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Abstract This paper studies a shape optimization problem which reduces to a nonlocal free
boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with
a tangential anchoring boundary condition and a volume constraint. We establish in 2D the
existence of an optimal shape that has two cusps on the boundary. We also prove the boundary
of the droplet is a chord-arc curve with its normal vector field in the VMO space, and its arc-
length parametrization belongs to the Sobolev space H3/2. In fact, the boundary curves of such
droplets closely resemble the so-called Weil-Petersson class of planar curves. In addition, the
asymptotic behavior of the optimal shape when the volume becomes extremely large or small is
also studied.

Keywords Nonlocal free boundary problem · Liquid crystal droplet · Tangential condition ·
Weil-Petersson curve

1 Introduction

1.1 Background

Liquid crystal droplets are of great interest from both the theory and applications. They are
important in the studies of topological defects in the bulk or on the surface of liquid crystals;
and they are useful in understandings of anisotropic surface energies and variety anchoring
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conditions. Determining the shape of the droplets and the associated equilibrium configurations
of the liquid crystals leads to a shape optimization problem that, in some cases, becomes a
nonlocal free boundary problem.

In fact, we are particularly interested in the elongated droplets known as tactoids, which
usually possess a characteristic eye shape. After a quick examination, one finds the boundary
anchoring condition for the molecular orientation to achieve such a desired shape needs to be a
tangential anchoring , i.e. the director is orthogonal to the normal of the droplet boundary.

Mathematically, the most commonly used continuum theory to describe nematic liquid crys-
tals is the Oseen-Frank theory, proposed by Oseen [35] in 1933 and Frank [15] in 1958. In the
Oseen-Frank theory, the local state of the liquid crystal is described by a S1- or S2- valued vec-
tor n that represents the mean local orientation of molecule’s optical axis. Let Ω be the region
occupied by a nematic liquid crystal droplet, the Oseen-Frank bulk energy associated with the
director field is the functional

EOF(n,Ω) =

ˆ
Ω

w(n.∇n)dx, (1.1)

where

w(n,∇n) =k1(divn)2 + k2(n · curln)2 + k3|n× curln|2 (1.2)

+(k2 + k4)
(
tr(∇n)2− (divn)2) .

We shall consider the one-constant approximation, i.e., k1 = k2 = k3 = 1 and k4 = 0, the energy
functional (1.1) reduces to

EOF(n,Ω) =

ˆ
Ω

|∇n|2 dx, (1.3)

which is the energy functional for harmonic maps. Harmonic maps have been extensively stud-
ied in the past several decades, which are much better understood. Interested readers can refer
to [30] and the references therein.

Liquid crystal droplets are often either dispersed in an polymeric medium or surrounded by
another fluid such as water. There is an interfacial energy which will play an essential role in
determining the optimal shapes. Following [16] and [35], the surface energy may be written as

Es(Ω ,n) =
ˆ

∂Ω

f (n ·ν)dA (1.4)

where ν is the outer normal on ∂Ω and for simplicity, f is assumed to have the form (see [10])

f (ρ) = µ(1+λρ
2), (1.5)

for some µ > 0 and−1 < λ < ∞. Thus the total energy for a liquid crystal droplet configuration
is given by:

E(Ω ,n) = EOF(Ω ,n)+Es(Ω ,n)

As both the shape of Ω and the director n are varying, determining the stable configuration
leads to the following free boundary problem:
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Problem 1.1 Find a pair (Ω ,n), that minimizes the functional

E(Ω ,n) =
ˆ

Ω

w(n,∇n)dx+
ˆ

∂Ω

f (n ·ν)dA. (1.6)

subject to the constraint vol(Ω) =V .

Here vol denotes Lebesgue measure and V is a positive constant.
Problem 1.1 draws great attention from both physicists and mathematicians. There are many

research works on Problem 1.1 with physical experiments, numerical simulations and formal
analysis, see for example [9,26,37,36,32,39,42,27,34]. On the other hand, rigorous theoretical
treatment of this problem is more challenging because of the difficulty of determining the shape
and the director at the same time. One way to overcome such difficulty is to assume the droplet
have a simple geometry, such as a disk, an ellipse or a intersection region of two disks, see e.g.
[24,42,44]. In these works, the shape of the droplet is either fixed, or determined by only one
or two parameters (such as the eccentricity of an ellipse). And the minimization often involves
finding the best shape parameter and the director field under various boundary conditions and
different Oseen-Frank elastic constants. Another way is to presume the configuration of the
director field (such as a constant vector field), and then find the best shape that minimizes the
surface energy alone, subject to the fixed volume constraint, see e.g. [39,43]. These two methods
are useful to partially justify the phenomena observed in experiments but are not satisfactory
from a mathematical point of view.

A more rigorous study of Problem 1.1 was conducted by the second author and Poon in [29].
Under the key assumption that all admissible domains are convex, they establish the existence
and partial regularity of Problem 1.1 (see [29, Theorem 2.4]). The convexity assumption on the
shape of droplets, on one hand, makes the problem more accessible mathematically; and on
the other hand, it does match many experimental observed liquid crystals droplets which are of
shapes of ellipsoids (balls) and cigars. In this connection, they also studied the cases when the
surface energy favors the normal boundary anchoring condition or the tangential boundary an-
choring condition. When λ > 0 and µ is very large, for any minimizing pair {Ω ,n} of Problem
1.1, n ·ν has to be close to zero almost everywhere on ∂Ω . This leads to the so-called tangential
anchoring boundary condition: n ·ν = 0 on ∂Ω . Problem 1.1 is then reformulated as follows:

Problem 1.2 (Problem B in [29]) Find a pair (Ω ,n) that minimizes
ˆ

Ω

w(n,∇n)dx+µArea(∂Ω)

and such that (i) vol(Ω) =V and (ii) n ·ν = 0 on ∂Ω .

When −1 < λ < 0 and µ is very large, n ·ν needs to be close to 1 on ∂Ω . In this case one
gets the normal anchoring boundary condition: n · ν = 1 on ∂Ω , which leads to the following
problem:

Problem 1.3 (Problem C in [29]) Find a pair (Ω ,n) that minimizes
ˆ

Ω

w(n,∇n)dx+µArea(∂Ω)

and such that (i) vol(Ω) =V and (ii) n ·ν = 1 on ∂Ω .
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It is proven in [29] that there are minimizers among convex domains Ω for both Problem
1.2 and Problem 1.3. Moreover, the only solution to Problem 1.3 (up to a Euclidean motion) is
(BR,

x
|x| ), such that |BR|=V .

Li & Wang recently extend the previous result in which they replace the convexity assump-
tion by a notion of M-uniform domains, see [28]. It is worth noting that the Problems 1.1, 1.2
and 1.3 thus presented were all derived from a phenomenological theory, see [35] and [10]. In
a recent work [31], it is shown that one can rigorously establish these model problems from a
general theory of Ericksen (for liquid crystals with variable degree of orientations [11]) or from
the de Gennes-Landau model of liquid crystals [13] in suitable physical regimes.

From our experience, one likely can establish a general existence and partial regularity theo-
ry for Problems 1.1, 1.2 and 1.3 without the convexity assumption on the shape of Ω . However,
one also expects such a theory will not be able to tell certain particular shapes and configurations
(that are observed in experiments and numerical simulations) are minimizers and it is usually
difficult to construct solutions for the Euler-Lagrange equation. In particular, one likely will not
be able to deduce that tactoids, balls, cigars and apples shaped droplets are minimizers. The
latter are in fact commonly observed in experiments and of interest to many researchers.

In this article, we will concentrate on the two dimensional case of Problem 1.2, where the
tangential anchoring boundary condition and the fixed volume constraint are presumed. The
minimizer is expected to have a spindle shape, which is known as tactoids, and a bipolar di-
rector field. Here the bipolar director field refers to an axially symmetric configuration with
tangential anchoring boundary condition, such that two boojums are located at opposite ends
of the axis. If one investigate thin liquid crystals samples in experiments, the region of nematic
liquid crystals will form a planar domain (tactoid) whose boundary consists of two curves that
meet at two singular points and form angles or cusps. For more experimental evidences and
numerical simulations of tactoids with such bipolar director configurations, the readers are re-
ferred to [9,26,37,36,38,39,42] for more details. These works also manifest the significance of
tactoids as an object of study.

There are several works that focus on the rigorous mathematical analysis of tactoids with
tangential anchoring of the director on the surface. Shen et al. [40] discussed such bipolar con-
figurations of droplet in the fixed spherical domain case as well as the free boundary case. For the
latter, they introduce a relaxed energy to establish the existence of critical points and some sta-
bility results. Recently, a model problem based on highly disparate elastic constants is proposed
by Golovaty, Novack, Sternberg and Venkatraman in [20] to understand corners and cusps that
form on the nematic-isotropic interface. They prove some Γ -convergence results (when some
elastic constant ε goes to 0) and study the role played by the boundary tangency requirement
and the elastic anisotropy on the formation of interfacial singularities.

In this work, we investigate the planar tactoids by solving Problem 1.2. What distinguishes
our work from the previous work of Lin & Poon is that we drop the convexity assumption on the
domain Ω . Instead, we only assume a symmetry assumption with respect to the x-axis as well as
some basic technical assumptions (see conditions (i)–(v) in Section 1.2) for the boundary of the
droplet. Note that in most of experiments, it is observed that liquid crystal droplets possess the
axial symmetry. We first prove some geometric properties of the free boundary. The main prop-
erty is that away from two cusps, the boundary curve Γ is a vanishing chord-arc curve and the
boundary normal vector ν is in VMO. Furthermore, we notice that our curve Γ has many similar
properties with the so-called Weil-Petersson curve (see Section 2.3). As a consequence, the arc-
length parameterization of the curve is in the Sobolev space H3/2. Then using these properties,
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we demonstrate the existence of a global minimizer with two cusps on the boundary, which ver-
ifies the shape of tactoids. In fact, we show that two cusps must appear at the intersection points
of the interface and the x-axis for all global minimizers. Moreover, an Euler-Lagrange equation
is also derived under extra regularity assumptions on Γ . Finally, we study the asymptotic shape
of the nematic drop when the volume tends to be very large or very small. Note that due to
a very strong non-local character of this problem, currently we are not able to show that ν is
continuous on the boundary. We hope to prove higher regularity results in the future.

1.2 Mathematical Formulation

Now we give the precise formulation of the model problem. Note that what we have in mind is
the tactoid that forms two cusps on the boundary. Set Ω ⊂ R2 as the simply-connected region
which is a domain enclosed by a Jordan curve with finite length. We denote by n ∈ S1 the unit
vector that represents the director of liquid crystal. The Oseen-Frank bulk energy is given by
(1.3). Then the variational problem is

Problem 1.4 (2D case of Problem 1.2) Find a pair {Ω ,n} that minimizes
ˆ

Ω

|∇n|2dx+Per(∂Ω)

such that vol(Ω) =V and n ·ν = 0 on ∂Ω . Here Per means the perimeter.

Here we want to point out that this formulation already implies that the boundary of the
minimizer Ω cannot be smooth everywhere. We can explain it in this way: if ∂Ω is a closed
smooth curve and the boundary tangential vector is continuous, then the topological degree of
tangential vector is at least one and therefore there is no finite Dirichlet energy extension of
n|∂Ω inside the 2D domain Ω (see [4, p. xiii]). Now we refine this problem by adding more
constraints and then introduce the final version of the problem that we will study.

First we assume Ω is symmetric with respect to x-axis. And therefore we only consider half
of the domain located in the upper-half plane. Let Γ be a rectifiable curve that satisfies following
conditions:

(i) Γ = {(x(t),y(t)) : x, y ∈ AC([0, l(Γ )])}, where l(Γ ) is the length of Γ .

