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Abstract
With respect to specific cycle-related problems, edge-colored graphs can be considered
as a generalization of directed graphs.We show that properly edge-colored theta graphs
play a key role in characterizing the difference between edge-colored complete graphs
and multipartite tournaments. We also establish sufficient conditions for an edge-
colored complete graph to contain a small and a large properly edge-colored theta
graph, respectively.
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1 Introduction

All graphs considered in this paper are finite, simple, and undirected unless specified
explicitly as directed graphs. For terminology and notation not defined here, we refer
the reader to [3].

Let G be a graph with vertex set V (G) and edge set E(G). For a proper subset
S of V (G), we use G − S to denote the subgraph of G induced by V (G)\S. For an
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edge uv ∈ E(G), G − uv is the graph with vertex set V (G) and edge set E(G)\{uv}.
For a proper subgraph H of G, we use G − H to denote the graph G − V (H). An
edge-coloring of G is a mapping col : E(G) �→ N, where N is the set of natural
numbers. For a, b ∈ N with a ≤ b, we use [a, b] to denote {i ∈ N | a ≤ i ≤ b}.

A graph G with an assigned edge-coloring is called an edge-colored graph (or
throughout this paper simply a colored graph). We say that a colored graph G is a
properly colored graph (or PC graph for short) if each pair of adjacent edges (i.e.,
edges that have precisely one end vertex in common) inG are assigned distinct colors.
Let G be a colored graph. For an edge e ∈ E(G), we use col(e) to denote the color of
e. For a subgraph H of G, we denote by col(H) the set of colors that are assigned to
the edges of E(H). The cardinality of col(G) is called the color number of G. We say
a color appears (at least k times) at a vertex v ∈ V (G) if it is assigned to at least one (at
least k) of the edges incident with v. For a vertex v ∈ V (G), we denote by Nc

G(v) the
set of colors that are assigned to the edges incident with v. We call dcG(v) = |Nc

G(v)|
the color degree of v, and we use δc(G) = min{dcG(v) | v ∈ V (G)} to denote the
minimum color degree of G. When there is no ambiguity, we often write Nc(v) for
Nc
G(v) and dc(v) for dcG(v).
The existence of PC cycles in different types of colored graphs has been studied

extensively during the last decades. Early research on the existence of PC Hamilton
cycles in fact dates back to the 1970s [2,4,5,21], but this topic has also attracted new
interest more recently [1,19]. Similarly, the existence of PC triangles has been studied
by different research groups during the same period as well [6,8,10–12]. These topics
have been dealt with for general graphs [6,9,11,12,16–18,23] but also for complete
graphs [1,2,4–8,10,14,15,19,21] and for complete bipartite graphs [1,4,15]. Moreover,
the theory involved in the study of PC cycles in edge-colored graph is closely related to
the theory of directed cycles in directed graphs. In several proofs of theorems related
to PC cycles, the analogy with directed graphs has been applied, and these techniques
have often been used in constructions of extremal examples or in dealingwith extremal
cases. In fact, in this sense edge-colored graphs can be regarded as a generalization of
directed graphs. We recall the following constructions for supporting evidence of this
view.

Construction 1.1 Let D be a directed graph with vertex set {v1, v2, . . . , vn}. Color
each arc e = viv j with color i . Then, ignoring the orientation of the arcs, we obtain a
colored graph G.

Construction 1.2 Let D be a multipartite tournament with partite sets V1, V2, . . . , Vt
and arc set A(D). Construct a colored complete graph G with V (G) = V (D), as
follows. Add edges uv with color i joining all vertex pairs u, v ∈ Vi , and add edges
uv with color j if and only if uv ∈ A(D) with u ∈ Vj and v ∈ Vi (i �= j).

Construction 1.3 Let G be a colored graph (not necessarily complete) admitting a
mapping f : V (G) �→ col(G) such that col(uv) = f (u) or col(uv) = f (v) for each
edge uv ∈ E(G). Construct a directed graph D with V (D) = V (G) and uv ∈ A(D)

if and only if col(uv) = f (u) and col(uv) �= f (v).

When Constructions 1.1, 1.2 and 1.3 apply, PC cycles in G are in a one to one corre-
spondence with directed cycles in D. In particular, using Construction 1.2, for vertices
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u and v belonging to the same partite set, the edge uv is not contained in any PC cycles
in G. These observations are implied by the following fact (the proof of which is obvi-
ous and omitted).

Fact 1.1 Let G be a colored graph. If there exists a mapping f : V (G) �→ col(G)

such that col(uv) = f (u) or col(uv) = f (v) for each edge uv ∈ E(G), then the
following statements hold:

(i) G contains no PC cycle passing through an edge e = xy satisfying f (x) = f (y);
(ii) For each PC cycle C = v1v2 . . . v�v1 (� ≥ 3) in G, either f (vi ) = col(vivi+1)

for all i ∈ [1, �] or f (vi ) = col(vivi−1) for all i ∈ [1, �] (where the indices are
taken modulo �).

Based on Fact 1.1 and Construction 1.2, we introduce the following definition.

Definition 1.1 A colored complete graph G is essentially a multipartite tournament
if there exists a mapping f : V (G) �→ col(G) such that col(uv) = f (u) or
col(uv) = f (v) for each edge uv ∈ E(G).

In [14], it is revealed that if a colored complete graphG contains nomonochromatic
edge-cut and there exists a vertex v which is not contained in any PC cycles in G,
then a substructure of G is essentially a multipartite tournament. Based on the above
observations on the intimate relationship between colored graphs and directed graphs,
one may wonder what the actual difference is between these two classes of graphs.
This was ourmainmotivation to study the difference between colored complete graphs
and multipartite tournaments. It turns out that PC theta graphs play a key role in
characterizing this difference.

Definition 1.2 A theta graph Θk,�,m is a graph obtained by joining two vertices
by three internally-disjoint paths of lengths k, � and m. We use {v0v1 . . . vk,

u0u1 . . . u�, w0w1 . . . wm} with v0 = u0 = w0 and vk = u� = wm to denote a
Θk,�,m .

Note that in a theta graph we allow one of the paths to have length 1, i.e., to consist of
one edge, but we do not allow multiple edges.

Observation 1.1 Let G be a colored graph (not necessarily complete). If there exists
a mapping f : V (G) �→ col(G) such that col(uv) = f (u) or col(uv) = f (v) for
each edge uv ∈ E(G), then G contains no PC theta graph.

Proof Define a directed graph D with V (D) = V (G) and uv ∈ A(D) if and only
if col(uv) = f (u) and col(uv) �= f (v). Clearly, D is a multipartite digraph. Sup-
pose now, to the contrary, that G contains a subgraph H which is a PC Θk,�,m . Let
P = v0v1 . . . vk , Q = u0u1 . . . u� and R = w0w1 . . . wm be the three internally-
disjoint PC paths in H with v0 = u0 = w0 and vk = u� = wm . Then P and Q
form a PC cycle C , which corresponds to a directed cycle in D (by Fact 1.1). With-
out loss of generality, assume that v0v1 ∈ A(D). Then u�u�−1 ∈ A(D) and by the
definition of D, we know that f (v0) = col(v0v1) and f (u�) = col(u�u�−1), i.e.,
f (w0) = col(v0v1) and f (wm) = col(u�u�−1). Since col(w0w1) �= col(v0v1), we
have col(w0w1) �= f (w0). This means that col(w0w1) = f (w1). Repeating this
argumentation, we get that col(wm−1wm) = f (wm) = col(u�u�−1). This contradicts
that H is a PC theta graph. �	
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Observation 1.1 clearly implies the following: if a colored complete graph G is essen-
tially a multipartite tournament, then G contains no PC theta graph. On the other
hand, it is not difficult to observe that the reverse does not hold in general: not every
colored complete graph without PC theta (sub)graphs is essentially a multipartite tour-
nament (see Fig. 1a, b for an example). Before we go into more detail on the difference
between colored complete graphs and multipartite tournaments and the role that PC
theta graphs play in this, we first introduce another definition and some observations.

