2 research outputs found

    Fine Structure of Viral dsDNA Encapsidation

    Full text link
    In vivo configurations of dsDNA of bacteriophage viruses in a capsid are known to form hexagonal chromonic liquid crystal phases. This article studies the liquid crystal ordering of viral dsDNA in an icosahedral capsid, combining the chromonic model with that of liquid crystals with variable degree of orientation. The scalar order parameter of the latter allows us to distinguish regions of the capsid with well-ordered DNA from the disordered central core. We employ a state-of-the-art numerical algorithm based on the finite element method to find equilibrium states of the encapsidated DNA and calculate the corresponding pressure. With a data-oriented parameter selection strategy, the method yields phase spaces of the pressure and the radius of the disordered core, in terms of relevant dimensionless parameters, rendering the proposed algorithm into a preliminary bacteriophage designing tool. The presence of the order parameter also has the unique role of allowing for non-smooth capsid domains as well as accounting for knot locations of the DNA

    The Two Dimensional Liquid Crystal Droplet Problem with Tangential Boundary Condition

    Get PDF
    This paper studies a shape optimization problem which reduces to a nonlocal free boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with a tangential anchoring boundary condition and a volume constraint. We establish in 2D the existence of an optimal shape that has two cusps on the boundary. We also prove the boundary of the droplet is a chord-arc curve with its normal vector field in the VMO space, and its arc-length parametrization belongs to the Sobolev space H3/2H^{3/2}. In fact, the boundary curves of such droplets closely resemble the so-called Weil-Petersson class of planar curves. In addition, the asymptotic behavior of the optimal shape when the volume becomes extremely large or small is also studied
    corecore