(ii) (x(0),y(0)) = (−a,0), (x(1),y(1)) = (a,0) for some a > 0.

(iii) H 1(Γ ∩{(x,0) : x ∈ R}) = 0.

(iv) x′(t)≥ 0, y(t)≥ 0, (x(t),y(t)) 6= (x(s),y(s)) for s 6= t.

(v)
√
|x′(t)|2 + |y′(t)|2 = 1 almost everywhere.

Note that here condition (i) and (v) mean that we parameterize Γ by unit length; condition (ii)
implies two endpoints of Γ belong to x-axis; condition (iv) tells that Γ does not touch itself and
will always “go from left to right”. Now we define ΩΓ as the region enclosed by Γ and x-axis.
Note that so far ΩΓ might not be a simply connected region since Γ (t) may touch x-axis at
some other point between two endpoints. However, we will show later in Lemma 2.1 that for a
minimizer, ΩΓ has to be simply connected.
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The boundary condition for director n on ∂ΩΓ = {(x,0) : x ∈ [−a,a]}∩Γ is given by

n(x,y) = (1,0) on {(x,0) : x ∈ [−a,a]},
n(x(t),y(t)) = (x′(t),y′(t)) on (x(t),y(t)) ∈ Γ .

Here the condition n(x,y) = (1,0) on {(x,0) : x ∈ [−a,a]} is due to the axial symmetry assump-
tion with respect to the x-axis.

Note that in 2D, for n ∈ H1(ΩΓ ,S1), we can write it as (n1,n2) = (cosΘ ,sinΘ) for some
Θ ∈H1(ΩΓ ,R) (see [6, Theorem 1] for the existence of such lifting). Then by the chain rule we
have

|∇n|2 = sin2
Θ |∇Θ |2 + cos2

Θ |∇Θ |2 = |∇Θ |2.

We will work with this angle function Θ . Then the corresponding boundary condition for Θ

is

Θ(x,y) = 0 on {(x,0) : x ∈ [−a,a]}
Θ(x(t),y(t)) = arcsiny′(t) on (x(t),y(t)) ∈ Γ .

(1.7)

Here arcsin is defined on [−1,1] and maps to [−π

2 ,
π

2 ]. Now we are ready to define the following
admissible set for Γ :

GV :={Γ satisfies condition (i–v), and Θ
∣∣
∂ΩΓ

has a harmonic extension Θ defined in ΩΓ

such that
ˆ

ΩΓ

|∇Θ |2 dxdy < ∞ and |ΩΓ |=V}

Here V is a positive constant representing the volume of ΩΓ . Figure 1 shows our assumptions
on Γ , ΩΓ and the tangential anchoring condition for Θ .

(−a,0)

|ΩΓ |=V

(a,0)

Γ = {(x(t),y(t))}

Θ = arcsiny′(t)

Fig. 1: Curve Γ , domain ΩΓ and Θ

To this end, we consider the following variational problem
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Problem 1.5 (Final Problem) Find Γ ∈ GV that minimizes the following functional

E(Γ ) =

ˆ
ΩΓ

|∇Θ |2 dxdy+ l(Γ ), (1.8)

where Θ is determined by Γ in the following way

{
∆Θ = 0, in ΩΓ ,

Θ
∣∣
∂ΩΓ

is defined as in (1.7).

We will study the existence and properties of global energy minimizers of Problem 1.5 in
the rest of the article. In Section 2 we prove various geometric properties of Γ and ΩΓ . When
the energy E(Γ ) is finite (not necessarily a minimizer), we show that Γ is a vanishing chord-arc
curve and ν ∈VMO on Γ . Moreover, the arc-length parametrization belongs to H3/2(0, l). As a
consequence, the function Θ defined on Ω̄Γ can be extended to a H1 function on R2 according
to the classical theory on the relationship of quasidisks and Sobolev extention domains. The
existence of a global minimizer for Problem 1.5 is established in Section 3. The proof relies
heavily on the properties proved in Section 2. We also show that for all the global minimizers,
Γ and x-axis will form two cusps near two intersection points. Under the assumption that Γ can
be written as the graph of a sufficiently regular function f , the Euler-Lagrange equation for Γ

is also derived. Finally in Section 4 we study asymptotic profiles of Γ when the volume V tends
to be very large or small. We would like to point out that this article just represents an initial
investigation of Problem 1.5, and there are many open problems to be studied in the future.

2 Geometric properties of Γ and ΩΓ

2.1 Sobolev extension domain

We assume V = 1 throughout this section. And if there exists an energy minimizer for Problem
1.5, we denote it by Γm. We further write the corresponding ΩΓm and Θ function as Ωm and Θm.
We start with the observation that

Claim G1 is not empty. There is at least one smooth curve Γ ∈ G1.

Actually we can find a smooth curve Γ0 ∈ G1 by directly constructing a curve Γ0. Let Γ0
be the graph of function f0(x) = cosx+1

2π
, x ∈ [−π,π]. By definition ΩΓ0 = {(x,y) : −π ≤ x ≤

π, 0≤ y≤ f0(x)} and we set Θ0(x,y) =− 2πy
cosx+1 arctan sinx

2π
for (x,y)∈ΩΓ0 . It is straightforward

to check that Γ0 satisfies the condition (i–v), |ΩΓ0 |= 1, and Θ0 satisfies the boundary condition
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(1.7). Then we compute the energy directly

E(Γ0) =

ˆ
π

−π

√
1+
(

d f0

dx

)2

dx+
ˆ

π

−π

ˆ cosx+1
2π

0
|∂yΘ0|2 + |∂xΘ0|2 dydx

=

ˆ
π

−π


√

1+
sin2 x
4π2 +

2π
∣∣arctan( sinx

2π
)
∣∣2

cosx+1
+

∣∣∣∣∣ cosx(cosx+1)

2π(1+ sin2 x
4π2 )

+ arctan( sinx
2π

) · sinx

∣∣∣∣∣
2

6π(cosx+1)


dx

≤C,

where C is a constant. To see the integral is finite, we only need to examine the integrand
when cosx+ 1→ 0, i.e. x→±π . Assume x = π −α for 0 < α << 1, then cosx+ 1 ≈ 1

2 α2,
|arctan( sinx

2π
)| ≈ α

2π
and sinx ≈ α . It follows that the integrand is uniformly bounded on x ∈

(−π,π), which implies the finiteness of the integral.
Therefore we have verified that Γ0 ∈ G1. And if Problem 1.5 admits a global minimizer Γm,

then we get the following upper bound for the energy infimum:

M := E(Γ0)≥ E(Γm)

The next lemma tells us that the minimizing curve Γm, if exists, will not touch x-axis besides
two endpoints, which means Ωm is simply connected.

Lemma 2.1 If Γm is the global minimizer of E(Γ ) among all Γ ∈ G1 and it is parametrized by
arc length as in condition (i–v), then for any t ∈ (0, l(Γm)), we have y(t)> 0.

Proof We prove by contradiction. Assume y(t0) = 0 for some t0 ∈ (0, l(G(m))), then the point
(x(t0),y(t0)) cuts Γm into two parts, which are denoted by Γ1 and Γ2 respectively. We call the
domain enclosed by Γi and x−axis as Ωi for i = 1,2. Let α := |Ω1|. We can further assume
α ∈ (0,1) because if α = 0 or 1, then one of Γi will coincide with the x−axis which contradicts
with the fact that Γm is a minimizer. To see this, assume Γ1 coincides with the x-axis, then we can
remove Γ1 from Γm and find that the remaining curve Γ2 still belongs to G1 and E(Γ2) is strictly
less than E(Γm). Now we set

Γ̃1 =
1√
α

Γ1, Ω̃1 =
1√
α

Ω1, Θ̃1(
x√
α
,

y√
α
) =Θm(x,y) for (x,y) ∈Ω1

Γ̃2 =
1√

1−α
Γ2, Ω̃2 =

1√
1−α

Ω2, Θ̃2(
x√

1−α
,

y√
1−α

) =Θm(x,y) for (x,y) ∈Ω2

We can check that for i = 1,2, (Γ̃i,Ω̃i,Θ̃i) are energy competitors (after some horizontal trans-
lations) for (Γm,Ωm,Θm). By basic scaling property we get

l(Γ̃1) =
1√
α

l(Γ1), l(Γ̃2) =
1√

1−α
l(Γ2),

ˆ
Ω̃i

|∇Θ̃i|2 =
ˆ

Ωi

|∇Θ |2 for i = 1,2
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The minimizing property yields

1√
α

l(Γ1)+

ˆ
Ω1

|∇Θ |2 ≥ l(Γ1)+ l(Γ2)+

ˆ
Ω1

|∇Θ |2 +
ˆ

Ω2

|∇Θ |2,

1√
1−α

l(Γ2)+

ˆ
Ω2

|∇Θ |2 ≥ l(Γ1)+ l(Γ2)+

ˆ
Ω1

|∇Θ |2 +
ˆ

Ω2

|∇Θ |2.

Combining these two inequalities we arrive at

l(Γ1)≥
√

α

1−
√

α
l(Γ2)≥

√
α

1−
√

α
·
√

1−α

1−
√

1−α
l(Γ1)

⇒
√

α(1−α)≤ (1−
√

α)(1−
√

1−α)⇒ α = 0 or 1,

which yields a contradiction. ut

We define the following “two point condition”:
Definition. A rectifiable curve Γ is said to satisfy the “two point condition” if and only if there
is a constant C > 0 such that for any z1,z2 ∈ Γ , it holds that diamγz1z2 ≤C|z1− z2|, where γz1z2
denotes the arc of Γ between z1, z2 (if there are two arcs, take the one with smaller length).

Now we want to prove some geometric properties of Γ ∈ G1 (not necessarily a minimizer).
The next statement says that for any three points on Γ , they are supposed to satisfy a reversed
triangle inequality, with a constant depending only on E(Γ ).

Lemma 2.2 If Γ ∈ G1 and E(Γ ) ≤ M, then there exists a constant C = C(M) such that for
any three points z1 = (x(t1),y(t1)), z2 = (x(t2),y(t2)) and z3 = (x(t3),y(t3)) on Γ such that
t1 < t2 < t3, it holds that

max{dist(z1,z2),dist(z2,z3)} ≤Cdist(z1,z3). (2.9)

Moreover, Γ satisfies the “two point condition”.

Proof By definition, the “two point condition” follows directly from (2.9). So we just prove
(2.9). Assume C is a large enough number (say larger than 100) which will be determined later.
We simply write (x(ti),y(ti)) as (xi,yi) for i = 1,2,3. Then for the value of y2, there are three
cases:

1. max{y1,y3} ≥ y2 ≥min{y1,y3},
2. y2 > max{y1,y3},
3. min{y1,y3}> y2.

The inequality (2.9) for the first case is trivial, because by simple geometry we can get

max{dist(z1,z2),dist(z2,z3)} ≤ dist(z1,z3).

Now we study the second case, and assume (2.9) is false. By triangle inequality, we have

min{dist(z1,z2),dist(z2,z3)} ≥ (C−1)dist(z1,z3).

Therefore it holds that

min{y2− y1,y2− y3} ≥ (C−2)|x1− x3|.
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For convenience we assume y2 = maxt∈(t1,t3) y(t). Otherwise we can take z2 to be the point
with the maximum value of y on Γ between z1 and z3. Note that such choice will not violate any
of the above estimates.