Definition 1.3 Let G be a colored graph. If δc(G − S) < δc(G) for each nonempty
proper subset S ⊂ V (G), then we say G is color degree critical (or CD-critical for
short).

Obviously, the only CD-critical colored complete graph of minimum color degree 1
is a colored K2.Wealsoobtain a clear structure forCD-critical colored complete graphs
with minimum color degree 2. This structure is based on the following observation on
the existence of small PC cycles in colored complete graphs.

Observation 1.2 (Li et al. [14]) Let G be a colored complete graph with δc(G) ≥ 2.
Then G contains a PC cycle of length 3 or 4.

Observation 1.3 Let G be a CD-critical colored complete graph with δc(G) = 2.
Then G is either a PC triangle or one of the graphs in Fig. 1.

Proof Let G be a CD-critical colored complete graph with δc(G) = 2. Then, by using
Observation 1.2, we know thatG contains either a PC triangle or a PC cycle of length 4.
Since a PC cycle has minimum color degree 2, using Definition 1.3, we conclude that
G is either a PC triangle or a colored K4 containing a PC cycle of length 4. If G ∼= K4
and G contains a monochromatic edge-cut, then G must be isomorphic to the graph in
Fig. 1a or b. The remaining case is that G ∼= K4, and G contains no monochromatic
edge-cut and no PC triangle. It is easy to verify thatG must be isomorphic to the graph
in Fig. 1c. �	

Our main result characterizes the difference between CD-critical colored complete
graphs and essentially multipartite tournaments in terms of the (non)existence of PC
theta graphs, in the following way.

Theorem 1.4 Let G be a CD-critical colored complete graph. Then G contains no PC
theta graph if and only if G is essentially a multipartite tournament, unless δc(G) = 2
and G is a colored K4 containing a monochromatic edge-cut.

(a) (b) (c)

Fig. 1 CD-critical K4’s with minimum color degree 2. Here, different shadings indicate different colors
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In the exceptional case with δc(G) = 2, G is either isomorphic to the graph in
Fig. 1a or to the graph in Fig. 1b, as we have seen earlier. We postpone the rest of the
proof of Theorem 1.4 to Sect. 3. The following infinite class of examples shows that,
in Theorem 1.4, the restriction that G is CD-critical cannot be omitted.

Example 1.1 Let F be isomorphic to the graph in Fig. 1a. Given integers t ≥ 3 and
n ≥ 2t −1, let T be a tournament satisfying V (T ) = {v1, v2, . . . , vn}, δ−(T ) = t −1
and δ+(T ) ≥ 1. Using Construction 1.1, we can construct a colored complete graph
H from T . Let G be the colored complete graph obtained by joining H and F (adding
all edges between vertices of H and vertices of F) such that col(uvi ) = i for all
u ∈ V (F) and i ∈ [1, n].

In Example 1.1, since H is an induced subgraph of G and δc(H) = δc(G), the
graph G is clearly not CD-critical. It is easy to verify that G is not a colored K4 and
that G contains no PC theta graph (by observing that F and H , respectively, contain
no PC theta graph, and every edge between F and H is not contained in any PC
cycles). It is also easy to check that there is no mapping f : V (G) �→ col(G) such that
col(uv) = f (u) or col(uv) = f (v) for each edge uv ∈ E(G). So,G is not essentially
a multipartite tournament.

We conclude this introductory section with two other observations that motivated
our interest in the existence of PC theta graphs. Let x, y be the two vertices of degree 3
in a PC theta graph Θk,�,m . Then there are three internally-disjoint PC paths between
x and y with starting colors distinct and ending colors distinct. This can be regarded as
“local PC connectivity”, analogous to the concept of “local connectivity” in undirected
graphs (without an edge-coloring). This “local PC connectivity” can help forming
larger PC structures, in the following sense. Firstly, consider one PC theta graph H
in a colored complete graph G. Assume that P , Q and R are the three internally-
disjoint PC paths in H . Then it is easy to verify that for each pair of distinct vertices
x, y ∈ V (G) \ V (H), one of x Py, xQy and x Ry is a PC path. Secondly, suppose
we have vertex-disjoint PC theta graphs H1, H2, . . . , Hk in a colored complete graph
G, and let xi , yi ∈ V (Hi ) satisfy dHi (xi ) = dHi (yi ) = 3 for all i ∈ [1, k]. Then, it is
again easy to verify that there exists a PC cycle in G containing ∪k

i=1{xi , yi }. Based
on these observations, the existence of PC theta graphs (of small order) might have
some implications for finding large PC cycles.

The rest of the paper is organized as follows. In the next section, some additional
terminology and notation will be introduced, as well as some auxiliary lemmas that
we need for our proof of Theorem 1.4. This proof is presented in Sect. 3.

In Sect. 4, we present and prove the following result, involving a sufficient color
number condition for the existence of small PC theta graphs in colored complete
graphs. Let G be a colored Kn . If |col(G)| ≥ n + 1, then G contains a PC Θ1,2,2 or a
PC Θ1,2,3. We also discuss the tightness of the condition.

In Sect. 5, the following color degree condition for the existence of large PC theta
graphs is obtained. Let G be a colored Kn . If δc(G) ≥ n+1

2 , then one of the following
statements holds:

(i) dc(u) = n+1
2 for each vertex u ∈ V (G) and G contains a PC Hamilton cycle;

(ii) each maximal PC cycle C in G has a chord uv such that {uv, uC+v, uC−v} is a
PC theta graph.
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This result is related to the following conjecture of Fujita and Magnant [7]: Let G be a
colored Kn . If δc(G) ≥ n+1

2 , then each vertex ofG is contained in a PC cycle of length
� for all � ∈ [3, n]. Our result also indicates a possible approach to obtaining results on
the existence of PC Hamilton cycles in colored complete graphs. As a consequence,
we obtain the following result. Let G be a colored Kn . If δc(G) ≥ n

2 + 1, then each
vertex of G is contained in a PC theta graph Θ1,k,m such that k + m ≥ δc(G).

We conclude the paper in Sect. 6 with some additional remarks and open questions.

2 Preliminaries

Let G be a graph and H a subgraph of G. We use G[H ] to denote the subgraph of G
induced by V (H). LetC be a cycle with a fixed orientation. For vertices x, y ∈ V (C),
xC+y denotes the segment on C from x to y along the direction specified by the
orientation of C , and xC−y the segment on C along the reverse direction. For a vertex
v on C , denote by v+ and v− the immediate successor and predecessor of v on C ,
respectively. We set v++ = (v+)+ and v−− = (v−)−. Similarly, for vertices x and y
on a path P , the segment on P between x and y is denoted by x Py. A graph obtained
from two disjoint cycles by joining them by one connecting path, by one edge, or by
identifying two vertices is called a generalized bowtie (or g-bowtie for short). See Fig.
2 for the three possible structures of a g-bowtie that we distinguish.

