard 167 85 28 5

Table K.3: Statistics generated from generation of multiple Sobel Filter UML models using

RoundRobin design, includes both User Events and Time Taken.

Configuration User Events Time (Seconds) User Events (%) Time (%)

Base 534 1146 100 100

3 Core 152 69 28 6

4 Core 432 538 81 47

5 Core 477 612 89 53

6 Core 531 698 99 61

7 Core 637 795 119 69

8 Core 708 860 133 75

Wildcard 166 96 31 8

Table K.4: Statistics generated from generation of multiple Sobel Filter UML models using

Split design, includes both User Events and Time Taken.

Configuration User Events Time (Seconds) User Events (%) Time (%)

Base 508 1231 100 100

3 Core 156 58 31 5

4 Core 259 213 51 17

5 Core 372 289 73 23

6 Core 426 341 84 28

7 Core 477 395 94 32

8 Core 611 499 120 41

Wildcard 166 77 33 6

181

APPENDIX K. UML CREATION RESULTS

Table K.5: Statistics generated from generation of multiple DES UML models using

RoundRobin design, includes both User Events and Time Taken.

Configuration User Events Time (Seconds) User Events (%) Time (%)

Base 1041 2882 100 100

3 Core 148 93 14 3

4 Core 553 711 53 25

5 Core 584 686 56 24

6 Core 722 761 69 26

7 Core 803 863 77 30

8 Core 766 889 74 31

Wildcard 161 123 15 4

Table K.6: Statistics generated from generation of multiple DES UML models using Split

design, includes both User Events and Time Taken.

Configuration User Events Time (Seconds) User Events (%) Time (%)

Base 1030 2698 100 100

3 Core 158 65 15 2

4 Core 296 278 29 10

5 Core 409 320 40 12

6 Core 424 378 41 14

7 Core 522 441 51 16

8 Core 579 506 56 19

Wildcard 157 79 15 3

182

APPENDIX L. UML EXECUTION RESULTS

Appendix L

UML Execution Results

Table L.1: Cycle counts of UML models generated to match specific architectural templates

executed on LE1 architecture.

Benchmark Type
Cores

3 4 5 6 7 8

Mandelbrot Set RoundRobin 4538352 2654619 1939050 1681681 1455082 1392839

Sobel Filter RoundRobin 1577150 1188667 921733 879257 868846 853038

DES RoundRobin 4843018 2788196 1866686 1529151 1294099 1260854

Mandelbrot Set Spit 1794543 877295 467779 320965 357554 177271

Sobel Filter Split 560801 280528 184188 134998 105662 85576

DES Encryption Split 4060537 2035662 1426747 1078019 874280 625565

Table L.2: Cycle counts of UML models generated using wildcard UML notation and mod-

ified to fit alternative architectural template executed on LE1 architecture.

Benchmark Type
Cores

3 4 5 6 7 8

Mandelbrot Set RoundRobin 5040311 2638241 1952824 1643023 1469923 1389665

Sobel Filter RoundRobin 1971750 1189263 919126 879713 869684 876498

DES RoundRobin 5436725 2782548 1826698 1450682 1385417 1179274

Mandelbrot Set Spit 1808716 941848 954158 689650 674658 615068

Sobel Filter Split 569226 290232 188369 138354 166561 88928

DES Encryption Split 4199028 2109589 1480685 1132517 938412 829370

183