We set the curve Γ between z1,z2 and z2,z3 as Γ1,Γ2, written as Γ1 := Γz1z2 , Γ2 := Γz2z3 . Set
li := l(Γi) for i = 1,2. Also we reparameterize Γ1 and Γ2 as following

Γ1 := {(x(s),y(s)) : s ∈ [0, l1], (x(0),y(0)) = (x2,y2), (x(l1),y(l1)) = (x1,y1),

x′(s)≤ 0, |x′(s)|2 + |y′(s)|2 = 1 a.e.},
Γ2 := {(x(s),y(s)) : s ∈ [0, l2], (x(0),y(0)) = (x2,y2), (x(l2),y(l2)) = (x3,y3),

x′(s)≥ 0, |x′(s)|2 + |y′(s)|2 = 1 a.e.}

Note that for such reparametrization, Γ1 starts at z2 and ends at z1, while Γ2 starts at z2 and ends
at z3. Also we have Θ(x(s),y(s)) =−arcsiny′(s) on Γ1 and Θ(x(s),y(s)) = arcsiny′(s) on Γ2.

We first look at Γ1. Set

r̃(s) :=
√
|x(s)− x2|2 + |y(s)− y2|2, s ∈ [0, l1],

I(r) := {s ∈ [0, l1] : r̃(s) = r}

For 0 < r < |z1− z2|, the circle {|z− z2|= r} will intersect with Γ1 and therefore Ir is not empty.
By definition we have

ˆ l1

0
y′(s)ds = y1− y2, (2.10)

ˆ l1

0
x′(s)ds = x1− x2. (2.11)

For r̃(s), we can estimate its derivative by

|r̃′(s)|=
∣∣∣∣ (x(s)− x2) · x′(s)+(y(s)− y2) · y′(s)

r(s)

∣∣∣∣≤√|x′(s)|2 + |y′(s)|2 = 1.

Then by coarea formula, we have

l1 ≥
ˆ l1

0
|r̃′(s)|ds =

ˆ |z1−z2|

0
H 0(Ir)dr

This tells us that for almost every r ∈ [0, |z1− z2|], H 0(Ir) is finite. Note that H 0 is just the
counting measure, and we will simply write it as |Ir|. Denote by A the subset of [0, l1] such that
for any s ∈ A, r̃′(s) = 0. Again co-area formula gives

0 =

ˆ
A
|r̃′(s)|ds =

ˆ |z1−z2|

0
H 0(A∩ Ir)dr

So A∩ Ir =∅ for a.e. r ∈ [0, |z1− z2|]. We define

R0 := {r ∈ [0, |z1− z2|] : |Ir| is finite, and |r̃′(s)|> 0 for any s ∈ Ir}.
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We have m([0, |z1− z2|]\R0) = 0. For any r ∈ R0, we pick a representative from Ir in the follow-
ing way:

sr = min{s : s ∈ Ir}.

We define the following two subsets:

R1 := {r ∈ [2[z1− z3], |z1− z2|]∩R0 : x′(sr)≤−1/2},
R2 := ([2|z1− z3|, |z1− z2|]∩R0)\R1.

Note that R1 corresponds to the part of curve on Γ1 where is not “too vertical”. Using co-area
formula again, we get

1
2

m(R1)≤

∣∣∣∣∣
ˆ

R1

dx(sr)

ds
·
∣∣∣∣dr(sr)

ds

∣∣∣∣−1

dr

∣∣∣∣∣
≤ |
ˆ

r̃−1(R1)
x′(s)ds|

≤ |x1− x2|.

As a consequence, we get

m(R2)≥ |z1− z2|−2|z1− z3|−2|x1− x2| ≥ |z1− z2|−4|z1− z3|. (2.12)

Now we make the following observation:

For any r ∈ R2, y′(sr)<−
√

3
2 .

This is a consequence of definition of R2 and sr. Since r ∈ R2, we have

y′(sr)>

√
3

2
or y′(sr)<−

√
3

2
,

y(sr)< y2−
√

3|z1− z3|, x2−|z1− z3| ≤ x(sr)< x2,

|y(sr)− y2|>
√

3|x(sr)− x2|.

We also have that dr̃(sr)
ds > 0 because (x(sr),y(sr)) is the first point that Γ1 touches {|z− z2|= r}.

If y′(sr)>
√

3
2 , then

r̃′(sr) =
x′(sr)(x(sr)− x2)+ y′(sr)(y(sr)− y2)

r
< 0,

which yields a contradiction. Therefore we have verified the observation.
Now we deal with Γ2 in the same way with several minor modifications. We can show that

there exists a R3 such that

R3 ⊂ [2|z1− z3|, |z2− z3|] , m(R3)≥ |z2− z3|−4|z1− z3|,

and ∀r ∈ R3, y′(sr)<−
√

3
2

.

Here sr is the point that Γ2 first touches {|z− z2|= r}.
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We are now ready to derive a contradiction. Denoting R := R2∩R3, then we have

R⊂ {r : 2|z1− z3| ≤ r ≤min{|z1− z2|, |z2− z3|}} ,
m(R)≥min{|z1− z2|, |z2− z3|}−8|z1− z3|.

For any r ∈ R, Γ1 first intersects {|z− z2| = r} at z1(r) := (x(sr),y(sr)) and Γ2 first intersects
with {|z− z2| = r} at z2(r) := (x(sr),y(sr)). The arc

>
z1(r)z2(r) is contained in ΩΓ because of

the definitions of sr,sr. Moreover, Θ =−arcsiny′(sr)> π

3 at z1(r) and Θ = arcsiny′(sr)<−π

3
at z2(r). Then we are ready to estimate the Dirichlet energy of Θ in ΩΓ ,

ˆ
ΩΓ

|∇Θ |2 dxdy≥
ˆ C|z1−z3|

0
dr
ˆ
{|z−z2|=r}∩ΩΓ

|∇Θ(z2 + reiθ )|2r dθ (2.13)

≥
ˆ C|z1−z3|

0
dr
ˆ
{θ :z2+reiθ∈ΩΓ }

∣∣∣∣∂Θ(z2 + reiθ )

∂θ

∣∣∣∣2 1
r

dθ

≥
ˆ

r∈R

|Θ(z1(r))−Θ(z2(r))|2

πr
dr

≥
ˆ (C−1)|z1−z3|

8|z1−z3|

4π

9
1
r

dr

≥ log
C−1

8
.

Here from the second line to the third line we use the Cauchy-Schwarz inequality to estimate
the integral with respect to θ .

Now by choosing C satisfying log C−1
8 ≥ 2M, we arrive at a contradiction with the energy

bound. Thus we proved (2.9) for case (2).
For case (3) when min{y1,y3} ≥ y2, the proof follows similar arguments. Assume y2 =

mint∈[t1,t3] y(t). We still call the curve between z1,z2 and z2,z3 as Γ1,Γ2 and reparametrize them
as before. And r̃(s), I(r), R0, sr, sr, z1(r), z2(r) are all defined in the same way. Recall that
z1(r) := (x(sr),y(sr)) ∈ Γ1 and z2(r) := (x(sr),y(sr)) ∈ Γ2. Similarly, we can find R2 ⊂ [2|z1−
z3|, |z1−z2|] such that for any r ∈R2, Θ(z1(r))<−π

3 . Also there exists R3⊂ [2|z1−z3|, |z1−z3|]
such that for r ∈ R3, Θ(z2(r))> π

3 .
Now we claim that for any r ∈ R := R2∩R3, it holds thatˆ

{|z−z2|=r}∩ΩΓ

|∇Θ(z1 + reiθ )|2r dΘ ≥ C1

r
. (2.14)

Here C1 is a constant that can be chosen as π

18 . This is the place where case (3) differs from case

(2), because in case (2) the set {|z− z2| = r}∩ΩΓ is just the arc
>
z1(r)z2(r). However in case

(3), {|z− z2|= r}∩ΩΓ is more complicated. We prove the claim by discussing following three
situations (see Figure 2):

1. {|z− z2| = r} only intersects with Γ at z1(r),z2(r) and doesn’t intersect with x-axis. Since
Θ(z1(r))<−π

3 and Θ(z2(r))> π

3 , we have
ˆ
{|z−z2|=r}∩ΩΓ

|∇Θ(z2 + reiθ )|2 ≥ 1
r

ˆ
z2+reiθ∈ΩΓ

|∂Θ

∂θ
|2dθ ≥ C1

r
.
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z2

z1 z3

ΩΓ
z1(r) z2(r)

(a) Situation (1)

z2

z3(r)

z1 z3

ΩΓ z1(r) z2(r)

(b) Situation (2)

z2

z1 z3

ΩΓ

z1(r)
z2(r)z3(r)

(c) Situation (3)

Fig. 2: Three different situations of Ir and {|z− z2|= r}∩ΩΓ , when min{y1,y3}> y2

2. {|z− z2| = r} only intersects with Γ at z1(r),z2(r) and also intersects with x-axis at z3(r).
Without loss of generality we can assume the arc

>
z1(r)z3(r) is contained in Ω f . Then since

Θ = 0 on x-axis, we have |Θ(z1(r))−Θ(z3(r))| ≥ π

3 , then we can verify (2.14) by the same
calculation.

3. {|z−z2|= r} intersects with Γ at more than two points. Let z3(r) = (x3(r),y3(r)) be another
point of intersection besides z1(r),z2(r). Without loss of generality we assume x3(r)< x1(r).
In our construction we make sure that r′(sr) > 0 at z1(r). And we can assume

>
z1(r)z3(r) ⊂

Ω f . Therefore we have Θ(z3(r)) ≥ 0 because at z3(r), Γ (t) is ”leaving” the disk {|z−
z2| ≤ r} as t increases. This implies that |Θ(z1(r))−Θ(z3(r))| ≥ π

3 Then (2.14) follows
immediately in the same way.

With (2.14), we can repeat the computation in (2.13) and finally verifies (2.9) for case (3).
This completes our proof of Lemma2.2. ut

It is proved by Ahlfors in [1] that a Jordan curve is a quasicircle if and only if it satisfies
the “two point condition”. A quasicircle is the image of the unit circle T under a quasiconfor-
mal mapping of the complex plane onto itself. And in 2D a quasidisk (domain enclosed by a
quasicircle) is equivalent to a Sobolev extension domain, see [22]. However in our problem,
∂ΩΓ = Γ ∩{(x,0) : x ∈ [−a,a]} is not a quasicircle because near two endpoints (−a,0) and
(a,0) the “two point condition” will be violated. The next lemma says that even though we
cannot directly use the property of a quasidisk, we can still extend Θ to the whole plane with a
uniform control on its H1-norm.

Lemma 2.3 (Extension domain) Assume Γ ∈ G1 and E(Γ )≤M, then there exists a constant C2
that depends on M such that Θ |

ΩΓ
can be extended to the whole plane with a norm control

‖Θ‖H1(R2) ≤C2‖Θ‖H1(ΩΓ ).

Proof The idea of the proof is to glue a rectangle together with ΩΓ to make the combined
domain a quasidisk. Assume the intersection points of Γ and x-axis are (−a,0) and (a,0), we
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set
D1 := {(x,y) :−a < x < a,−a < y≤ 0}, DΓ = ΩΓ ∪D1.

We claim that DΓ is a quasidisk. For any two points z1,z2 ∈ ∂DΓ , if z1,z2 ∈ Γ , then Lemma
2.2 says they satisfy the “two point condition”. If z1,z2 ∈ ∂D1∩∂DΓ , they automatically satisfy
the “two point condition” because a rectangle is a quasidisk. So we are left with the case z1 ∈
Γ , z2 ∈ ∂D1∩∂DΓ . In such case, there are two situations:

1. z2 ∈ {(x,−a) : −a ≤ x ≤ a}. Then |z1− z2| ≥ a and Lemma 2.2 implies that diam(DΓ ) ≤
(C+2)a where C is the constant in (2.9). So the “two point condition” holds for this situa-
tion.

