340 research outputs found

    Latest Progress in MIMO Antennas Design

    Get PDF

    Advanced Circularly Polarised Microstrip Patch Antennas

    Get PDF
    The thesis describes outcomes of research on advanced circularly polarised antennas. The proposed designs are intended for integration into small mobile devices, therefore low profile and easy manufacturability are key parameters, along with good CP radiation properties. The designs were validated by simulation and measurement, and are also backed by theory and design guidelines. The primary focus is on the development of planar omnidirectional circularly polarised antennas, which are fabricated using multilayer PCB techniques and thus are lightweight and cost-efficient. Unlike in classical microstrip patch antenna designs, the groundplane of the proposed antenna was substantially reduced. This helps to achieve an omnidirectional circular polarisation pattern and miniaturize the antenna, however at the cost of increased feed circuit complexity. The basic design, its advantages and disadvantages are discussed in Section 3. In the next step, the omnidirectional circularly polarised antenna was extended with additional, advanced features. A miniaturized version is investigated, which offers a 20% footprint reduction by folding parts of the patch underneath itself. Further miniaturization is possible by increasing the dielectric constant of the substrate. A method to adjust the omnidirectional circularly polarised antenna performance by trimming four lumped capacitors is also investigated. Manufacturing inaccuracy in large scale production may cause some of the units to radiate outside of the desired frequencies. By integrating four trimmed capacitors into the antenna it can be precisely tuned to the desired band. Simulated results demonstrate this property by trimming the antenna between GPS L1 band (centre frequency at 1.575 GHz) and Galileo/Beidou-2 E2 band (1.561 GHz). Furthermore, a dual-band omnidirectional circularly polarised antenna is presented, which employs slots and capacitor loading to steer the current path of the first and second resonant mode. The design offers a small frequency ratio of 1.182. The methods to obtain a planar omnidirectional circularly polarised antenna have been further advanced to propose a reconfigurable antenna. The beam reconfiguration is capable of rotating it dipole-like radiation pattern around an axis, thus allowing reception or transmission from any spherical angle. The switching method is simple and does not require any semiconductor devices. Finally, a dual circularly polarised antenna is presented, which achieves dual-polarisation by employing even and odd modes in a coplanar waveguide. This technique allows greater flexibility and size reduction of the feed network, as two signals can be transmitted by a single multi-mode transmission line. Simulated results demonstrate this property by trimming the antenna between GPS L1 band (centre frequency at 1.575 GHz) and Galileo/Beidou-2 E2 band (1.561 GHz). Furthermore, a dual-band omnidirectional circularly polarised antenna is presented, which employs slots and capacitor loading to steer the current path of the first and second resonant mode. The design offers a small frequency ratio of 1.182. The methods to obtain a planar omnidirectional circularly polarised antenna have been further advanced to propose a reconfigurable antenna. The beam reconfiguration is capable of rotating it dipole-like radiation pattern around an axis, thus allowing reception or transmission from any spherical angle. The switching method is simple and does not require any semiconductor devices. Finally, a dual circularly polarised antenna is presented, which achieves dual-polarisation by employing even and odd modes in a coplanar waveguide. This technique allows greater flexibility and size reduction of the feed network, as two signals can be transmitted by a single multi-mode transmission line

    Integrated Solar Panel Antennas for Cube Satellites

    Get PDF
    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch antennas. The antenna design is based on using the spacing between the solar cells to etch slots in these spaces to create radiating elements. The initial feasibility study shows it is realistic to design cavit-backed slot antennas directly on a solar panel of a cube satellite. Due to the volume of the satellite, it is convenient to design antennas at S band or higher frequencies. Although it is possible to design integrated solar panel antennas in lower frequencies, such research is not the scope of this thesis work. In order to demonstrate and validate the design method, three fully integrated solar panel antennas were prototyped using Printed Circuit Board (PCB) technology (PCB is a common solar panel material for small satellites). The first prototype is a circularly polarized antenna. The second is a linearly polarized two-element antenna array. The third prototype is a dual band linearly polarized antenna array. Measured results agree well with simulations performed using Ansoft\u27s High Frequency Structure Simulater (HFSS). The thesis also presents a feasibility study of optimization methods and reconfigurable solar panel antenna arrays. The optimization study explores methods to use genetic algorithms to find optimal antenna geometry and location. The reconfigurable study focuses on achieving different antenna patterns by switching on and off the slot elements placed around the solar cells on solar panels of a cube satellite. It is shown that the proposed integrated solar panel antenna is a robust and cost-effective antenna solution for small satellites. It is also shown that given a solar panel with reasonable size, one can easily achieve multiple antenna patterns and polarization by simple switching

    Reconfigurable Metasurfaces for Beam Scanning Planar Antennas

    Get PDF
    We are studying the implementation of 'Scanning Antenna dedicated to the applications of satellite communications geostationary. The structures developed are suitable for to be on board an airplane or a train. The architecture of the antenna developed consists of a double linear network in two transverse dimmensions. The scan in each network is provided by the lines coplanar to metamaterials controlled by varactor. We porposons of new methods characterization of discontinuities coplanar online for the line design. In addition, a energy harvesting system has be designed to feed radiating elements and tested with patch different antennas. Finally, we are considering co-integration radiating structures and CRLH lines as well as control electronic by the diodes

