45 research outputs found

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Adaptive delay-constrained internet media transport

    Get PDF
    Reliable transport layer Internet protocols do not satisfy the requirements of packetized, real-time multimedia streams. The available thesis motivates and defines predictable reliability as a novel, capacity-approaching transport paradigm, supporting an application-specific level of reliability under a strict delay constraint. This paradigm is being implemented into a new protocol design -- the Predictably Reliable Real-time Transport protocol (PRRT). In order to predictably achieve the desired level of reliability, proactive and reactive error control must be optimized under the application\u27s delay constraint. Hence, predictably reliable error control relies on stochastic modeling of the protocol response to the modeled packet loss behavior of the network path. The result of the joined modeling is periodically evaluated by a reliability control policy that validates the protocol configuration under the application constraints and under consideration of the available network bandwidth. The adaptation of the protocol parameters is formulated into a combinatorial optimization problem that is solved by a fast search algorithm incorporating explicit knowledge about the search space. Experimental evaluation of PRRT in real Internet scenarios demonstrates that predictably reliable transport meets the strict QoS constraints of high-quality, audio-visual streaming applications.Zuverlässige Internet-Protokolle auf Transport-Layer erfüllen nicht die Anforderungen paketierter Echtzeit-Multimediaströme. Die vorliegende Arbeit motiviert und definiert Predictable Reliability als ein neuartiges, kapazitäterreichendes Transport-Paradigma, das einen anwendungsspezifischen Grad an Zuverlässigkeit unter strikter Zeitbegrenzung unterstützt. Dieses Paradigma wird in ein neues Protokoll-Design implementiert -- das Predictably Reliable Real-time Transport Protokoll (PRRT). Um prädizierbar einen gewünschten Grad an Zuverlässigkeit zu erreichen, müssen proaktive und reaktive Maßnahmen zum Fehlerschutz unter der Zeitbegrenzung der Anwendung optimiert werden. Daher beruht Fehlerschutz mit Predictable Reliability auf der stochastischen Modellierung des Protokoll-Verhaltens unter modelliertem Paketverlust-Verhalten des Netzwerkpfades. Das Ergebnis der kombinierten Modellierung wird periodisch durch eine Reliability Control Strategie ausgewertet, die die Konfiguration des Protokolls unter den Begrenzungen der Anwendung und unter Berücksichtigung der verfügbaren Netzwerkbandbreite validiert. Die Adaption der Protokoll-Parameter wird durch ein kombinatorisches Optimierungsproblem formuliert, welches von einem schnellen Suchalgorithmus gelöst wird, der explizites Wissen über den Suchraum einbezieht. Experimentelle Auswertung von PRRT in realen Internet-Szenarien demonstriert, dass Transport mit Predictable Reliability die strikten Auflagen hochqualitativer, audiovisueller Streaming-Anwendungen erfüllt

    GOODPUT BASED ADAPTIVE MODULATION AND CODING ALGORITHM FOR BIC-OFDM SYSTEMS

    Get PDF
    WiMAX IEEE 802.16m standard description and implementation of simulation software. SISO and MIMO techniques(open loop and closed loop) implementation and resultis validation. A novel physical abstraction and Link layer prediction for 802.16m MIMO BIC-OFDM system based on goodput maximization: Effective SNR mapping, with low complexity but same performance or even better compared with MIESM, called novel kESM. Theoretical derivation of novel kESM physical abstraction technique, comparison between kESM and MI-ESM / EESM. Goodput oriented adaptive modulation and coding algorithm for BIC-OFDM wireless system based on above-mentioned abstraction. Theoretical derivation and dissertation. Simulations of 802.16m WiMAX system using C++ and C++ with IT++ libraries(used in NEWCOMM++ project). Various graphic rapresentation for different modulation and coding schemas, dissertation abuot visual and practical results

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Efficient Cross Layer Designs for IEEE 802.11 Wireless Networks

    Get PDF
    Various properties of wireless networks, such as mobility, frequent disconnections and varying channel conditions, have made it a challenging task to design networking protocols for wireless communications. In this dissertation, we address several problems related to both the routing layer and medium access control (MAC) layer in wireless networks aiming to enhance the network performance. First, we study the effect of the channel noise on the network performance. We present mechanisms to compute energy-efficient paths in noisy environments for ad hoc networks by exploiting the IEEE 802.11 fragmentation mechanism. These mechanisms enhance the network performance up to orders of magnitude in terms of energy and throughput. We also enhance the IEEE 802.11 infrastructure networks with a capability to differentiate between different types of unsuccessful transmissions to enhance the network performance. Second, we study the effects of the physical layer capture phenomena on network performance. We modify the IEEE 802.11 protocol in a way to increase the concurrent transmissions by exploiting the capture phenomena. We analytically study the potential performance enhancement of our mechanism over the original IEEE 802.11. The analysis shows that up to 35% of the IEEE 802.11 blocking decisions are unnecessary. The results are verified by simulation in which we show that our enhanced mechanism can achieve up to 22% more throughput. Finally, we exploit the spatial reuse of the directional antenna in the IEEE 802.11 standards by developing two novel opportunistic enhancement mechanisms. The first mechanism augments the IEEE 802.11 protocol with additional information that gives a node the flexibility to transmit data while other transmissions are in its vicinity. The second mechanism changes the access routines of the IEEE 802.11 data queue. We show analytically how the IEEE 802.11 protocol using directional antenna is conservative in terms of assessing channel availability, with as much as 60% of unnecessary blocking assessments and up to 90% when we alter the accessing mechanism of the data queue. By simulation, we show an improvement in network throughput of 40% in the case of applying the first mechanism, and up to 60% in the case of applying the second mechanism

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin

    Enhanced transport protocols for real time and streaming applications on wireless links

    Full text link
    Real time communications have, in the last decade, become a highly relevant component of Internet applications and services, with both interactive communications and streamed content being used in developed and developing countries alike. Due to the proliferation of mobile devices, wireless media is becoming the means of transmitting a large part of this increasingly important real time communications traffic. Wireless has also become an important technology in developing countries, with satellite communications being increasingly deployed for traffic backhaul and ubiquitous connection to the Internet. A number of issues need to be addressed in order to have an acceptable service quality for real time communications in wireless environments. In addition to this, the availability of multiple wireless interfaces on mobile devices presents an opportunity to improve and further exacerbates the issues already present on single wireless links. Therefore in this thesis, we consider improvements to transport protocols for real time communications and streaming services to address these problems and we provide the following contributions. To deal with wireless link issues of errors and delay, we propose two enhancements. First, an improvement technique for Datagram Congestion Control Protocol CCID4 for long delay wireless (e.g. satellite) links, demonstrating significant performance improvements for Voice over IP applications. To deal with link errors, we have proposed, implemented and evaluated an erasure coding based packet error correction approach for Concurrent Multipath Transfer extension of Stream Control Transport Protocol data transport over multiple wireless paths. We have identified packet reordering as a major cause of performance degradation in both single and multi-path transport protocols for real time communications and media streaming. We have proposed a dynamically resizable buffer based solution to mitigate this problem within the DCCP protocol. For improving the performance of multi-path transport protocols over dissimilar network paths, we have proposed a delay aware packet scheduling scheme, which significantly improves the performance of multimedia and bulk data transfer with CMT-SCTP in heterogeneous multi-path network scenarios. Finally, we have developed a tool for online streaming video quality evaluation experiments, comprising a real-time cross-layer video streaming technique implemented within an open-source H.264 video encoder tool called x264
    corecore