2. z2 ∈ {(−a,y) : −a ≤ y ≤ 0}∪{(a,y) : −a ≤ y ≤ 0}. Without loss of generality we assume
z2 = (−a,y) and set z0 := (−a,0). Let γ be the arc of Γ between z0 and z1, then we get

|z1− z2| ≥max{|y|, |z1− z0|}, diam(z2z0∪ γ)≤ |y|+diam(γ),

where z2z0 is the line segment between z0 and z2. One can easily shows that diam(z2z0∪γ)≤
(C+1)|z1− z2|, since diamγ ≤C|z1− z0| by (2.9). The “two point condition” is verified.

Therefore by Ahlfors’ result, we prove the claim. Next we can trivially extend Θ to DΓ by
letting Θ(x,y) ≡ 0 for (x,y) ∈ D1, because Θ vanishes on {(x,0) : −a ≤ x ≤ a}. Obviously,
‖Θ‖H1(DΓ ) = ‖Θ‖H1(ΩΓ ). Moreover, we can further extend Θ to the whole plane R2, since a
2D domain is a quasidisk if and only if it is a Sobolev extension domain. Also from the above
derivation and the proof of Lemma 2.2, the constant C in the “two point condition” for ∂DΓ

only depends on M. By [22, Theorem C & Theorem 4] and [33, Theorem 2.24] we can show
that the norm of the extension operator only depends on M, i.e. there is a C2 :=C2(M) such that

‖Θ‖H1(R2) ≤C2‖Θ‖H1(ΩΓ ).

This completes our proof of Lemma 2.3. ut

2.2 Γ is a chord-arc curve

We will give more geometric properties of Γ by showing that it is a chord-arc curve, which
means the length of the chord is comparable with the length of the arc (see [21] for a detailed
discussion on chord-arc curves).

Proposition 2.4 Let Γ ∈ G1 and E(Γ ) ≤ M. There exists a constant C3(M) such that for any
two points z1,z2 ∈ Γ and the arc γ := Γz1z2 , we have

l(γ)<C3|z1− z2|.

In other words, Γ is a chord-arc curve.

Proof First assume C3 is a very large number that will be determined later. We prove by con-
tradiction. Suppose H1(γ) = c|z1− z2| for some c > C3, our goal is to show that the Dirichelt
energy “generated” by this part of boundary will be very large, which contradicts to the unifor-
m bounds of Dirichlet energy (E(Γ ) ≤M). The basic idea can be roughly stated as following:
if the length of curve is way too long compared with the chord length, then there will be lots
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of fluctuations of the curve, which will lead to large energy. The co-area formula will be used
repeatedly in the proof.

Since 2D Dirichlet energy is scaling invariant, we simply let |z1−z2|= 1, and reparametrize
the curve γ in the following way:

γ = {(x(t),y(t)) : x,y ∈ AC[0,c]; x′(t)≥ 0; z1 = (x(0),y(0)) = (0,0),

z2 = (x(c),y(c)) = (a,±
√

1−a2) for some a ∈ (0,1]; |x′(t)|2 + |y′(t)|2 = 1a.e.}.

According to Lemma 2.2, we have |y(t)| ≤ C for t ∈ [0,c], where C is the constant in (2.9).
So there exists Y1 ≤ 0,Y2 ≥ 0 such that |Yi| ≤ C for i = 1,2 and miny(t) = Y1, maxy(t) = Y2.
Furthermore we have

Γ ⊂ {0≤ x≤ a,Y1 ≤ y≤ Y2}=: Q. (2.15)

We have the following upper bound for the energy

ˆ
Ωγ

|∇Θ |2 dxdy≤M, where Ωγ := Q∩{(x,y) below γ}.

Note that by Lemma 2.3, we can extend the domain of Θ to all of Q such that

ˆ
Q
|∇Θ |2 dxdy≤C2M =: C4.

Here this constant C4 only depends on M. Also we make the following definitions:

Ts := {t ∈ [0,c] : y(t) = s}, ∀s ∈ [Y1,Y2]

U := {s ∈ [Y1,Y2] : |Ts| is infinite}, W := {t ∈ [0,c] : y(t) ∈U}.
S := {s ∈ [Y1,Y2] : |Ts|= 1}, A := {t ∈ [0,c] : y(t) ∈ S}.
V := [Y1,Y2]\(S∪U), B := [0,c]\(A∪W ).

Here | · | denotes the cardinality of a set.
Now we have set up all the assumptions and are ready to derive a contradiction. First we

point out several elementary observations:

(i) The following estimate holds:

ˆ c

0
|y′(t)|2 dt = c−

ˆ c

0
|x′(t)|2 dt ≥ c−1, (2.16)

where we have used x′(t)≥ 0 and
´ c

0 x′(t)≤ 1.
(ii) If Y2 > 1, then for any s ∈ [1,Y2), we have |Ts| ≥ 2 by mean value theorem for continuous

function. Similarly, if Y1 < −1, for any s ∈ (Y1,−1], it holds that |Ts| ≥ 2. In other words,
we have

S⊂ [−1,1]∩{Y1,Y2}.
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(iii) We can estimate the measure of A by

m(A) =
ˆ

A

√
|x′(t)|2 + |y′(t)|2 dt (2.17)

≤
ˆ

A
|x′(t)|dt +

ˆ
A
|y′(t)|dt

≤ 1+
ˆ

S
H 0(Ts)ds (by coarea formula)

= 1+ |S| ≤ 3.

(iv) By co-area formula one can easily check that

m(U) = 0,
ˆ

W
|y′(t)|dt = 0

For any s ∈ V , by definition we have 2 ≤ Ts < ∞, we want to derive a lower bound for the
following quantity:

E(s) :=
ˆ a

0
|dxΘ(x,s)|2 dx.

Assume Ts = {t1, . . . , tn} for some n≥ 2, and by definition we have

sin(Θ(x(ti),s)) = y′(ti), for i = 1, . . . ,n.

An easy observation is that for each two adjacent points, say ti and ti+1,

y′(ti) · y′(ti+1)≤ 0.

We deduce that

|Θ(x(ti),s)−Θ(x(ti+1),s)| ≥ |sin(Θ(x(ti),s))− sin(Θ(x(ti+1),s)|= |y′(ti)|+ |y′(ti+1)|.

Then we estimate E(s) as following

E(s) =
ˆ a

0
|dx(Θ(x,s))|2 dx (2.18)

≥
n−1

∑
i=1

ˆ x(ti+1)

x(ti)
|dx(Θ(x,s))|2 dx

≥
n−1

∑
i=1

ˆ x(ti+1)

x(ti)

∣∣∣∣Θ(x(ti+1),s)−Θ(x(ti),s)
x(ti+1)− x(ti)

∣∣∣∣2 dx

≥
n−1

∑
i=1

(|y′(ti)|+ |y′(ti+1)|)2

x(ti+1)− x(ti)

(Cauchy-Schwarz) ≥
(

n
∑

i=1
|y′(ti)|)2

x(tn)− x(t1)

≥ ∑
t∈Ts

|y′(t)|2.
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Using coarea formula, we get

ˆ
B
|y′(t)|3 dt =

ˆ
U

(
∑

t∈Ts

|y′(t)|2
)

ds (2.19)

Then by estimating the Dirichlet energy inside Q using (2.18) and (2.19), we have that

C4 ≥
ˆ

Q
|∇Θ(x,y)|2 dxdy (2.20)

≥
ˆ

V
E(s)ds

≥
ˆ

V

(
∑

t∈Ts

|y′(t)|2
)

ds

=

ˆ
B
|y′(t)|3 dt

Hölder inequality further implies that(ˆ
B
|y′(t)|3 dt

)
≥
(ˆ

B
|y′(t)|2 dt

)3/2

·m(B)−1/2. (2.21)

By (2.16) and (2.17), we have
ˆ

B
|y′(t)|2 dt ≥ c−1−

ˆ
A
|y′(t)|2 dt−

ˆ
W
|y′(t)|2 dt ≥ c−4. (2.22)

As a result, combining (2.20), (2.21) and (2.22) leads to

C4 ≥
(c−4)3/2

c1/2 ,

which yields a contradiction if we choose the constant C3 to be large enough at first (recall that
c is a real number larger than C3). Now that since C4 only depends on M, C3 also only depends
on M. This completes our proof of Proposition 2.4. ut

Actually, we can examine the chord-arc property of Γ more closely and prove that it is
indeed a vanishing chord-arc (also called “approximately smooth”) curve, which is the following
lemma.

Proposition 2.5 Let Γ ∈ G1 and E(Γ )≤M. For any ε > 0, there exists a r = r(ε,Γ ) such that
for any two points z1,z2 ∈ Γ that satisfy |z1− z2| ≤ r, we have

l(γ)≤ (1+ ε)|z1− z2|,

where γ = Γz1z2 . That is to say, Γ is a vanishing chord-arc (approximately smooth) curve.
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Proof The technique here will be very similar to the proof of Proposition 2.4. We will only
present our main ingredients and omit some computational details. Take any z1,z2 ∈ Γ such
that |z1− z2| = r. By Lemma 2.2, γ = Γz1z2 must be contained in a rectangular domain Qz1z2
with width r and length 2Cr (see (2.15) for the existence of such rectangle). Let Θ be the angle
function determined by Γ , we again extend Θ to R2 such that

´
R2 |∇Θ |2 dx < C2M. Then for

any δ > 0, there exists a σ > 0 such that
ˆ

E
|∇Θ |2 dx≤ δ , whenever |E|< σ .

Therefore as r→ 0, the Dirichlet energy of Θ inside Qz1z2 will go to zero. The convergence rate
doesn’t depend on the choice of z1,z2 but only depends on their distance r. As a consequence,
in order to prove the lemma, we only need to prove the following statement: for any ε > 0, there
exists a constant C(ε)> 0 such that

ˆ
Qz1z2

|∇Θ |2 dx≥C(ε), whenever l(γ)≥ (1+ ε)|z1− z2| (2.23)

Now we fix ε > 0. By scaling invariant property, we assume without loss of generality that
|z1− z2| = 1 and l(γ) = 1+ ε , z1 = (0,0), z2 = (cosα,sinα) for some α ∈ (0, π

2 ). Note that
here |α| 6= π

2 , otherwise γ would be the line segment orthogonal to x−axis and l(γ) = 1. We
parameterize γ as

γ := {(x,y) : (x(0),y(0)) = z1, (x(1+ ε),y(1+ ε)) = z2, |x′(t)|2 + |y′(t)|2 = 1, a.e.}

Set
h(t) := cosα · y(t)− sinα · x(t), g(t) := sinα · y(t)+ cosα · x(t).

We have
ˆ 1+ε

0
x′(t)dt = cosα,

ˆ 1+ε

0
y′(t)dt = sinα, h(0) = h(1+ ε) = 0. (2.24)

Set hmax = max
0≤t≤1+ε

h(t) and hmin = min
0≤t≤1+ε

h(t), and define

Ts := {t ∈ [0,1+ ε] : h(t) = s} for s ∈ [hmin,hmax],

B := {t ∈ [0,1+ ε] : 2≤ Th(t) < ∞}.

Obviously for any s ∈ (hmin,hmax) we have |Ts| ≥ 2. Also we should deduct the subset of
[hmin,hmax] such that |Ts| is infinite (see the definition of set U,W in the proof of Proposition
2.4). But from the argument in the proof of Proposition 2.4 we know it is a measure zero set and
won’t affect our computation, so we may simply assume 2≤ |Ts|< ∞ for any s ∈ (hmin,hmax).

We discuss in two cases.