    Circularly Polarized Terminal Antennas for Emerging Wireless Systems

    Get PDF
    Several types of omni-directional Circularly Polarized (CP) antennas are presented, which are employed by three different types of feedlines: Coplanar Waveguide (CPW) fed, Microstrip fed, and Differential-fed, to achieve omni-directional CP performances. The Dual-frequency Omni-directional CP antenna is proposed by using slot and inductor embedded into radiated patches. These omnidirectional CP antennas have potential application on GPS, WLAN and RFID systems

    A comprehensive survey on 'circular polarized antennas' for existing and emerging wireless communication technologies

    Get PDF
    Circular polarized (CP) antennas are well suited for long-distance transmission attainment. In order to be adaptable for beyond 5G communication, a detailed and systematic investigation of their important conventional features is required for expected enhancements. The existing designs employing millimeter wave, microwave, and ultra-wideband (UWB) frequencies form the elementary platform for future studies. The 3.4-3.8 GHz frequency band has been identified as a worthy candidate for 5G communications because of spectrum availability. This band comes under UWB frequencies (3.1-10.6 GHz). In this survey, a review of CP antennas in the selected areas to improve the understanding of early-stage researchers specially experienced antenna designers has presented for the first time as best of our knowledge. Design implementations involving size, axial ratio, efficiency, and gain improvements are covered in detail. Besides that, various design approaches to realize CP antennas including (a) printed CP antennas based on parasitic or slotted elements, (b) dielectric resonator CP antennas, (c) reconfigurable CP antennas, (d) substrate integrated waveguide CP antennas, (e) fractal CP antennas, (f) hybrid techniques CP antennas, and (g) 3D printing CP antennas with single and multiple feeding structures have investigated and analyzed. The aim of this work is to provide necessary guidance for the selection of CP antenna geometries in terms of the required dimensions, available bandwidth, gain, and useful materials for the integration and realization in future communication systems

    Design of a Low-Profile Dual Linearly Polarized Antenna Array for mm-Wave 5G

    Get PDF
    This work proposes a dual linearly polarized antenna array for 5G mm-wave band, which is designed to be compatible with planar printed circuit board technology. The proposed antenna is engineered with a focus on simplifying the antenna geometry and eliminating any critical issues that may arise in antenna manufacturing. The proposed antenna has been evaluated, finding a 7% impedance bandwidth centered around 27.28 GHz. Additionally, the beam steering capability of the antenna is found to cover a ±30% angular width for both linear polarizations. These findings highlight the potential of the proposed antenna for use in 5G mm-wave band applications, where compatibility with planar printed circuit board technology and simplified antenna geometry are essential design requirements

    Transparent and Flexible Radio Frequency (RF) Structures

    Full text link
    With increasing demand for a wearable devices, medical devices, RFID, and small devices, there is a growing interest in the field of transparent and flexible electronics. In order to realize optically transparent and flexible microwave components, novel materials can be used. The combination of new materials and radio frequency (RF) structures can open interesting perspectives for the implementation of cost effective wireless communication system and wearable device design. The transparent and flexible RF structures can facilitate its application in the transparent and curved surfaces. In this dissertation, we present several demonstrations, all based on optically transparent and flexible materials and structures. We firstly demonstrate an optically transparent, flexible, polarization-independent, and broadband microwave absorber. The bow-tie shaped array which possesses double resonances is designed and measured. The combined resonances lead to more than 90% total absorption covering a wide frequency range from 5.8 to 12.2 GHz. Due to the use of thin metal and PDMS, the whole structure is optically transparent and flexible. Secondly, we demonstrate a new method for fabricating transparent and stretchable radiofrequency small antennas by using stretchable micromesh structures. Size reduction is achieved by using the zeroth-order resonant (ZOR) property. The antennas consist of a series of tortuous micromesh structures, which provides a high degree of freedom for stretching when encapsulated in elastomeric polymers and is optically transparent. Accordingly, these antennas can be stretched up to 40% in size without breaking. The resonant frequency of the antennas is linearly reconfigurable from 2.94 GHz to 2.46 GHz upon stretching. Next, we describe an ultra-low profile and flexible triple-polarization antenna. It is realized by using ZOR array antenna with high port-to-port isolation. This flexible antenna is fabricated with a flexible substrate and silver nanowire vias to be used in various wearable applications. Lastly, we demonstrate a dual-band tri-polarized antenna based on half-mode hexagonal (HMH) SIW structure. CRLH HMHSIW antenna and ZOR HMHSIW antenna are designed to have dual-band operating frequencies. This novel antenna can provide much improved wireless communication efficiency for the WBAN system under various incident field angles and polarizations.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147562/1/tjang_1.pd

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index
    corecore