102 research outputs found

    Tournament Directed Graphs

    Get PDF
    Paired comparison is the process of comparing objects two at a time. A tournament in Graph Theory is a representation of such paired comparison data. Formally, an n-tournament is an oriented complete graph on n vertices; that is, it is the representation of a paired comparison, where the winner of the comparison between objects x and y (x and y are called vertices) is depicted with an arrow or arc from the winner to the other. In this thesis, we shall prove several results on tournaments. In Chapter 2, we will prove that the maximum number of vertices that can beat exactly m other vertices in an n-tournament is min{2m + 1,2n - 2m - 1}. The remainder of this thesis will deal with tournaments whose arcs have been colored. In Chapter 3 we will define what it means for a k-coloring of a tournament to be k-primitive. We will prove that the maximum k such that some strong n-tournament can be k-colored to be k-primitive lies in the interval [(n-12), (n2) - [n/4]). In Chapter 4, we shall prove special cases of the following 1982 conjecture of Sands, Sauer, and Woodrow from [14]: Let T be a 3-arc-colored tournament containing no 3-cycle C such that each arc in C is a different color. Then T contains a vertex v such that for any other vertex x, x has a monochromatic path to v

    A revisit to Bang-Jensen-Gutin conjecture and Yeo's theorem

    Full text link
    A path (cycle) is properly-colored if consecutive edges are of distinct colors. In 1997, Bang-Jensen and Gutin conjectured a necessary and sufficient condition for the existence of a Hamilton path in an edge-colored complete graph. This conjecture, confirmed by Feng, Giesen, Guo, Gutin, Jensen and Rafley in 2006, was laterly playing an important role in Lo's asymptotical proof of Bollob\'as-Erd\H{o}s' conjecture on properly-colored Hamilton cycles. In 1997, Yeo obtained a structural characterization of edge-colored graphs that containing no properly colored cycles. This result is a fundamental tool in the study of edge-colored graphs. In this paper, we first give a much shorter proof of the Bang-Jensen-Gutin Conjecture by two novel absorbing lemmas. We also prove a new sufficient condition for the existence of a properly-colored cycle and then deduce Yeo's theorem from this result and a closure concept in edge-colored graphs.Comment: 13 pages, 5 figure

    Tournaments with kernels by monochromatic paths

    Get PDF
    In this paper we prove the existence of kernels by monochromatic paths in m-coloured tournaments in which every cyclic tournament of order 3 is atmost 2-coloured in addition to other restrictions on the colouring ofcertain subdigraphs. We point out that in all previous results on kernelsby monochromatic paths in arc coloured tournaments, certain smallsubstructures are required to be monochromatic or monochromatic with atmost one exception, whereas here we allow up to three colours in two smallsubstructures

    Properly Edge-colored Theta Graphs in Edge-colored Complete Graphs

    Get PDF
    With respect to specific cycle-related problems, edge-colored graphs can be considered as a generalization of directed graphs. We show that properly edge-colored theta graphs play a key role in characterizing the difference between edge-colored complete graphs and multipartite tournaments. We also establish sufficient conditions for an edge-colored complete graph to contain a small and a large properly edge-colored theta graph, respectively
    • …
    corecore