Case 1 If g′(t) = sinα · y′(t)+ cosα · x′(t)≥ 0 for a.e. t ∈ [0,1+ ε]. We firstly define

∂gΘ := sinα∂yΘ + cosα∂xΘ , ∂hΘ := cosα∂yΘ − sinα∂xΘ .
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We calculate in the same way as (2.18), (2.19) and (2.20) (the only difference is we replace y(t)
with h(t)) and obtain

ˆ
Qz1z2

|∇Θ |2 dxdy≥
ˆ

Qz1z2

|∂gΘ |2 dxdy≥C
ˆ

B
|h′(t)|3 dt (2.25)

Here C is a positive constant only depend on M. Also, from (2.24) and the assumption g′(t)≥ 0
we have

ˆ 1+ε

0
|sinα · y′(t)+ cosα · x′(t)|2 dt (2.26)

=

ˆ 1+ε

0
|sinα · y′(t)+ cosα · x′(t)| · (sinα · y′(t)+ cosα · x′(t))dt

≤
ˆ 1+ε

0
(sinα · y′(t)+ cosα · x′(t))dt = 1

and ˆ 1+ε

0
|sinα · y′(t)+ cosα · x′(t)|2 + |cosα · y′(t)− sinα · x′(t)|2 dt = 1+ ε

The above two inequalities imply
ˆ 1+ε

0
|h′(t)|2 dt ≥ ε.

By co-area formula we know that the set where h(t) = hmin or hmax contributes nothing in the
above integral, so we have ˆ

B
|h′(t)|2 dt ≥ ε. (2.27)

Then we combine (2.25), (2.27) and Hölder inequality to conclude that
ˆ

Qz1z2

|∇Θ |2 dxdy≥C
ε3/2

(1+ ε)1/2 . (2.28)

Case 2 Assume g′(t)≥ 0 doesn’t hold almost everywhere, then we may lose the estimate (2.26).
If we still have

´ 1+ε

0 |g′(t)|2 ≤ 1, then all the estimates in Case 1 still hold and there is nothing
to prove. So we assume

ˆ 1+ε

0
|g′(t)|2 dt = 1+δ for some 0 < δ ≤ ε. (2.29)

Then ˆ
B
|h′(t)|2 dt = ε−δ . (2.30)

Then the same computation leads to
ˆ

Qz1z2

∣∣∂gΘ
∣∣2 dxdy≥C

(ε−δ )3/2

(1+ ε)1/2 . (2.31)
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Now we set

gmax := max
0≤t≤1+ε

g(t), gmin := min
0≤t≤1+ε

g(t),

T 2
s := {t ∈ [0,1+ ε] : g(t) = s} for s ∈ [gmin,gmax],

B2 := {t ∈ [0,1+ ε] : 2≤ |T 2
g(t)|< ∞},

A2 := {t ∈ [0,1+ ε] : g′(t)< 0}.

Again we can ignore the set where |T 2
g(t)| = ∞ since it may lead to more complicated notations

but won’t affect any of our estimates. So we assume for every t ∈ [0,1+ε], we have |T 2
g(t)|< ∞.

Then simple geometry tells us that A2 ⊂ B2. Also, since
´ 1+ε

0 g′(t)dt = 1 and
´ 1+ε

0 |g′(t)| ≥
1+δ , it holds that ˆ

B2

|g′(t)|dt ≥
ˆ

A2

|g′(t)|dt ≥ δ

2
. (2.32)

Similar techniques in (2.18), (2.19) and (2.20) imply that

ˆ
Qz1z2

|∂hΘ |2 dxdy≥C
ˆ

B2

|g′(t)|3 dt ≥C
(δ/2)3

(1+ ε)2 . (Hölder inequality) (2.33)

where C is a constant that only depends on M. We can combine this with (2.31) to get
ˆ

Qz1z2

|∇Θ |2 dxdy

≥
ˆ

Qz1z2

|∂gΘ |2 dxdy+
ˆ

Qz1z2

|∂hΘ |2 dxdy

≥C

(
(ε−δ )3/2

(1+ ε)1/2 +
(δ/2)3

(1+ ε)2

)
≥C(ε,M)

This implies (2.23) and completes our proof of Proposition 2.5. ut

Corollary 2.6 The normal vector ν along the curve Γ belongs to VMO (vanishing mean oscil-
lation space), i.e.

lim
r→0

(
1

l(B(x,r)∩Γ )

ˆ
B(x,r)∩Γ

|ν−νB(x,r)|dl

)
= 0 uniformly for x ∈ Γ ,

where

νB(x,r) =
1

l(B(x,r)∩Γ )

ˆ
B(x,r)∩Γ

ν dl

Proof We already have that Γ is a vanishing chord-arc curve. Then we can direct apply results
of Kenig & Toro [25, Theorem 2.1] to conclude that ν ∈ VMO. ut
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2.3 Weil-Petersson curve and H3/2 characterization

Recall that a quasicircle is the image of the unit circle T under a quasiconformal map f of R2,
i.e., a homeomorphism of the plane that is conformal outside the unit disk D, whose dilatation
µ = fz̄/ fz satisfies ‖µ‖L∞(D) < 1. The collection of planar quasicircles corresponds to the uni-
versal Teichmüller space T (1) and the metric is defined in terms of ‖µ‖∞. We refer to [18,19]
for an introduction to the uniform Teichmüller space and more details. In [41] Takhtajan and
Teo defined a Weil-Petersson metric on the universal Teichmüler space T (1) that makes it into
a Hilbert manifold. A Weil-Petersson curve is the image of T under a quasiconformal map f
on the plane, and satisfies |µ| ∈ L2(d Aρ), where dAρ = 4

(1−|z|2)2 d2z is the hyperbolic metric on
D (see [8,41]). Another characterization for the Weil-Petersson curve is in terms of conformal
mapping f : D→Ω , where Ω is the domain bounded by Γ . Γ is a Weil-Petersson curve if and
only if (log f ′)′ ∈ L2(D) (see [41, Chapter 2]).

In our problem, the curves in GV strongly resemble the Weil-Petersson curves in the follow-
ing way. For a Weil-Petersson curve Γ , let f : D→Ω be a conformal mapping. We focus on the
boundary map f : T→Γ . Since log f ′ is in the Dirichlet space, we have that arg f ′(z) (arg means
the argument of a complex number), as a function on T, has an extention with finite Dirichlet
energy inside D. One can check that for any a ∈ T, it holds arg f ′(a) = argνΓ ( f (a))− 2πa,
where νΓ ( f (a)) is the outer normal vector of Γ at the point f (a). Thus argνΓ (b)−2π f−1(b),
as a function of b ∈ Γ , has a finite Dirichlet energy inside Ω . Note that in our definition of GV ,
we require the θ = argνΓ − π

2 on the curve Γ , and it has a finite energy extension inside ΩΓ .
Such characterization is very similar to the Weil-Petersson curve. The difference is that in our
problem Γ is not a closed curve and the domain ΩΓ is not a quasidisk.

In a recent work [5], Christopher Bishop gives 26 equivalent characterizations of the Weil-
Petersson class. In particular, he shows that a curve Γ is Weil-Petersson if and only if it has
arclength parametrization in H3/2(T), has finite Möbius energy or can be well approximated
by polygons in some precise sense. Another equivalent characterization is that Weil-Peterssson
curve has local curvature that is square integrable over all locations and scales, where local
curvatures are measured using various quantities such as Peter Jone’s β -numbers, conformal
welding and Menger curvature. We will show that some of these function theoretic and ge-
ometric characterizations can be generalized to our curve Γ ∈ GV , which greatly deepen our
understanding of the class GV . The proofs will follow Bishop’s paper [5] closely, with some
necessary modifications.

Given Γ ∈ GV , we denote the length of Γ by l. Let z(t) = (x(t),y(t)) : [0, l]→ Γ be the
arc-length parametrization of Γ , i.e.

√
x′(t)2 + y′(t)2 = 1 almost everywhere. Then Γ has the

following properties.

Proposition 2.7 1. The arc-length parametrization z(t) : [0, l]→ Γ is in the Sobolev space
H3/2([0, l]).

2. Let ν be the normal vector, it holds that

ˆ
Γ

ˆ
Γ

(
|ν(z)−ν(w)|
|z−w|

)2

|dz| |dw|< ∞,

where |dz|, |dw| denote the element of arc length in the line integral on Γ .
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Proof (1) As in the proof of Lemma 2.3, we construct a quasidisk DΓ which is the combination
of ΩΓ and a rectangle with length 2a and width a

DΓ = ΩΓ ∪{(x,y) :−a < x < a, −a < y≤ 0}.

The length of ∂DΓ is l+4a. We denote the arc-length between z∈Γ and (−a,0) as l(z). Define
the function φ : T→ T as

φ(θ) =

{
arg ν(z((l +4a)θ)), 0≤ θ ≤ l

l+4a ,
π

2 ,
l

l+4a < θ < 1.
(2.34)

One can easily check that in order to show z ∈ H3/2([0, l]), it suffices to show φ ∈ H1/2(T).
We also define an orientation preserving arclength parameterization w : T→ ∂DΓ , such that
|w′|= l+4a, w(0) = (−a,0) and w(θ) = z((l+4a)θ) for θ ∈ [0, l

l+4a ]. Since DΓ is a quasidisk,
we can find a map f that is conformal in DΓ and can be extended to a quasi-conformal mapping
in the entire plane. Then on the boundary, f maps T to the quasicircle ∂DΓ .

Let φ f := φ ◦w−1 ◦ f . By the definition of GV , one has φ f ∈ H1/2(T). The rest of the proof
is exactly the same as that of [5, Lemma 8.1]. The idea is to show f−1 ◦w is a quasisymmetric
map by definition, and then use the arguments by Beurling and Ahlfors [3] that H1/2 is invariant
under composition with a quasisymmetric homeomorphism of T.

(2) By the H3/2 characterization, we know
´ l

0

´ l
0

∣∣∣ z′(t)−z′(s)
t−s

∣∣∣2 dtds < ∞. Since Γ is chord-arc,
|z(t)−z(s)|
|s−t| ∈ [ 1

C ,1] for some constant C. We have

ˆ
Γ

ˆ
Γ

(
|ν(z)−ν(w)|
|z−w|

)2

|dz| |dw|=
ˆ l

0

ˆ l

0

(
|z′(t)− z′(s)|
|z(t)− z(s)|

)2

dsdt

'
ˆ l

0

ˆ l

0

∣∣∣∣ z′(t)− z′(s)
t− s

∣∣∣∣2 dsdt < ∞.

ut

Remark 2.8 A direct consequence of the H3/2 characterization is Γ has finite Möbius energy,
i.e.

Möb(Γ ) =

ˆ
Γ

ˆ
Γ

(
1

|z−w|2
− 1

l(z,w)2

)
|dz| |dw|< ∞. (2.35)

Here l(z,w) is the length of Γ between z and w. For the proof, one can refer to the proof of [5,

Lemma 9.1]. The brief idea is to show that Möb(Γ ) '
´

Γ

´
Γ

´
γz,w

´
γz,w |ν(x)−ν(y)|2|dx| |dy|

|z−w|4 |dz| |dw|
and then change the order of integration. Furthermore, since Γ is chord-arc, it holds that

1
|z−w|2

− 1
l(z,w)2 =

(l(z,w)+ |z−w|)(l(z,w)−|z−w|)
|z−w|2l(z,w)2 ' l(z,w)−|z−w|

|z−w|3
.

Then (2.35) implies that
´

Γ

´
Γ

l(z,w)−|z−w|
|z−w|3 |dz| |dw|< ∞.
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Remark 2.9 Other characterizations of Weil-Petersson curve in [5] include approximation by
polygons in a precise sense and the square integrability of β -numbers. The arguments also
work for curves in GV and we state them here without proof. Again we consider the arc-length
parameterization z(t) : [0, l]→ Γ . For each n, let zn

j = z
(

jl
2n

)
for j = 0,1, . . . ,2n. Then it is

obvious that {zn
j} divides Γ into 2n intervals with equal length. Let Γn be the curve that consists

of all the line segments zn
jz

n
j+1 for j = 0, . . . ,2n−1. Then one has

∞

∑
n=1

2n[l(Γ )− l(Γn)]< ∞.