Let G be a colored graph.
For a color i ∈ col(G), we denote by Gi the spanning subgraph of G with edge

set {e | col(e) = i}. For disjoint subsets S and T of V (G), we let EG(S, T ) be the set
of edges between S and T , and let colG(S, T ) be the set of colors that are appearing
on EG(S, T ) in G. If S = {v}, we often write EG(v, T ) and colG(v, T ), respectively,
instead of EG({v}, T ) and colG({v}, T ). For two vertex-disjoint subgraphs F and H
of G, we use colG(F, H) to denote colG(V (F), V (H)). When there is no ambiguity,
we often write col(S, T ) for colG(S, T ) and col(F, H) for colG(F, H). For each
vertex v ∈ V (G), we define

DomG(v) = {u ∈ V (G) | dcG−v(u) = dcG(u) − 1}

and

Dom∗
G(v) = {u ∈ V (G) | dcG−v(u) = δc(G) − 1},

and we call these sets the dominating set and special dominating set of v in G, respec-
tively. Obviously, for each vertex v ∈ V (G), Dom∗

G(v) ⊆ DomG(v).

· · ·

(a) (b) (c)

Fig. 2 Three different types of g-bowties
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We continue by presenting the following lemma that we need as a tool in the later
proofs.

Note that we use C1 and C2 below (and also Ci in the sequel) to denote arbitrary
cycles, so Ci does not indicate a cycle of length i in this paper.

Lemma 2.1 Let H be a PC g-bowtie in a colored complete graph G. Let C1, C2
and P be the two cycles and the connecting path in H with V (C1) ∩ V (P) = {x}
and V (C2) ∩ V (P) = {y} (See Fig. 3). If G[H ] contains no PC theta graph and
there exist an orientation of C1 and a vertex u on C1 such that u ∈ DomG[H ](u−),
u+ ∈ DomG[H ](u) and u, u+ �= x, then for each vertex v ∈ V (C2) \ {y} and each
orientation of C2, the following three statements hold:

(i) col(vu) = col(uu+) and col(vu+) = col(u+u++);
(ii) {col(vu), col(vu+)} = {col(vv+), col(vv−)};
(iii) v /∈ DomG[H ](v+) ∪ DomG[H ](v−) and v /∈ DomG(v+) ∪ DomG(v−).

Proof Let v be a vertex on C2 distinct from y. Since u ∈ DomG[H ](u−),
we have col(vu) �= col(u−u). Suppose that col(vu) �= col(uu+). Since
col(vv−) �= col(vv+), either {xC+

1 u, xC−
1 u, x PyC+

2 v}or {xC+
1 u, xC−

1 u, x PyC−
2 v}

is a PC theta graph, a contradiction. So we have col(vu) = col(uu+). Similarly, we
obtain col(vu+) = col(u+u++). If there exists a vertex w ∈ {u, u+} such that
col(wv) /∈ {col(vv+), col(vv−)}, then {vwC−

1 x Py, vC+
2 y, vC−

2 y} is a PC theta
graph, a contradiction. So, we conclude that {col(vu), col(vu+)} = {col(vv+),

col(vv−)}. Thus both the colors col(vv+) and col(vv−) appear at least twice at v in
G[H ] (and also in G), i.e., v /∈ DomG[H ](v+) ∪ DomG[H ](v−) and v /∈ DomG(v+)

∪ DomG(v−). �	

3 Colored Complete GraphsWithout PC Theta Graphs

In this section, we present the proof of Theorem 1.4. For convenience, we repeat the
statement of the theorem.

Theorem 1.4 Let G be a CD-critical colored complete graph. Then G contains no PC
theta graph if and only if G is essentially a multipartite tournament, unless δc(G) = 2
and G is a colored K4 containing a monochromatic edge-cut.

Wealready noticed thatObservation 1.1 implies the following: if a colored complete
graph G is essentially a multipartite tournament, then G contains no PC theta graph.
So, this establishes the “if” part of Theorem 1.4. For the “only if” part, we deliver

Fig. 3 The structure of H in
Lemma 2.1 x y

v

C1 C2

u+

u−

u

P

v+

v−

123



Graphs and Combinatorics

the proof in three steps. Lemma 3.1 below deals with the case that δc(G) ≥ 3 and
|col(v∗, DomG(v∗))| ≥ 2 for some vertex v∗ ∈ V (G). Lemma 3.2 implies a structural
property ofG when δc(G) ≥ 3 and |col(v, DomG(v))| = 1 for each vertex v ∈ V (G).
Based on this structural property, an auxiliary oriented graph is constructed, which
helps to find a function f in order to complete the proof of Theorem 1.4.

Since the two lemmas require rather long technical proofs, we first present the two
lemmas without proofs, and then proceed to use them in order to prove Theorem 1.4.
The remaining part of this section is then devoted to the proofs of the two lemmas.

Lemma 3.1 Let G be a CD-critical colored complete graph with δc(G) ≥ 3. If G
contains noPC theta graph and |col(v∗, DomG(v∗))| ≥ 2 for some vertex v∗ ∈ V (G),
then G is essentially a multipartite tournament.

Lemma 3.2 Let G be a CD-critical colored complete graph with δc(G) ≥ 3. If G con-
tains no PC theta graph and |col(v, DomG(v))| = 1 for each vertex v ∈ V (G),
then for each edge xy ∈ E(G) satisfying dcG−x (y) = δc(G) − 1, we have
dcG−y(x) ≥ δc(G).

Next, we show how to prove Theorem 1.4 by applying Lemmas 3.1 and 3.2.

Proof of Theorem 1.4 “⇐�”: As we noticed, the proof is obvious by Observation 1.1.
“�⇒”: First, we deal with the case that δc(G) ≤ 2. As we observed earlier, the

only CD-critical colored complete graph with δc(G) = 1 is a colored K2, which is
essentially a multipartite tournament. Let G be a CD-critical colored complete graph
with δc(G) = 2. Then by Observation 1.3, G must be a PC triangle or a colored
K4 as in Fig. 1. If G is a PC triangle, then obviously, G is essentially a multipartite
tournament. If G ∼= K4 and G contains no monochromatic edge-cut, then G is the
graph in Fig. 1c , which is essentially a multipartite tournament.

Now, assume that δc(G) ≥ 3. Since G is CD-critical, for each vertex v ∈ V (G),
either |col(v, DomG(v))| ≥ 2 or |col(v, DomG(v))| = 1. If there exists a vertex
v ∈ V (G) with |col(v, DomG(v))| ≥ 2, then the proof is completed by directly
applying Lemma 3.1. Next, we focus on the case that |col(v, DomG(v))| = 1 for
each vertex v ∈ V (G). Let f (v) be the unique color in col(v, DomG(v)). Since G is
CD-critical, for each vertex v ∈ V (G), we actually have Dom∗

G(v) �= ∅.
Now define a directed graph D with V (D) = V (G) and A(D)

