23,783 research outputs found

    Home Used, Patient Self-Managed, Brain-Computer Interface for Treatment of Central Neuropathic Pain in Spinal Cord Injury: Feasibility Study

    Get PDF
    Central Neuropathic Pain (CNP) is a frequent chronic condition in people with spinal cord injury (SCI). In a previous study, we showed that using laboratory brain-computer interface (BCI) technology for neurofeedback training, it is possible to reduce pain in SCI people who suffered from CNP for many years. In this study, we show initial results from 12 people with SCI and CNP who practiced neurofeedback on their own using our portable BCI, consisting of a wearable EEG headset (Emotiv, EPOC, USA) and a computer tablet. Eight participants showed a positive initial response to neurofeedback and seven learned how to use portable BCI on their own at home. In this paper, we present a portable BCI and discuss the main challenges of training lay people, patients and their caregivers, to use a custom designed BCI application at home

    Using EEG and NIRS for brain-computer interface and cognitive performance measures: a pilot study

    Get PDF
    This study addresses two important problem statements, namely, selection of training datasets for online Brain-Computer Interface (BCI) classifier training and determination of participant concentration levels during an experiment. The work also attempted a pilot study to integrate electroencephalograms (EEGs) and Near Infra Red Spectroscopy (NIRS) for possible applications such as the BCI and for measuring cognitive levels. Two experiments are presented, the first being a mathematical task interleaved with rest states using NIRS only. In the next, integration of the EEG-NIRS with reference to P300-based BCI systems as well as the experimental conditions designed to elicit the concentration levels (denoted as ON and OFF states here) during the paradigm, are presented. The first experiment indicates that NIRS can be used to differentiate a concentrated (i.e., mental activity) level from the rest. However, the second experiment reveals statistically significant results using the EEG only. We present details about the equipment used, the participants as well as the signal processing and machine learning techniques implemented to analyse the EEG and NIRS data. After discussing the results, we conclude by describing the research scope as well as the possible pitfalls in this work from a NIRS viewpoint, which presents an opportunity for future research exploration for BCI and cognitive performance measures

    Brain-Computer Interface meets ROS: A robotic approach to mentally drive telepresence robots

    Get PDF
    This paper shows and evaluates a novel approach to integrate a non-invasive Brain-Computer Interface (BCI) with the Robot Operating System (ROS) to mentally drive a telepresence robot. Controlling a mobile device by using human brain signals might improve the quality of life of people suffering from severe physical disabilities or elderly people who cannot move anymore. Thus, the BCI user is able to actively interact with relatives and friends located in different rooms thanks to a video streaming connection to the robot. To facilitate the control of the robot via BCI, we explore new ROS-based algorithms for navigation and obstacle avoidance, making the system safer and more reliable. In this regard, the robot can exploit two maps of the environment, one for localization and one for navigation, and both can be used also by the BCI user to watch the position of the robot while it is moving. As demonstrated by the experimental results, the user's cognitive workload is reduced, decreasing the number of commands necessary to complete the task and helping him/her to keep attention for longer periods of time.Comment: Accepted in the Proceedings of the 2018 IEEE International Conference on Robotics and Automatio

    A Wii Bit of Fun: A Novel Platform to Deliver Effective Balance Training to Older Adults

    Get PDF
    BACKGROUND: Falls and fall-related injuries are symptomatic of an aging population. This study aimed to design, develop, and deliver a novel method of balance training, using an interactive game-based system to promote engagement, with the inclusion of older adults at both high and low risk of experiencing a fall.STUDY DESIGN: Eighty-two older adults (65 years of age and older) were recruited from sheltered accommodation and local activity groups. Forty volunteers were randomly selected and received 5 weeks of balance game training (5 males, 35 females; mean, 77.18 ± 6.59 years), whereas the remaining control participants recorded levels of physical activity (20 males, 22 females; mean, 76.62 ± 7.28 years). The effect of balance game training was measured on levels of functional balance and balance confidence in individuals with and without quantifiable balance impairments.RESULTS: Balance game training had a significant effect on levels of functional balance and balance confidence (P Peer reviewedFinal Published versio

    Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Full text link
    In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional nearinfrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions

    Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach.

    Get PDF
    Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain-computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a "containerized" approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data "Levels," each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org)
    • …
    corecore