Recall one of the equivalent definitions of Peter Jone’s β -number (see [23]): given a curve Γ ,
x ∈ R2 and t > 0,

βΓ (x, t) := inf
L

sup
z∈B(x,t)∩Γ

dist(z,L)
t

,

where the infimum is over all lines hitting B(x, t). Then for Γ ∈ GV , it satisfies

ˆ
Γ

ˆ
∞

0
β

2
Γ (x, t)

dt dx
t2 < ∞.

3 Existence of minimizers

The primary goal of this section is to establish the existence for Problem 1.5. Before we state the
theorem, we need to clarify some basic settings. Throughout this section we assume the volume
V = 1. We will consider Γ ∈ G1 such that EΓ ≤ M for some constant M > 0 and Γ will only
intersects with x−axis at two endpoints. As a consequence, Γ has all the geometric properties
that we have shown in Section 2 (Lemma 2.2, Lemma 2.3, Proposition 2.4, Proposition 2.5 and
Proposition 2.7).

Also we need to discuss different notions of boundary since we will perform integration by
parts in ΩΓ . In geometric measure theory, there are three different kinds of boundary for a set
E of finite perimeter: topological boundary ∂E, measure-theoretical boundary ∂ eE and reduced
boundary ∂ ∗E. We refer to [14] for detailed definitions of these notions. It is well-known that
∂ ∗E ⊂ ∂ eE ⊂ ∂E. For our domain ΩΓ , it is obvious that ∂ΩΓ = Γ ∪{(x,0),−a ≤ x ≤ a}. By
Lemma 2.2, one can verify that for any z ∈ Γ \{(−a,0),(a,0)}, we have

liminf
r→0

|ΩΓ ∩B(z,r)|
πr2 > 0, limsup

r→0

|ΩΓ ∩B(z,r)|
πr2 < 1

This means z∈ ∂ eΩΓ , and therefore ∂ΩΓ \∂ eΩΓ ⊂{(−a,0),(a,0)}. As for the relation between
measure-theoretical boundary and reduced boundary, a well-known result by Federer says that
H 1(∂ eE\∂ ∗E) = 0 (see for instance [12, Lemma 1 in Section 5.8]). So in the proof below, we
don’t distinguish these different notions of boundary when we write boundary integral.

Theorem 3.1 There exists a Γ ∈ G1 minimizing the functional E(Γ ) defined by (1.8).
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Proof Let {Γi}∞
i=1 be a minimizing sequence in G1.

lim
i→∞

E(Γi) = M0 := inf
Γ∈G1

E(Γ ).

Let Ωi,Θi denote the corresponding ΩΓi ,ΘΓi respectively. For each i, we set (±ai,0) as the two
endpoints of Γi. Because l(Γi) ≤ M for every i, we have ai <

M
2 . Also by Lemma 2.2 and the

fact that |Ωi| = 1 we have ai ≥ 2
C where C is the constant in (2.9). Now we summarize all the

properties (independent of i) we need for {(Γi,Ωi,Θi,ai)} before taking a limit.

(a) 2
C ≤ ai ≤ M

2 , l(Γi)≤M.
(b) Ω i ⊂ B(0,2M), |Ωi|= 1 and ∂Ωi = Γi∪{(x,0) :−ai ≤ x≤ ai}.
(c) Γi can be parameterized by (xi(t),yi(t)) such that

xi(0) =−ai, xi(l(Γi)) = ai, yi(0) = yi(l(Γi)) = 0,

x′i(t)≥ 0, yi(t)≥ 0, |x′i(t)|2 + |y′i(t)|2 = 1, a.e.√
|xi(t + s)− xi(t)|2 + |yi(t + s)− yi(t)|2 ≥

s
C3

for t,s > 0, t + s < l(Γi),

where C3 is the constant in Proposition 2.4.
(d) Θi can be extended to a H1 function on B(0,2M) such that ‖Θi‖H1(B(0,2M)) ≤ C5 for some

universal constant C5.

Then we claim that there is a subsequence, still denoted by {(Γi,Ωi,Θi,ai)} that converges
in the following sense:

1. χΩi → χΩ weakly in BV (B(0,2M)) and strongly in L1(B(0,2M)), for some Ω which is a
set of finite perimeter in B(0,2M) with volume 1.

2. Θi→Θ weakly in H1(B(0,2M)) and strongly in L2(B(0,2M)) for some Θ ∈ H1(B(0,1)).
3. l(Γi)→ l, ai→ a for some constant l > 0,a > 0.
4. Γi → Γ in Hausdorff distance for some chord-arc curve Γ . Γ can be parameterized by

x(t),y(t) such that

x(0) =−a, x(l) = a, y(0) = y(l) = 0,

x′(t)≥ 0, y(t)≥ 0, |x′(t)|2 + |y′(t)|2 ≤ 1, a.e.√
|x(t + s)− x(t)|2 + |y(t + s)− y(t)|2 ≥ s

C3
for t,s > 0, t + s < l

5. ∂ eΩ ⊂ Γ ∪{(x,0) :−a≤ x≤ a}, ν · (cosΘ ,sinΘ) = 0 a.e. on ∂ ∗Ω .

Proof (Proof of the convergence claim) (1), (2), (3) are straightforward to check. (4) is a direct
consequence of Arzela-Ascoli lemma and Property (c) that we list before, we omitted the detail
of the proof. So we only prove (5). First we show ∂ eΩ ⊂Γ ∪{(x,0) :−a≤ x≤ a}. Assume there
exists a point z ∈ ∂ eΩ such that z 6∈ Γ ∪{(x,0) :−a≤ x≤ a}. Then by convergence properties
(3) and (4), there exists a r0 > 0 and n ∈ N such that

B(z,r0)∩∂Ωi =∅, ∀i≥ n.

For any i≥ n, we have
|Ωi∩B(z,r)|
|B(z,r)|

= 0 or 1, for any r ≤ r0
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However, by convergence property (1), we have

|Ω ∩B(z,r)|
|B(z,r)|

= lim
i→∞

|Ωi∩B(z,r)|
|B(z,r)|

= 0 or 1, for any r ≤ r0,

which contradicts with our assumption z ∈ ∂ eΩ . Therefore we have proved ∂ eΩ ⊂ Γ ∪{(x,0) :
−a≤ x≤ a}.

Now we set

Ωin := the domain enclosed by Γ and x-axis, Ωout := R2\(Γ ∪{(x,0) :−a≤ x≤ a}∪Ωin)

By similar density argument one can show Ωin ⊂ Ω 0 and Ωout ⊂ Ω 1, where Ω t is defined as
{z : lim

r→0

|Ω∩B(z,r)|
πr2 = t}. After a modification of a measure zero set, we can simply identify Ω

as Ωin. Now we are left to show the second part of (5), which says the tangential anchoring
boundary condition still holds for the limit domain. Let φ be an arbitrary C∞ function in R2, we
define

ni := (cosΘi,sinΘi), n := (cosΘ ,sinΘ), νi = normal vector on ∂Ωi.

Note that here all ni and n are defined on the larger domain B(0,2M). We first deduce that

lim
i→∞

ˆ
Ωi

div(φni)dx =
ˆ

Ω

div(φn)dx. (3.36)

In fact,

|
ˆ

Ωi

div(φni)dx−
ˆ

Ω

div(φn)dx|

≤|
ˆ

Ω

div(φn−φni)dx|+ |
ˆ

Ω∆Ωi

|div(φni)|dx|

As i→ ∞, the first term goes to zero because ni converges to n weakly in H1; the second term
goes to zero since Ωi converges to Ω in L1 and ni are uniformly bounded in H1. Also we have
that the following Gauss-Green formula holds

ˆ
Ωi

div(φni)dx =
ˆ

∂ ∗Ωi

φni ·νi dH 1,

ˆ
Ω

div(φn)dx =
ˆ

∂ ∗Ω
φn ·ν dH 1 (3.37)

We want to point out that (3.37) is not trivial here since ∂Ωi is not in C1. However in our
problem, it is valid because all Ωi and Ω are Sobolev extension domains and one can define the
trace of H1 function on the reduced boundary. We refer to [28, Proposition 3.4.4] or [2, Theorem
3.84] for more details. We may now combine (3.37) with (3.36) and get that

0 = lim
i→∞

ˆ
∂Ωi

φni ·νi dH 1 =

ˆ
∂Ω

φn ·ν dH 1.

Thus the tangential anchoring boundary condition is proved for Ω and n.
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On the boundaries ∂Ωi or ∂Ω , we define the tangent vector τi, or correspondingly τ , by
rotating the normal vector νi or ν by π

2 clockwise. One can check that

ni = τi on Γi\{(x,0) : x ∈ [−ai,ai]}, ni =−τi on {(x,0) : x ∈ [−ai,ai]}\Γi, ∀i ∈ N

Using similar arguments in the proof of tangential anchoring condition above again, we can
show that

n = τ a.e. on Γ \{(x,0) : x ∈ [−a,a]},
n =−τ = (1,0) a.e. on {(x,0) : x ∈ [−a,a]}\Γ ,

(3.38)

The idea is to carefully choose a cut-off function φ and calculate
´

∂ ∗Ω φn ·τ dH 1 using Gauss-
Green formula. To be more specific, for any point x ∈ Γ \{(x,0) : x ∈ [−a,a]}, and any small
radius r, we take a non-negative smooth function φ such that φ ≡ 1 in Br(x) and φ ≡ 0 in
R2\B2r(x). Then by calculating

´
∂ ∗Ω φn · τ dH 1 as in (3.37) and letting x and r vary, one can

obtain that n · τ ≥ 0 (further implies n = τ because n ·ν = 0) almost everywhere on Γ \{(x,0) :
x ∈ [−a,a]}. The points on x-axis can be treated in the same way and we omit the details here.
Note that (3.38) is equivalent to our original boundary condition (1.7), therefore we have verified
that Γ ∈ G1 and Ω ,Θ are just the corresponding ΩΓ ,ΘΓ .

Finally, by convergence result (1–5) and lower semi-continuity we conclude that
ˆ

Ω

|∇Θ |2 + l(Γ )≤ liminf
i→∞

E(Γi) = M0

And by Lemma 2.1, Γ won’t touch x-axis besides two endpoints. So (Γ ,Ω ,Θ) is a minimizer
of Problem 1.5. The proof is complete. ut

Next we want to study the behavior of Γ ∈ G1 near (−a,0) and (a,0). The following lemma
indicates that Γ and x−axis form approximately cusps near two ends. Note that here we don’t
assume Γ is a minimizer.

Lemma 3.2 Let Γ ∈ G1 satisfy E(Γ ) ≤M. Γ only intersects with x−axis at z1 = (−a,0) and
z2 = (a,0). For any k > 0, there exists a constant r that depends on k and Γ such that

If z = (x,y) ∈ Γ ∩B(z1,r), then
y

x+a
≤ k,

If z = (x,y) ∈ Γ ∩B(z2,r), then
y

a− x
≤ k.

Remark 3.3 This lemma implies that as z ∈ Γ approaches z1(or z2), the angle between the ray
z− z1(or z− z2) and x−axis converges to 0.