= {uv | v ∈ Dom∗
G(u)}. Then D is a directed graph with δ+(D) ≥ 1 and

for each arc uv ∈ A(D), the color col(uv) = f (u) appears only once at v. Let
C1,C2, . . . ,Ct (t ≥ 1) be a maximal collection of vertex-disjoint directed cycles
in D such that D − ∪t

i=1V (Ci ) contains no directed cycles. By Lemma 3.2, we
know that if uv ∈ A(D), then vu /∈ A(D). Thus |Ci | ≥ 3 for all i ∈ [1, t]. Let
R = V (G) \ (∪t

i=1V (Ci )) and let the direction of each cycle Ci be the direction in D.
First we will show that col(uv) = f (u) or col(uv) = f (v) for each pair of distinct

vertices u, v ∈ ∪t
i=1V (Ci ). If v is the successor of u on a cycle C ∈ {Ci | i ∈ [1, t]},

then by the construction of D, we know that v ∈ Dom∗
G(u). Thus col(uv) = f (u). If u

and v on a cycleC ∈ {Ci | i ∈ [1, t]} are not consecutive vertices, then by considering
the theta graph {uv, uC+v, uC−v} (See Fig. 4a), we know that col(uv) = f (u) or
col(uv) = f (v). Now let u ∈ V (Ci ) and v ∈ V (C j ) for some i, j ∈ [1, t] and
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u v

C

(a)

v

v−

v−−
Ci Cj

u

u−

u−−

(b)

Fig. 4 Two cases when u, v ∈ ∪t
i=1V (Ci ) a u, v ∈ V (Ci ), b u ∈ Ci , v ∈ C j and i �= j

x

up

x−
x−−

up−1

ui(=v) u1
u0(=u)

C

· · · · · ·

(a)

x

up

x−
x−−

up−1

u1 v0(=v)

u0(=u)
· · ·

C

(b)

Fig. 5 Two cases when V (P) ∩ V (Q) �= ∅ a v ∈ V (P), b v /∈ V (P), u /∈ V (Q) and u1 = v1

i �= j . Suppose that col(uv) �= f (u) and col(uv) �= f (v) (See Fig. 4b). Then Ci ,
C j and the path uv form a PC g-bowtie. By applying Lemma 2.1 to v−, we obtain
v− /∈ DomG(v−−), a contradiction. So col(uv) = f (u) or col(uv) = f (v) for each
pair of distinct vertices u, v ∈ ∪t

i=1V (Ci ).

If R = ∅, then the proof of Theorem 1.4 is already complete. Now assume that
R �= ∅. It remains to show that col(uv) = f (u) or col(uv) = f (v) for each pair
of distinct vertices u ∈ R and v ∈ V (G). For each vertex u ∈ R, there must
exist a directed path from u to ∪t

i=1V (Ci ) in D (otherwise, since δ+(D) ≥ 1, we
can obtain a directed cycle in D[R], a contradiction). Let P = u0u1u2 . . . u p and
Q = v0v1v2 . . . vq , respectively, be the directed paths in D from u to ∪t

i=1V (Ci ) and
from v to ∪t

i=1V (Ci ) with u p, vq ∈ ∪t
i=1V (Ci ), u0 = u ∈ R and v0 = v ∈ V (G).

In particular, if v ∈ ∪t
i=1V (Ci ), then Q consists of the vertex v. We will show that

col(uv) = f (u) or col(uv) = f (v) by considering the following three cases.

Case 1 V (P) ∩ V (Q) = ∅.
In this case, first suppose u p, vq ∈ V (C) for some cycleC ∈ {Ci | i ∈ [1, t]}. Since

{u pC+vq , u pC−vq , u p Pu0v0Qvq} is not a PC theta graph, we have col(uv) = f (u)

or col(uv) = f (v). Next, suppose u p ∈ V (Ci ) and vq ∈ V (C j ) for some i, j ∈ [1, t]
with i �= j . Assume, to the contrary, that col(uv) �= f (u) and col(uv) �= f (v). Then
Ci ,C j and u p Pu0v0Qvq form a PC g-bowtie. Let z be a vertex in V (C j )\{vq}. Apply
Lemma 2.1 to z. We obtain z /∈ DomG(z−), a contradiction.

Case 2 v ∈ V (P) or u ∈ V (Q).

Assume that v ∈ V (P). If v = u1, then we have col(uv) = f (u). If v = ui for
some i ∈ [2, p] (See Fig. 5a), then p ≥ 2. Assume that u p ∈ V (C) for some cycle
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C ∈ {Ci | i ∈ [1, t]}. Let x = u p. Suppose, to the contrary, that col(uv) �= f (u)

and col(uv) �= f (v). Then u0u1 . . . uiu0 is a PC cycle. Together with C and the path
uiui+1 . . . u p, we obtain a PC g-bowtie (it is possible that ui = u p = x). Apply
Lemma 2.1 to u1. We get u1 /∈ DomG(u0), a contradiction.

Case 3 v /∈ V (P), u /∈ V (Q) and V (P) ∩ V (Q) �= ∅.
In this case, assume that

there exist i ∈ [1, p] and j ∈ [1, q] such that ui = v j , {u0, u1, . . . , ui−1}
∩ V (Q) = ∅ and {v0, v1, . . . , v j−1} ∩ V (P) = ∅.

Let C be the cycle in {Ci | i ∈ [1, t]} such that u p ∈ V (C). Let
x = u p. Suppose, to the contrary, that col(uv) �= f (u) and col(uv) �= f (v).
Then v jv j−1 . . . v0u0u0u1 . . . ui−1ui is a PC cycle. Together with C and the path
uiui+1 . . . u p, we obtain a PC g-bowtie (it is possible that v j = ui = u p = x). If
i ≥ 2, then apply Lemma 2.1 to u1.We get u1 /∈ DomG(u0), a contradiction. If j ≥ 2,
then apply Lemma 2.1 to v1. We get v1 /∈ DomG(v0), a contradiction. Now the only
case left is that i = j = 1 (See Fig. 5b). Apply Lemma 2.1 to v0 and u0, respectively.
We get

{col(xx−), col(x−x−−)} = {col(v0u0), col(v0u1)}

and

{col(xx−), col(x−x−−)} = {col(u0v0), col(u0u1)}.

Thus col(v0u1) = col(u0u1). This contradicts that u1 ∈ Dom∗
G(u0).

This completes the proof of Theorem 1.4. �	
In the remaining part of this section, we present the proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1 By contradiction. Suppose that G is a counterexample to Lemma
3.1. Since |col(v∗, DomG(v∗))| ≥ 2, we can choose vertices x, y ∈ DomG(v∗) such
that col(v∗x) �= col(v∗y). Let α = col(v∗x) and β = col(v∗y). Then α and β appear
only once at x and y, respectively. Let c0 = col(xy). Then c0 /∈ {α, β}. Considering
the symmetry of x and y, without loss of generality, assume that dc(x) ≥ dc(y). If
dc(x) = dc(y), then assume that dGc0 (x) ≤ dGc0 (y). Let p = dc(x) − 2. Since
δc(G) ≥ 3, we have p ≥ 1. Let Nc(x) = {α, c0, c1, c2, . . . , cp}. Define

Si = {u ∈ V (G) | col(xu) = ci } for i ∈ [1, p],
S0 = {u ∈ V (G) \ {y} | col(xu) = c0},
Zα = {z ∈ S0 | col(v∗z) = α},
Zβ = {z ∈ S0 | col(v∗z) = β}, and

Z0 = {z ∈ S0 | col(v∗z) = c0}.

