2,499 research outputs found

    Convergence of Gamification and Machine Learning: A Systematic Literature Review

    Get PDF
    Recent developments in human–computer interaction technologies raised the attention towards gamification techniques, that can be defined as using game elements in a non-gaming context. Furthermore, advancement in machine learning (ML) methods and its potential to enhance other technologies, resulted in the inception of a new era where ML and gamification are combined. This new direction thrilled us to conduct a systematic literature review in order to investigate the current literature in the field, to explore the convergence of these two technologies, highlighting their influence on one another, and the reported benefits and challenges. The results of the study reflect the various usage of this confluence, mainly in, learning and educational activities, personalizing gamification to the users, behavioral change efforts, adapting the gamification context and optimizing the gamification tasks. Adding to that, data collection for machine learning by gamification technology and teaching machine learning with the help of gamification were identified. Finally, we point out their benefits and challenges towards streamlining future research endeavors.publishedVersio

    Case Studies on the Exploitation of Crowd-Sourcing with Web 2.0 Functionalities

    Get PDF
    Crowd-sourcing appears more promising with Web 2.0 functionality and businesses have started using it for a wide range of activities, that would be better completed by a crowd rather than any specific pool of knowledge workers. However, relatively little is known about how a business can leverage on collective intelligence and capture the user- generated value for competitive advantage. This empirical study uses the principle of interpretive field research to validate the case findings with a descriptive multiple case study methodology. An extended theoretical framework to identify the important considerations at strategic and functional levels for the effective use of crowd-sourcing is proposed. The analytic framework uses five Business Strategy Components: Vision and Strategy, Human Capital, Infrastructure, Linkage and Trust, and External Environment. It also uses four Web 2.0 Functional Components: Social Networking, Interaction Orientation, Customization & Personalization, and User- added Value. By using these components as analytic lenses, the case research examines how successful e-commerce firms may deploy Web 2.0 functionalities for effective use of crowd-sourcing. Prioritization of these functional considerations might be favorable in some cases for the best fit of situations and limitations. In conclusion, it is important that the alignment between strategy and functional components is maintained

    行動認識機械学習データセット収集のためのクラウドソーシングの研究

    Get PDF
    In this thesis, we propose novel methods to explore and improve crowdsourced data labeling for mobile activity recognition. This thesis concerns itself with the quality (i.e., the performance of a classification model), quantity (i.e., the number of data collected), and motivation (i.e., the process that initiates and maintains goal-oriented behaviors) of participant contributions in mobile activity data collection studies. We focus on achieving high-quality and consistent ground-truth labeling and, particularly, on user feedback’s impact under different conditions. Although prior works have used several techniques to improve activity recognition performance, differences to our approach exist in terms of the end goals, proposed method, and implementation. Many researchers commonly investigate post-data collection to increase activity recognition accuracy, such as implementing advanced machine learning algorithms to improve data quality or exploring several preprocessing ways to increase data quantity. However, utilizing post-data collection results is very difficult and time-consuming due to dirty data challenges for most real-world situations. Unlike those commonly used in other literature, in this thesis, we aim to motivate and sustain user engagement during their on-going-self-labeling task to optimize activity recognition accuracy. The outline of the thesis is as follows: In chapter 1 and 2, we briefly introduce the thesis work and literature review. In Chapter 3, we introduce novel gamified active learning and inaccuracy detection for crowdsourced data labeling for an activity recognition system (CrowdAct) using mobile sensing. We exploited active learning to address the lack of accurate information. We presented the integration of gamification into active learning to overcome the lack of motivation and sustained engagement. We introduced an inaccuracy detection algorithm to minimize inaccurate data. In Chapter 4, we introduce a novel method to exploit on-device deep learning inference using a long short-term memory (LSTM)-based approach to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. In Chapter 5, we introduce a novel on-device personalization for data labeling for an activity recognition system using mobile sensing. The key idea behind this system is that estimated activities personalized for a specific individual user can be used as feedback to motivate user contribution and improve data labeling quality. We exploited finetuning using a Deep Recurrent Neural Network (RNN) to address the lack of sufficient training data and minimize the need for training deep learning on mobile devices from scratch. We utilized a model pruning technique to reduce the computation cost of on-device personalization without affecting the accuracy. Finally, we built a robust activity data labeling system by integrating the two techniques outlined above, allowing the mobile application to create a personalized experience for the user. To demonstrate the proposed methods’ capability and feasibility in realistic settings, we developed and deployed the systems to real-world settings such as crowdsourcing. For the process of data labeling, we challenged online and self-labeling scenarios using inertial smartphone sensors, such as accelerometers. We recruited diverse participants and con- ducted the experiments both in a laboratory setting and in a semi-natural setting. We also applied both manual labeling and the assistance of semi-automated labeling. Addition- ally, we gathered massive labeled training data in activity recognition using smartphone sensors and other information such as user demographics and engagement. Chapter 6 offers a brief discussion of the thesis. In Chapter 7, we conclude the thesis with conclusion and some future work issues. We empirically evaluated these methods across various study goals such as machine learning and descriptive and inferential statistics. Our results indicated that this study enabled us to effectively collect crowdsourced activity data. Our work revealed clear opportunities and challenges in combining human and mobile phone-based sensing techniques for researchers interested in studying human behavior in situ. Researchers and practitioners can apply our findings to improve recognition accuracy and reduce unreliable labels by human users, increase the total number of collected responses, as well as enhance participant motivation for activity data collection.九州工業大学博士学位論文 学位記番号:工博甲第526号 学位授与年月日:令和3年6月28日1 Introduction|2 Related work|3 Achieving High-Quality Crowdsourced Datasets in Mobile Activity Recognition|4 On-Device Deep Learning Inference for Activity Data Collection|5 On-Device Deep Personalization for Activity Data Collection|6 Discussion|7 Conclusion九州工業大学令和3年

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    SmartWheels: Detecting urban features for wheelchair users’ navigation

    Get PDF
    People with mobility impairments have heterogeneous needs and abilities while moving in an urban environment and hence they require personalized navigation instructions. Providing these instructions requires the knowledge of urban features like curb ramps, steps or other obstacles along the way. Since these urban features are not available from maps and change in time, crowdsourcing this information from end-users is a scalable and promising solution. However, it is inconvenient for wheelchair users to input data while on the move. Hence, an automatic crowdsourcing mechanism is needed. In this contribution we present SmartWheels, a solution to detect urban features by analyzing inertial sensors data produced by wheelchair movements. Activity recognition techniques are used to process the sensors data stream. SmartWheels is evaluated on data collected from 17 real wheelchair users navigating in a controlled environment (10 users) and in-the-wild (7 users). Experimental results show that SmartWheels is a viable solution to detect urban features, in particular by applying specific strategies based on the confidence assigned to predictions by the classifier
    corecore