Proof (Proof of Lemma 3.2) Without loss of generality, we only prove the lemma near z1 =
(−a,0). We argue by contradiction. Assume the Lemma is false, there would be a constant
k > 0, a sequence of radiuses {ri}∞

i=1 and a sequence of points {(xi,yi)}∞
i=1 ⊂ Γ such that

ri→ 0,
√
(xi +a)2 + y2

i = ri,
yi

xi +a
= ki ≥ k.
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By Lemma 2.3 we can extend Θ from ΩΓ to the whole R2 such that ‖Θ‖H1(R2) ≤C. For every
i, we introduce the following rescaled functions:

Γi := { z− z1

ri
: z ∈ Γ ∩B(z1,ri)},

Ωi := { z− z1

ri
: z ∈ΩΓ ∩B(z1,ri)},

Θi(z) :=Θ(z1 + riz) for z ∈ B(0,1)

One can easily check the following properties hold

(a) l(Gi)≤C3 for the constant C3 from Proposition 2.4.
(b) Ωi ⊂ B(0,1), |Ωi| ≥ arctank

2 − k
2(1+k2)

=: C6

(c) Γi can be parameterized by (xi(t),yi(t)) such that

xi(0) = 0, xi(l(Γi)) =
1√

1+ k2
i

, yi(0) = 0, y(l(Γi)) =
ki√

1+ k2
i

,

x′i(t)≥ 0, yi(t)≥ 0, |x′i(t)|2 + |y′i(t)|2 = 1, a.e.√
|xi(t + s)− xi(t)|2 + |yi(t + s)− yi(t)|2 ≥

s
C3

for t,s > 0, t + s < l(Γi)

(d) {Θi}∞
i=1 is uniformly bounded in H1(B(0,1)) and we have

lim
i→∞

ˆ
B(0,1)

|∇Θi|2 dx = 0

Passing if necessary to a subsequence, we get

1. χΩi → χΩ weakly in BV (B(0,1)) and strongly in L1(B(0,1)), for some Ω with the volume
lower bound |Ω | ≥C6.

2. Θi→Θ weakly in H1(B(0,1)) and strongly in L2(B(0,1)) for some Θ ∈ H1(B(0,1)).
3. l(Γi)→ l for a constant l > 0.
4. ki→ k0 for some k0 ∈ [k,∞].
5. Γi→ Γ ∗ in the sense of Hausdorff distance for some chord-arc curve Γ ∗. Γ ∗ can be param-

eterized by (x(t),y(t)) such that

(x(0),y(0)) = (0,0),

(x(l),y(l)) =

{
( 1√

1+k2
0
, k0√

1+k2
0
), k0 6=+∞,

(0,1), k0 =+∞.

x′(t)≥ 0, y(t)≥ 0,
1

C3
≤ |x′(t)|2 + |y′(t)|2 ≤ 1, a.e.

6. ∂ eΩ ⊂ Γ ∗∪{(x,0) : 0≤ x≤ 1}∪∂B(0,1), ν · (cosΘ ,sinΘ) = 0 a.e. on ∂ ∗Ω .
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The proof of the above convergence property is the same as Theorem 3.1. By lower semi-
continuity and weak convergence of Θi in H1(B(0,1)) we haveˆ

B(0,1)
|∇Θ |2 dx≤ lim

i→∞

ˆ
B(0,1)

|∇Θi|2 dx = 0

Therefore Θ is a constant function, which contradicts with (5) since the normal vector of ∂Ω

obviously cannot be orthogonal to a constant vector by simple geometry. ut

As for the regularity of Γ away from two endpoints, Proposition 2.5 and Proposition 2.7
tells that ν belongs to VMO and H1/2([0, l]). Unfortunately this is the best regularity result we
have now. Here we give the following natural open problems:

Problem 3.4 Is Γ a C∞ curve, or at least C1?

Problem 3.5 Can one write Γ as a curve of function f (x), such that | d f
dx | ≤C for some constant

C < ∞?

The difficulty in answering these questions is due to the strong non-local character of the
tangential anchoring boundary condition. It prevents us from modifying Γ locally to obtain an
energy competitor and then deduce decay of some energy quantities. Therefore some new ideas
and methods are needed in order to utilize the minimality. We now assume Γ is the graph of
function f ∈C3([−a,a]), and we compute the Euler-Lagrange equation that f should satisfy.

Let Γ = {(x, f (x)) : x ∈ [−a,a]} such that

f (−a) = f (a) = 0, f (x)> 0 for x ∈ (−a,a), and
ˆ a

−a
f (x)dx = 1.

We write ΩΓ as Ω f . Then we consider the perturbation of f (x) and Ω f

ft(x) = f (x)+ tg(x), Ω ft (x) = {(x,y) : x ∈ [−a,a], y ∈ [0, f (x)+ tg(x)]},

where g ∈C∞
0 ([−a,a]). We denote the domain variation by Φ(t,x) such that

Φ(t,Ω f ) = Ω ft , Φ(t,(x,y)) = (x,y+
y

f (x)
tg(x))

By this definition, we can see that Φ(t) satisfies that

Φ(0) = I, ξ (x,y) := Φ
′(0) = lim

t→0+

1
t
(Φ(t)− I) = (0,

y
f (x)

g(x)).

Θ(t,z) solves the equation
−∆Θ(t,z) = 0 in Ω ft ,

Θ(t) = arctan( f ′+ tg′) on {(x, ft(x)) : x ∈ [−a,a]},
Θ(t) = 0 on {(x,0) : x ∈ [−a,a]}.

(3.39)

Here z = (x,y) ∈R2 and f ′, g′ denote the derivatives of functions f ,g with respect to x. The
functional becomes

F( ft) =
ˆ a

−a

√
1+ | f ′t (x)|2 dx+

ˆ a

−a

ˆ ft (x)

0
|∇Θ(t,z)|2 dxdy =: F1( ft)+F2( ft).
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Suppose t→Θ(t) has good differentiability properties(denote by Θ ′ its derivative at 0). We can
differentiate (3.39) inside Ω f and at the boundary, by differentiating the following identity:

For z = (x, f (x)), Θ(t,Φ(t,z)) = arctan( f ′+ tg′).

We obtain

−∆Θ
′ = 0 in Ω f

Θ
′(x, f (x))+∇Θ(x, f (x)) ·ξ =

g′(x)
1+ | f ′(x)|2

on Γ

Θ
′ = 0 on {(x,0) : x ∈ [−a,a]}.

Therefore, Θ ′ is the harmonic function with a Dirichlet boundary condition(depending on f ,g).
We compute the derivative of F( ft) at t = 0. For the first part, we easily obtain

d
dt

F1 =

ˆ 1

−1

f ′g′√
1+ | f ′|2

dx.

For the second part, we have

d
dt

F2 =

ˆ
Ω f

{
2∇Θ

′ ·∇Θ +div(|∇Θ |2ξ )

}
dxdy

=

ˆ
Γ

{
2

∂Θ

∂ν
(

g′

1+ | f ′|2
−∇Θ ·ξ )+ |∇Θ |2(ξ ·ν)

}
dH 1

=

ˆ a

−a

{
2

∂Θ

∂ν

g′√
1+ | f ′(x)|2

−2(∇Θ ·ν) · (∇Θ ·ξ )
√

1+ | f ′(x)|2 +g(x)|∇Θ |2
}

dx

where ν is the normal vector on Γ . Here we have used the boundary condition of Θ ′ and inte-
gration by parts. Also we have used the following formula

ξ (z) = (0,g(x)), ν(z) =
(− f ′(x),1)√
1+ | f ′(x)|2

for z = (x, f (x)) ∈ ∂Ω f .

Let d
dt F( ft) = 0 and take into account the volume constraint, we obtain the following Euler-

Lagrange equation

λ =− d
dx

(
f ′√

1+ | f ′|2

)
−2

d
dx

(
∂Θ

∂ν

1√
1+ | f ′(x)|2

)
− ∂Θ

∂ν

∂Θ

∂y

√
1+ | f ′|2 + |∇Θ |2 (3.40)

where λ is the Lagrange multiplier and the derivative of Θ takes value at (x, f (x)). Note that
(3.40) is complicated and contains some highly non-local terms, such as the Dirichlet-to-Neumann
map ∂Θ

∂ν
. The first part of the equation is the minimal surface equation while the rest comes from

the Dirichlet energy with tangential anchoring condition and domain variation. It will be very
interesting to study the well-posedness of (3.40) and we believe that the key of solving the
regularity problem of Γ is to understand this equation.
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4 Large volume limit and small volume limit

In this section we study the behavior of the minimizer as the volume V tends to be extremely
large or small. A naive idea is to analyze the functional (1.8) from a scaling point of view.
The curve length term is of dimension one while the Dirichlet energy term is of dimension
zero. Therefore, when the volume is very large, the first term will be the dominating term and
the minimizer is expected to be close to a semicircle (minimizes length of graph under fixed
volume constraint). On the other hand, when the volume is very small, the domain is energy
preferable to be very thin to avoid large elastic energy. We will present more rigorous analysis
in the rest of this section.

4.1 Large volume limit

Since we are only interested in the shape of Γ , we will modify Problem 1.5 and restrict a = 1.
First we make the following notations:

G a
V := {Γ ∈ GV : Γ only intersects with x-axis at (a,0), (−a,0)}, G a :=

⋃
V>0

G a
V .

Then we can write Problem 1.5 as

min
a>0

min
Γ∈G a

V

{ˆ
ΩΓ

|∇Θ |2 dxdy+ l(Γ )

}
.

Let x̄ = x
a , ȳ = y

a , Θ̄(x̄, ȳ) =Θ(ax̄,aȳ), the minimization problem becomes

min
a>0

min
Γ∈G 1

V/a2

{ˆ
ΩΓ

|∇Θ |2 dxdy+a · l(Γ )

}
.

Setting

ã =
a√
V
, (4.41)

which leads to

min
ã>0

min
Γ∈G 1

1/ã2

{ˆ
ΩΓ

|∇Θ |2 dxdy+ ã
√

V · l(Γ )

}
. (4.42)

This is equivalent to

min
Γ∈G 1

{ˆ
ΩΓ

|∇Θ |2 dxdy+
√

V
l(Γ )√
|ΩΓ |

}
. (4.43)

When V � 1, we consider the following functional for Γ ∈ G 1:

EV (Γ ) =
1√
V

ˆ
ΩΓ

|∇Θ |2 dxdy+
l(Γ )√
|ΩΓ |
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We denote by ΓV the minimizer of functional EV (Γ ). As V → +∞, one expects that ΓV will
“converge” in some proper sense to Γ ∗ := {(x,

√
1− x2) : x ∈ [−1,1]}, which is well known to

minimize the following functional

F(Γ ) =
l(Γ )√
|ΩΓ |

for Γ ∈ G 1.

We have the following lemma:

Lemma 4.1 lim
V→∞

EV (ΓV ) =
√

2π = F(Γ ∗)

Proof We borrow the idea of ”adding two cusps” from [20]. We modify Γ ∗ near x = −1 and
x = 1 by adding two cusps. For ε << 1, we define a function f̄ ε as follows

f̄ ε(x) =



√
1− x2, |x| ≤

√
1− ε2,

ε

1−ε
−
√

( ε

1−ε
)2− (x+

√
1+ε

1−ε
)2, x ∈ (−

√
1+ε

1−ε
,−
√

1− ε2),

ε

1−ε
−
√

( ε

1−ε
)2− (−x+

√
1+ε

1−ε
)2, x ∈ (

√
1− ε2,

√
1+ε

1−ε
).

Note that here we change the graph near two endpoints of Γ ∗ into two circular arcs to make sure
the derivative of f̄ ε vanishes near two end points (See Figure 3).