Then {v∗, x, y}, S0, S1, S2, . . . , Sp form a partition of V (G), where it is not necessary
but possible that β ∈ {ci | i ∈ [1, p]} and S0 = ∅. Since S0 has a different property
than Si (i ∈ [1, p]), we often treat S0 separately in the sequel. We will prove Lemma

123



Graphs and Combinatorics

3.1 by analysing the colors between the parts. Our proof is based on a large number
of claims, each of which is followed by a proof. �	
Claim 1 col(y, Si ) ⊆ {c0, ci } and col(v∗, Si ) ⊆ {α, β} ∪ {ci } for all i ∈ [1, p].
Proof For i ∈ [1, p] and a vertex u ∈ Si , since {xy, xuy, xv∗y} and {xv∗, xyv∗, xuv∗}
are not PC theta graphs, we have col(uy) ∈ {c0, ci } and col(uv∗) ∈ {α, β} ∪ {ci }. �	
Claim 2 col(y, S0) ⊆ {c0}, i.e., col(y, S0) = {c0} when S0 �= ∅.
Proof Suppose to the contrary that there exists a vertex z ∈ S0 such that col(yz) �= c0.
If there exists a vertex vi ∈ Si for some i ∈ [1, p] such that col(vi y) = c0,
then {xv∗y, xzy, xvi y} is a PC Θ2,2,2, a contradiction. So by Claim 1, we have
col(y, Si ) = {ci } for all i ∈ [1, p]. Thus {ci | i ∈ [0, p]} ⊆ Nc(y). Note that β

appears only once at y. We have β /∈ {ci | i ∈ [0, p]}. Thus dc(y) ≥ p + 2 = dc(x)
and

{u ∈ V (G) | col(uy) = c0} ⊆ (S0 − z) ∪ {x}.

Recalling that dc(x) ≥ dc(y), we have dc(x) = dc(y) and dGc0 (y) ≤ |S0| < |S0|
+ 1 = dGc0 (x), a contradiction. �	
Claim 3 If there exists a vertex u ∈ ∪p

i=1Si such that col(yu) = c0, then col(v∗, S0)
⊆ {α, β, c0} and col(S j , S0) ⊆ {c j , c0} for all j ∈ [1, p].
Proof For a vertex z ∈ S0, consider the theta graph {xv∗, xuyv∗, xzv∗}. We have
col(zv∗) ∈ {α, β, c0}. Thus col(v∗, S0) ⊆ {α, β, c0}. Suppose that there exist ver-
tices w ∈ S j ( j ∈ [1, p]) and z ∈ S0 such that col(wz) /∈ {c j , c0}. Then consider
the color of yw. By Claim 1, we have col(yw) ∈ {c j , c0}. If col(yw) = c0, then
{xw, xzw, xv∗yw} is a PC Θ1,2,3, a contradiction. If col(yw) = c j , then w �= u and
{xuy, xv∗y, xzwy} is a PCΘ2,2,3, a contradiction. So, we have col(S j , S0) ⊆ {c j , c0}
for all j ∈ [1, p]. �	
Claim 4 col(Si , S j ) ⊆ {ci , c j } for all i, j ∈ [1, p] with i < j .

Proof By contradiction. Without loss of generality, suppose that there are vertices
v1 ∈ S1 and v2 ∈ S2 such that col(v1v2) = a /∈ {c1, c2}. Since {xy, xv∗y, xv2v1y} is
not a PC theta graph and the color β appears only once at y, we have col(yv1) �= c1.
By Claim 1, col(yv1) = c0. Similarly, we can obtain col(yv2) = c0. Consider the
theta graph {xv1, xv2v1, xv∗yv1}. We have a = c0. Note that either β �= c1 or β �= c2.
Without loss of generality, assume that β �= c1. Consider the color of v1v

∗. By Claim
1, we know that col(v1v∗) ∈ {α, β, c1}. If col(v1v∗) = α, then {xv1, xv2v1, xyv∗v1}
is a PC Θ1,2,3. If col(v1v∗) = β, then {xv1, xv2v1, xv∗v1} is a PC Θ1,2,2. So we have
col(v1v∗) = c1. However, this implies that {xv∗, xyv∗, xv2v1v∗} is a PC Θ1,2,3, a
contradiction. �	
Claim 5 col(G[Si ]) = {ci } for all i ∈ [1, p] and |Si | ≥ 2.

123



Graphs and Combinatorics

Proof Suppose the contrary. Then the set T = {uiwi ∈ E(G[Si ]) | col(uiwi )

�= ci , 1 ≤ i ≤ p} is non-empty. Let G ′ = G − V (T ). We will obtain a contra-
diction by proving that δc(G ′) ≥ δc(G) (this contradicts that G is CD-critical). We do
this by first proving two subclaims.

Subclaim 5.1 col(y, V (T )) = {c0}, col(v∗, V (T )) ⊆ {α, β} and col(Si\V (T ),

V (T )) ⊆ {ci } for all i ∈ [1, p].
Proof Let u be a vertex in V (T ) and let uw be an edge in T . Without loss of
generality, assume that u, w ∈ S1. Consider the theta graph {xv∗, xyv∗, xwuv∗}.
We know that either col(v∗u) �= c1 or col(v∗u) = c1 = β. Claim 1 tells that
col(v∗u) ∈ {α, β, c1}. Thus we will get col(v∗u) ∈ {α, β} in both cases. Consider-
ing the theta graph {xy, xv∗y, xwuy}, we have col(yu) �= c1. By Claim 1, we get
col(yu) = c0. Thus col(y, V (T )) = {c0} and col(v∗, V (T )) ⊆ {α, β}. Consider a
vertex vi ∈ Si \ V (T ) for some i ∈ [1, p]. If i = 1, then by the definition of T and
the fact that vi /∈ V (T ), we have col(viw) = ci . Now consider the case that i �= 1.
Suppose that col(vi u) �= ci . By Claim 4, we have col(vi u) = c1. Consider the color
of yvi . If col(yvi ) = c0, then {xvi , xv∗yvi , xwuvi } is a PC Θ1,3,3, a contradiction.
Otherwise, by Claim 1, col(yvi ) = ci . This implies that {xy, xv∗y, xwuvi y} is a PC
Θ1,2,4, a contradiction. So we have col(Si\V (T ), V (T )) ⊆ {ci } for all i ∈ [1, p]. �	

Since T �= ∅ and col(y, V (T )) = {c0}, by Claim 3, col(v∗, S0) ⊆ {α, β, c0}. Thus
S0 = Zα ∪ Zβ ∪ Z0.

Subclaim 5.2 col(Z0, V (T )) ⊆ {c0} and col(Zβ, V (T )) ⊆ {c0, β}.
Proof Let u be a vertex in V (T ) and let uw be an edge in T . Assume that u, w ∈ Si
for some i ∈ [1, p]. Suppose that there exists a vertex z ∈ Z0 such that col(zu) �= c0.
Then consider the theta graph {xv∗, xyv∗, xuzv∗}. We know that col(uz) = ci .
However, this implies that {xv∗, xyv∗, xwuzv∗} is a PC Θ1,2,4, a contradiction.
Thus col(Z0, V (T )) = {c0}. For a vertex z ∈ Zβ , by considering the theta
graphs {xz, xv∗z, xuz} and {xz, xv∗z, xwuz}, we can obtain col(zu) ∈ {c0, β}. Thus
col(Zβ, V (T )) ⊆ {c0, β}. �	

For each vertex u ∈ (∪p
i=1Si \ V (T )) ∪ {y, v∗} ∪ Z0 ∪ Zβ , by Subclaims 5.1 and

5.2, we have Nc
G ′(u) = Nc

G(u). Thus dcG ′(u) = dcG(u) ≥ δc(G). By Claims 1 and 2,
we know that Nc

G ′(y)\{β} ⊆ Nc
G ′(x)\{α}. Thus dcG ′(x) ≥ dcG ′(y) ≥ δc(G). To obtain

a final contradiction, it suffices to show that dcG ′(z) ≥ δc(G) for each vertex z ∈ Zα .
Let z be a vertex in Zα . If Nc

G ′(y)\{β} ⊆ Nc
G ′(z)\{α}, then similarly, we can obtain

dcG ′(z) ≥ dcG ′(y) ≥ δc(G). Now suppose that Nc
G ′(y)\{β} � Nc

G ′(z)\{α}. Since
Nc
G ′(y)\{β} ⊆ {ci | i ∈ [0, p]} and col(xy) = col(xz) = c0, there must exist a vertex

vi ∈ Si\V (T ) for some i ∈ [1, p] such that col(yvi ) = ci and col(zvi ) �= ci . Note
that if col(z, V (T )) ⊆ {α, c0}, then dcG ′(z) = dcG(z) ≥ δc(G). So we can assume that
there exists a vertex u j ∈ S j ∩V (T ) for some j ∈ [1, p] such that col(zu j ) /∈ {α, c0}.
By Subclaim 5.1, we have col(yu j ) = c0. Recall that col(yvi ) = ci �= c0. So
vi �= u j . Considering the theta graph {zu j , zxu j , zv∗yu j }, we get col(zu j ) = c j .
Since {xv∗y, xu j y, xzvi y} is not a PC theta graph and col(zvi ) �= ci , we obtain
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that col(zvi ) = c0. However, this implies that {yv∗z, yu j z, yvi z} is a PC Θ2,2,2, a
contradiction.

This completes the proof of Claim 5. �	
Note that Subclaims 5.1 and 5.2, and the assertion that S0 = Z0 ∪ Zα ∪ Zβ before

Subclaim 5.2 are only valid in the proof of Claim 5. Now we continue the proof by
three more claims.

Claim 6 dcG−x (v
∗) = δc(G) − 1, i.e., dcG(v∗) = δc(G) and α appears only once at v∗.

Proof Since G is a CD-critical graph, we have δc(G − x) < δc(G). Suppose, to the
contrary, that dcG−x (v

∗) ≥ δc(G). Then by Claim 2, only vertices in {y} ∪ {∪p
i=1Si }

could suffer a color degree decrease to δc(G) − 1 when we delete the vertex
x . If dcG−x (y) = δc(G) − 1, then by Claims 1 and 2, we have S0 = ∅ and
col(y, Si ) = ci for all i ∈ [1, p]. So dcG−x (y) = p + 1 and δc(G) = p + 2. For
each vertex u ∈ ∪p

i=1Si , by Claims 4 and 5, Nc
G(u) ⊆ {ci | i ∈ [1, p]} ∪ {col(uv∗)}.

Thus dcG(u) ≤ p + 1 < δc(G), a contradiction. So dcG−x (y) ≥ δc(y), and there must
exist a vertex in ∪p

i=1Si , say a vertex u1 ∈ S1, such that dcG−x (u1) = δc(G) − 1. By
Claims 1, 4 and 5, we have col(yu1) = c0, col(v∗u1) ∈ {α, β}, col(u1, Si ) = {ci }
(i ∈ [2, p]) and S1 = {u1}. Apply Claim 3 to u1 and consider that c1 appears only once
at u1. We have col(u1, S0) ⊆ {c0}. Now Nc

G(y) ⊆ {ci | i ∈ [0, p], i �= 1} ∪ {β} and
δc(G) ≤ dcG(y) ≤ p+1. LetG ′ = G−u1. Then dcG ′(x) = p+2−1 = p+1 ≥ δc(G)

and for all u ∈ V (G ′) \ {x}, dcG ′(u) = dcG(u) ≥ δc(G). So we have δc(G ′) ≥ δc(G),
a contradiction. �	
Claim 7 S0 �= ∅ and dcG−y(v

∗) ≥ δc(G).

Proof If S0 = ∅, then let f (ui ) = ci for all ui ∈ Si and i ∈ [1, p], f (x) = α,
f (y) = c0 and f (v∗) = β. By Claims 1, 4, 5 and 6, we have col(uv) = f (u) or
col(uv) = f (v) for each edge uv ∈ E(G), a contradiction. So S0 �= ∅. Suppose that
dcG−y(v

∗) = δc(G) − 1. Then

dcG(v∗) = δc(G) ≤ dcG(x) = p + 2.

Together with Claim 6, we know that both colors α and β appear only once at v∗. Thus,
by Claim 1, col(v∗, Si ) = {ci } for all i ∈ [1, p]. This implies that β /∈ {ci | i ∈ [1, p]}
and

dcG(v∗) ≥ p + 2.

So dcG(v∗) = δc(G) = p + 2 and col(v∗, S0) ⊆ {ci | i ∈ [1, p]}. By applying
Claim 3 to the vertex v∗, we know that c0 /∈ col(y,∪p

i=1Si ). Thus col({x, y, v∗}, Si )
= {ci } for all i ∈ [1, p]. Together with Claim 4, for each vertex u ∈ ∪p

i=1Si , we get
Nc
G−S0

(u) ⊆ {ci | i ∈ [1, p]}. Note that δc(G) = p + 2. So for a vertex u1 ∈ S1,
there must exist a vertex z ∈ S0 such that col(zu1) /∈ {ci | i ∈ [0, p]}. This implies
that {zv∗, zxv∗, zu1yv∗} is a PC Θ1,2,3, a contradiction. �	

We need one more claim before we complete the proof of Lemma 3.1.
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Claim 8 The following statements hold:

(i) col(S0, Si ) ⊆ {c0, ci } for all i ∈ [1, p];
(i i) col(v∗, S j ) ⊆ {β} ∪ {c j } for all j ∈ [0, p];

(i i i) col(G[S0]) = {c0}.
Proof Consider the graph G− y. Since G is CD-critical, we have δc(G− y) < δc(G).
By Claims 2 and 7, dcG−y(x) = dcG(x) ≥ δc(G), dcG−y(v

∗) ≥ δc(G) and for each

vertex z ∈ S0, dcG−y(z) = dcG(z) ≥ δc(G). So there must exist a vertex u∗ ∈ ∪p
i=1Si

such that dcG−y(u
∗) < δc(G). Thus col(yu∗) �= ci , i.e., col(yu∗) = c0 (by Claim 1).

Apply Claim 3 to the edge yu∗. We get

col(S0, Si ) ⊆ {c0, ci } for all i ∈ [1, p]

and col(v∗, S0) ⊆ {α, β, c0}.ByClaim 1, col(v∗, Si ) ⊆ {α, β}∪{ci } for all i ∈ [1, p].
So we have

col(v∗, S j ) ⊆ {α, β} ∪ {c j } for all j ∈ [0, p].