(
√

1− ε2,ε)(−
√

1− ε2,ε)

(
√

1+ε

1−ε
,0)

r = ε

1−ε

Fig. 3: The graph of function f̄ ε

Then we set for any ε ∈ (0, 1
4 ),

f ε(x) = f̄ ε(

√
1+ ε

1− ε
x),

Γ
ε = {(x, f ε x) : x ∈ [−1,1]},

Θ
ε(x,y) = arctan

d
dx

f ε(x) for (x,y) ∈ Γ
ε

Θ
ε(x,y) =

arctan d
dx f ε(x)

f ε(x)
· y for (x,y) ∈ΩΓ ε
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It is straightforward to check that Γ ε satisfies the following property:

1. Γ ε ∈ G 1,
2. lim

ε→0
F(Γ ε) =

√
2π ,

3.
´

Ω
Γ ε
|∇Θ ε |2 dydx = O( 1

ε
).

For V � 1, we set ε =V−
1
4 . Then 1√

V

´
Ω

Γ ε
|∇Θ ε |2 dydx = O(V−

1
4 ). This implies

lim
V→∞

EV (ΓV )≤ lim
V→∞

EV (Γ
ε) =

√
2π ≤ lim

V→∞
EV (ΓV ).

ut

Remark 4.2 If lim
v→∞

F(ΓV ) =
√

2π , then

lim
v→∞
|ΩΓV ∆ΩΓ ∗ |= 0, lim

v→∞
dH (ΓV ,Γ

∗) = 0,

where dH is the Hausdorff distance. This is an easy consequence of the stability of isoperimetric
inequality (see [17]).

4.2 Small volume limit

First we prove the following lemma which provides a rough estimate for the Dirichlet energy
when the volume of droplet is sufficiently small.

Lemma 4.3 Take ε� 1, there exist constants c and C which are independent of ε , such that for
any Γ ∈ G 1

ε , it holds that

cε ≤
ˆ

ΩΓ

|∇Θ |2 dxdy≤C ε.

Proof Given Γ ∈ G 1
ε , Θ is the corresponding angle function. We first estimate the lower bound

of energy. We set

Γ̃ = {(x,y) : (x,εy) ∈ Γ }, Θ̃(x,y) = arctan
(

tanΘ(x,εy)
ε

)
for (x,y) ∈Ω

Γ̃
.

Then we can check that |Ω
Γ̃
|= 1 and Θ satisfies the boundary condition (1.7) corresponding to

Γ̃ . Thus there exists a constant c such thatˆ
Ω

Γ̃

|∂yΘ̃ |2 dxdy≥ c (4.44)

Otherwise one can use the similar argument in Section 3 to get a contradiction. On the other
hand, by definition of Γ̃ and Θ̃ we have

ˆ
Ω

Γ̃

|∂yΘ̃ |2 dxdy =
ˆ

ΩΓ

|∂yΘ |2

ε ·
(

1+
∣∣∣ tanΘ(x,y)

ε

∣∣∣2)2

· |cosΘ(x,y)|4
dxdy (4.45)

≤ 1
ε

ˆ
ΩΓ

|∂yΘ |2 dxdy.
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Therefore ˆ
ΩΓ

|∇Θ |2 dxdy≥ cε,

by (4.44) and (4.45). Meanwhile, we can construct a Γ ∈ G 1
ε such that

´
ΩΓ
|∇Θ |2 dxdy≤Cε for

some larger constant C. Set

Γ ={(x, f (x)) : x ∈ [−1,1], f (x) =
ε

2
(cosx+1)}

Θ(x,y) =
arctan f ′(x)

f (x)
y, for x ∈ (−1,1), y ∈ [0, f (x)].

We can directly verify that Γ ∈ G 1
ε and

´
ΩΓ
|∇Θ |2 dxdy≤Cε for some constant C independent

of ε . This proves Lemma 4.3. ut

Remark 4.4 Now we consider the minimization problem (4.42) with V = ε2 � 1. We can de-
termine the appropriate order of ã which is defined in (4.41). Assume ã ∼ O(ε−α) for some
α ∈ R. Then the second term (surface energy term) is of order ε1−α . For the Dirichlet energy
term since Γ ∈ G 1

ε2α , by Lemma 4.3 we know it is of order ε2α . Matching these two terms gives
α = 1

3 . According to the deduction of (4.42) we know that if we don’t fix two endpoints of Γ ,
then the energy-minimizing droplet with volume ε2 will be a elongated drop with length of the
order ε

2
3 and the total energy is of order ε

2
3 .

Next we study the asymptotic shape of the rescaled droplet. For such purpose, we add some
extra regularity assumption on the curve Γ . Consider a subset of G 1, denoted by G̃ 1, which
consists of all the curves in G 1 that are graphs of H2

0 functions,

G̃ 1 := {Γ ∈ G 1, Γ = {(x, f (x))},

where f satisfies
f ∈ H2

0 ([−1,1]), f ′(±1) = 0, f (x)> 0 on (−1,1). (4.46)

Given ε� 1, we define a transformation operator Tε , which compresses Γ ∈ G̃ 1 in the vertical
direction:

Tε(Γ ) = {(x,ε
2
3 f (x)) : x ∈ [−1,1]}, Γ = {(x, f (x))}.

Now after taking V = ε2 in (4.43) and multiplying ε
− 2

3 , we obtain the functional

Eε( f ) = Eε(Γ )

= ε
− 2

3

ˆ
ΩTε (Γ )

|∇ΘTε (Γ )|2 dxdy+ ε
1
3

l(Tε(Γ ))√
ΩTε (Γ )

= ε
− 2

3

ˆ
ΩTε Γ

|∇ΘTε (Γ )|2 dxdy+
l(Tε(Γ ))√

ΩΓ

= ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 f (x)

0
{|∂xΘTε (Γ )|2 + |∂yΘTε (Γ )|2}dydx+

´ 1
−1

√
1+ ε

4
3 | f ′(x)|2 dx√´ 1

−1 f (x)dx
.

(4.47)
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Then for a sequence of positive numbers ε → 0, we consider the sequence of functionals on
H2

0 ([−1,1])

Eε( f ) :=

{
Eε( f ) defined in (4.47), if Γ = {x, f (x)} ∈ G 1,

+∞ otherwise.
(4.48)

And we also define the candidate functional E0( f ) for Γ -convergence,

E0( f ) :=
ˆ 1

−1

| f ′(x)|2

f (x)
dx+

2√´ 1
−1 f (x)dx

, f ∈ H2
0 ([−1,1]).

For the definition and general properties of Γ -convergence, we refer to the book [7]. We have
the following result:

Proposition 4.5 As ε → 0, the sequence {Eε} Γ -converges to E0 in the H2 topology.

Proof First we prove the lower semi-continuity condition, i.e. for any g ∈C1
0 [−1,1] and for any

sequence {gε} in C1
0 [−1,1],

gε → g in H2[−1,1] implies liminf
ε→0

Eε(gε)≥ E0(g). (4.49)

The case liminf
ε→0

Eε(gε) =+∞ is trivial. We therefore assume that liminf
ε→0

Eε(gε) =C <+∞. And

by the C1 convergence of gε , we also suppose that |g′ε(x)| ≤ c for some constant c holds for any
ε > 0 and x ∈ [−1,1]. Now we examine the first term of Eε(gε) more closely

ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 gε (x)

0
{|∂xΘTε (Γ )|2 + |∂yΘTε (Γ )|2}dydx

>ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 gε (x)

0
{|∂yΘTε (Γ )|2}dydx

≥ε
− 2

3

ˆ 1

−1

{
|ΘTε (Γ )(x,ε

2
3 gε(x))|2

ε
2
3 gε(x)

}
dx

=ε
− 2

3

ˆ 1

−1

{
|arctan(ε

2
3 g′ε(x))|2

ε
2
3 gε(x)

}
dx

Since |g′ε(x)| ≤ c, we have that for any σ > 0, there exists εσ > 0 such that for any ε < εσ ,
|arctan(ε

2
3 g′ε(x))| ≥ (1−σ)|ε 2

3 g′ε(x)|. And therefore we have

ε
− 2

3

ˆ 1

−1

{
|arctan(ε

2
3 g′ε(x))|2

ε
2
3 gε(x)

}
dx

≥ε
− 2

3 (1−σ)2
ˆ 1

−1

∣∣∣∣∣ε
4
3 |g′ε(x)|2

ε
2
3 gε(x)

∣∣∣∣∣ dx = (1−σ)2
ˆ 1

−1

|g′ε(x)|2

gε(x)
dx, when ε < εσ
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We obtain

liminf
ε→0

Eε(gε)

= liminf
ε→0

ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 gε (x)

0
{|∂xΘTε (Γ )|2 + |∂yΘTε (Γ )|2}dydx+

´ 1
−1

√
1+ ε

4
3 |g′ε(x)|2 dx√´ 1

−1 gε(x)dx


≥ liminf

ε→0


ˆ 1

−1

|g′ε(x)|2

gε(x)
dx+

2√´ 1
−1 gε(x)dx

≥ E0(g)

Here in the last step we used the C1 convergence of gε and Fatou’s lemma. This gives the proof
of the lower semi-continuity (4.49).

The second part of proving Gamma-convergence is to find a recovery sequence for each f
satisfying (4.46). We can simply take fε = f for any ε > 0. By the same argument in the proof
of the lower semi-continuity, we have

lim
ε→0

Eε( f )≥ E0( f )

On the other hand, take Θε(x,y) =
y

ε
2
3 f (x)

arctan(ε
2
3 f ′(x)) for (x,y) satisfying −1≤ x≤ 1, 0≤

y≤ ε
2
3 f (x). It holds that

ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 f (x)

0
|∂xΘε |2 dydx

=

ˆ 1

−1

ε
4
3

3
f (x)3

∣∣∣∣∣ f ′′

f (1+ ε
4
3 | f ′|2)

− f ′ arctan(ε
2
3 f ′)

ε
2
3 f 2

∣∣∣∣∣
2

dx

∼O(ε
4
3 ).

ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 f (x)

0
|∂yΘε |2 dydx

=

ˆ 1

−1

|arctan(ε
2
3 f ′)|2

ε
4
3 f

dx∼ O(1).

After comparing the above two identities, we conclude that

ε
− 2

3

ˆ 1

−1

ˆ
ε

2
3 f (x)

0
|∇Θε |2 dydx+

´ 1
−1

√
1+ ε

4
3 | f ′(x)|2 dx√´ 1

−1 f (x)dx

=(1+o(1))
ˆ 1

−1

| f ′|2

f
dx+

2√´ 1
−1 f (x)dx

+o(1) = E0( f )+o(1)

Therefore we obtain lim
ε→0

Eε( f ) = E0( f ) for any f ∈ H2
0 ([−1,1]). The proof is complete. ut
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Proposition 4.5 inspires us to study the following minimization problem

min
g∈H2

0 ([−1,1])

{
2√´ 1

−1 g(x)dx
+

ˆ 1

−1

|g′(x)|2

g(x)
dx
}

(4.50)

Let g = h2, the problem becomes

min
h2∈H2

0 [−1,1]

{
2√´ 1

−1 h(x)2 dx
+4
ˆ 1

−1
|h′(x)|2 dx

}
(4.51)

The Euler Lagrange equation is

h′′(x) =− h(x)

4(
´ 1
−1 h2 dx)

3
2
, h ∈ H2

0 [−1,1].

This ODE can be solved explicitly,

h(x) = π
− 2

3 cos
π

2
x

and therefore
g(x) = π

− 4
3
(1+ cosπx

2
)

is the minimizer for the minimization problem (4.50). Using the above Γ -convergence result,
we conclude that when the volume V = ε2 << 1, the approximated profile of Γ is{(

x,ε
4
3 π
− 2

3 (
1+ cos(ε−

2
3 π

1
3 x)

2
)

)
: x ∈ [−ε

2
3 π

2
3 ,ε

2
3 π

2
3 ]

}
.
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