ConsideringClaim6,we know that the colorα appears only once at v∗ (col(xv∗) = α).
Thus, in summary, Claim 8 (i) and (i i) hold, and in particular, S0 = Z0 ∪ Zβ . For
vertices z ∈ Z0 and z′ ∈ S0 with z �= z′, since {xv∗, xu∗yv∗, xz′zv∗} is not a
PC theta graph, we have col(zz′) = c0. Thus col(G[Z0]) ⊆ {c0} and col(Z0, Zβ)

⊆ {c0}. To verify Claim 8 (i i i), we are left to show that col(G[Zβ ]) ⊆ {c0}. Let
T = {uβvβ ∈ E(G[Zβ ]) | col(uβvβ) �= c0}. Suppose that T �= ∅. Then let
G ′ = G −V (T ). Since G is a CD-critical graph, there must exist a vertex w ∈ V (G ′)
such that dcG ′(w) < δc(G). Note that V (T ) ⊆ Zβ , col(S0 \ V (T ), V (T )) ⊆ {c0},
col({x, y}, V (T )) = {c0} and col(v∗, V (T )) = {β}. Therefore, for each vertex
u ∈ (S0 \ V (T )) ∪ {x, y, v∗}, we have dcG ′(u) = dcG(u) ≥ δc(G). This
implies that w ∈ S j for some j ∈ [1, p]. By Claim 8 (i), col(w, V (T ))

⊆ {c0, c j }. This forces Nc
G(w) \ Nc

G ′(w) = {c0} by the fact that col(xw) = c j .
Thus col(yw) = c j and there exists an edge uβvβ ∈ T such that col(uβw) = c0.
Recall that col(yu∗) = c0. We obtain that u∗ �= w and that {xv∗y, xu∗y, xvβuβwy}
is a PC Θ2,2,4, a contradiction. So, col(G[Zβ ]) ⊆ {c0}. This completes the proof of
Claim 8. �	

Nowdefine a function f such that f (x) = α, f (y) = c0, f (v∗) = β and f (ui ) = ci
for each vertex ui ∈ Si and i ∈ [0, p]. By Claims 1, 4, 5 and 8, we conclude that
col(uv) = f (u) or col(uv) = f (v) for each edge uv ∈ E(G), a contradiction. This
completes the proof of Lemma 3.1. �	

Before presenting the proof of Lemma 3.2, we need the following observation.

Observation 3.3 (Fujita et al. [6]) Let G be a colored complete bipartite graph. If
δc(G) ≥ 2, then G contains a PC cycle of length 4 or 6.

Proof of Lemma 3.2 By contradiction. Suppose, to the contrary, that there exists an
edge xy ∈ E(G) such that dcG−y(x) = δc(G) − 1 and dcG−x (y) = δc(G) − 1. Then
x ∈ DomG(y), y ∈ DomG(x) and dc(x) = dc(y) = δc(G). Let α = col(xy). Define
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S = {u ∈ V (G) \ {x, y} | col(ux) �= col(uy)}

and

T = {u ∈ V (G) \ {x, y} | col(ux) = col(uy)}.

Then V (G) = S ∪ T ∪ {x, y}. Since |col(x, DomG(x))| = |col(y, DomG(y))| = 1,
we know that col(x, DomG(x)) = col(y, DomG(y)) = {α} and the color α appears
only once at x and y. Thus DomG(x) = {y}, DomG(y) = {x} and for each ver-
tex u ∈ S, both colors col(xu) and col(yu) appear at least twice at u. So we have
dcG−{x,y}(u) = dcG(u). Noting that δc(G − {x, y}) < δc(G), there must exist a ver-
tex z ∈ T such that dcG−{x,y}(z) < δc(G). Let col(zx) = col(zy) = β. Then
β /∈ col(z, V (G) \ {x, y, z}). Throughout the proof, the notations x, y, z, α and β

always refer to the vertices and colors stated above. Now we deliver the proof by first
proving the following claims.

Claim 1 S = ∅.
Proof Suppose, to the contrary, that S �= ∅. Let H be the complete bipartite subgraph
of G with partite sets {x, y} and S. If δc(H) ≥ 2, then by Observation 3.3, H must
contain a PC cycle passing through vertices x and y (which are not consecutive on
this cycle). Combining this cycle with the edge xy, we obtain a PC theta graph in G,
a contradiction. So, we have δc(H) = 1. Note that for all u ∈ S, dcH (u) ≥ 2. Hence,
dcH (x) = 1 or dcH (y) = 1. Without loss of generality, assume that dcH (x) = 1 and
col(x, S) = {c0}.
Subclaim 1.1 For each pair of vertices v1, v2 ∈ T with col(v1x) �= col(v2x), we have
col(v1v2) ∈ {col(v1x), col(v2x)}.
Proof Suppose, to the contrary, that col(v1v2) /∈ {col(v1x), col(v2x)} for some ver-
tices v1, v2 ∈ T satisfying col(v1x) �= col(v2x). Choose a vertex u ∈ S. Then
col(ux) = c0 and col(uy) �= c0. Let ε = col(uy). Then ε �= c0. Now consider
the colors of v1x and v2y. If col(v1x) = c0, then col(v1y) = col(v1x) = c0 and
col(v2x) �= c0. This implies that {xy, xuy, xv2v1y} is a PC Θ1,2,3, a contradiction. If
col(v2y) = ε, then col(v2x) = col(v2y) = ε and col(v1y) �= ε. This again implies
that {xy, xuy, xv2v1y} is a PC Θ1,2,3, a contradiction. So we have col(v1x) �= c0 and
col(v2y) �= ε. However, this forces {xy, xuy, xv1v2y} to be a PC Θ1,2,3, a contradic-
tion. �	
Subclaim 1.2 Either col(zu) = col(yu) for all u ∈ S or col(z, S) = {c0}.
Proof It is equivalent to show that col(zu) ∈ {c0, col(yu)} for each vertex
u ∈ S, and there cannot exist two vertices u1, u2 ∈ S such that col(zu1)
= c0 and col(zu2) = col(yu2).

Let u be a vertex in S. Since β /∈ col(z, V (G) \ {x, y, z}), we have col(zu)

�= β. Suppose that col(zu) /∈ {c0, col(uy)}. Then consider the relation between
c0 and β. If c0 �= β, then {xu, xyu, xzu} is a PC Θ1,2,2, a contradiction. If
c0 = β, then col(yu) �= β and {yu, yxu, yzu} is a PC Θ1,2,2, a contradiction. So
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col(zu) ∈ {c0, col(uy)}. Now suppose that there are two vertices u1, u2 ∈ S such
that col(zu1) = c0 and col(zu2) = col(yu2). Since β /∈ col(z, V (G) \ {x, y, z}), we
obtain c0 �= β and col(zu2) �= β. Noting that col(xu2) = c0, we obtain a PC theta
graph {zx, zu2x, zu1yx}, a contradiction. �	
Subclaim 1.3 The following statements hold:

(i) there exists a vertex z′ ∈ T − z such that col(xz′) = β;
(i i) either c0 = β or col(y, S) = β.

Proof Consider the colors appearing on the edges incident with z. If
β /∈ col(T − z, {x, y}), then apply Subclaim 1.1 to z and each vertex in T − z.
Recall that β /∈ col(z, V (G) \ {x, y, z}). We obtain

col(z, T − z) = col(x, T − z) = col(y, T − z).

Using Subclaim 1.2, we conclude that either

Nc(z) = col(x, T ) ∪ {c0} = Nc(x) \ {α}

or

Nc(z) = col(y, T ) ∪ col(y, S) = Nc(y) \ {α}.

Since dc(x) = dc(y) = δc(G), we have dc(z) = δc(G) − 1, a contradiction. So
there must exist a vertex z′ ∈ T with z′ �= z such that col(z′x) = col(z′y) = β. Let
ε = col(zz′). Recall that β /∈ col(z, V (G) \ {x, y, z}). We obtain that ε �= β. For
a vertex u ∈ S, since {xy, xzz′y, xuy} is not a PC theta graph, we have c0 = β or
col(yu) = β. This implies that either c0 = β or col(y, S) = β. �	

Now we need another vertex in T to continue the proof of Claim 1. If col(x, T )

= {β}, then col(y, T ) = col(x, T ) = β. Together with Subclaim 1.3 (i i), we obtain
that either Nc(x) = {α, β} or Nc(y) = {α, β}. This contradicts that δc(G) ≥ 3. Hence
there must exist a vertexw ∈ T such that col(wx) �= β. Let λ = col(wx) and let z′ be
the vertex in Subclaim 1.3 (i). If there exists a vertex w′ ∈ T satisfying col(w′x) = λ

and col(ww′) �= λ, then {xy, xzz′y, xww′y} is a PC Θ1,3,3, a contradiction. So we
have col(wv) = λ for all vertices v ∈ T satisfying col(vx) = λ. Together with
Subclaim 1.1, we obtain col(wv) ∈ {λ} ∪ {col(vx)} for all v ∈ T − w. Thus

col(w, T − w) ⊆ col({x, y}, T ).

Now we will complete the proof of Claim 1 by considering the two cases for c0 and β.
If c0 = β, then β /∈ col(y, S) and for each vertex u ∈ S, col(uw) ∈ {λ} ∪ {col(uy)}
(otherwise {xy, xzz′y, xwuy} is a PC theta graph). This implies that col(w, S)

⊆ col(y, S) ∪ {λ}. Thus

Nc
G(w) = col(w, T − w) ∪ col(w, S) ∪ {λ} ⊆ Nc

G(y)\{α}.
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So we have dcG(w) ≤ dcG(y) − 1 < δc(G), a contradiction. If c0 �= β, then for each
vertex u ∈ S, either col(uw) = λ or col(uw) = c0 (otherwise {xy, xzz′y, xuwy} is
a PC theta graph). This implies that col(w, S) ⊆ col(x, S) ∪ {λ}. Thus

Nc
G(w) = col(w, T − w) ∪ col(w, S) ∪ {λ} ⊆ Nc

G(x)\{α}.
So we have dcG(w) ≤ dcG(x) − 1 < δc(G), a contradiction. This completes the proof
of Claim 1. �	

Since S = ∅, the use of c0 in the above proof of Claim 1 is not valid anymore in
the remainder of the proof. We can assume that Nc(x) = {α, β, c1, c2, . . . , cp} with
p ≥ 1 (since δc(G) ≥ 3). Let Ti = {v ∈ T | col(vx) = ci } for all i ∈ [1, p]. Let
Tβ = {v ∈ T | col(vx) = β}. Then V (G) = (∪p

i=1Ti )∪Tβ ∪{x, y} and |∪p
i=1Ti | ≥ 1.

We need one additional claim.

Claim 2 Tβ = {z}.
Proof Suppose the contrary. Then for each vertex w ∈ Tβ − z, col(zw) �= β (since
β /∈ col(z, V (G) \ {x, y, z})). Consider the cardinality of ∪p

i=1Ti .
If | ∪p

i=1 Ti | = 1, then let u be the unique vertex in ∪p
i=1Ti and let col({x, y}, u)

= {c1}. Thus V (G) = Tβ ∪ {x, y, u}. Since dc(u) ≥ 3, there exists a vertex w ∈ Tβ

such that col(uw) /∈ {c1, β}. Furthermore, since dc(w) ≥ 3, there exists a ver-
tex w′ ∈ Tβ − w such that col(ww′) /∈ {β, col(uw)}. Now {xyw, xuw, xw′w}
is a PC Θ2,2,2, a contradiction. Now consider | ∪p

i=1 Ti | ≥ 2. By the assumption
that |Tβ | ≥ 2, we can choose a vertex w ∈ Tβ \ {z}. For every pair of dis-
tinct vertices u, v ∈ ∪p

i=1Ti , since {xy, xzwy, xuvy} is not a PC theta graph, we
have col(uv) = col(ux) or col(uv) = col(vx). This implies that col(G[∪p

i=1Ti ])
⊆ {c1, c2, . . . , cp}. Let u, v ∈ ∪p

i=1Ti be arbitrarily chosen distinct vertices. Note
that dcG(u), dcG(v) ≥ δc(G) and δc(G) = dc(x) = p + 2. There must exist ver-
tices zu, zv ∈ Tβ such that col(uzu), col(vzv) /∈ {β, c1, c2, . . . , cp}. If zu �= zv ,
then {xy, xuzu y, xzvvy} is a PC Θ1,3,3, a contradiction. So there must exist a vertex
z∗ ∈ Tβ such that col(∪p

i=1Ti , z
∗)∩{β, c1, c2, . . . , cp} = ∅ and col(∪p

i=1Ti , Tβ − z∗)
⊆ {β, c1, c2, . . . , cp}. Thus col(uz∗) appears only once at u for each vertex
u ∈ ∪p

i=1Ti , i.e., ∪p
i=1Ti ⊆ DomG(z∗). Note that |col(z∗, DomG(z∗))| = 1. We can

assume that col(z∗, ∪p
i=1Ti ) = {η}. Then η /∈ {β, c1, c2, . . . , cp}. Since dcG(z∗) ≥ 3,

there must exist a vertex z′ ∈ Tβ − z∗ such that col(z∗z′) /∈ {β, η}. Choose a vertex
u ∈ ∪p

i=1Ti . Then {z∗ux, z∗yx, z∗z′x} is a PC Θ2,2,2, a contradiction. �	
Claims 1 and 2 imply that {x, y, z}, T1, T2, . . . , Tp form a partition of G. Since

δc(G) = dc(x) = p + 2, there exists a pair of vertices u, u′ ∈ ∪p
i=1Ti such that

col(zu) /∈ {β, c1, c2, . . . , cp} and col(uu′) /∈ {col(zu), c1, c2, . . . , cp}. This implies
that {xu, xzu, xyu′u} is a PC Θ1,2,3, a contradiction. This completes the proof of
Lemma 3.2. �	

4 PC Theta Graphs of Small Order

In [4], PC K4’s are used to merge vertices into a PC Hamilton cycle. For the existence
of a PC K4, the existence of a PC Θ1,2,2 is clearly necessary. In this section, we give
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a color number condition for the existence of small PC theta graphs. The proof of the
following result is inspired by the proof of Lemma 4.1 in [20].

Theorem 4.1 Let G be a colored Kn. If |col(G)| ≥ n+1, then G contains a PCΘ1,2,2
or a PC Θ1,2,3.

Remark 4.1 (i) The bound “n + 1” in Theorem 4.1 is tight in the following sense.
Let T be a tournament with V (T ) = {ui | i ∈ [1, n]} and δ+(T ) ≥ 1. Let G
be a colored Kn with V (G) = V (T ) and col(uiu j ) = i if uiu j ∈ A(T ). Then
|col(G)| = n and G contains no PC theta graph.

(i i) The bound “n + 1” in Theorem 4.1 cannot guarantee the existence of a PC
Θ1,2,2. Given an integer k ≥ 3, let G be a colored graph such that V (G) = {u}
∪ {v1, v2, v3} ∪ {w1, w2, . . . , wk}, col(uwi ) = ci for i ∈ [1, k], col(wiw j ) = α

for all i, j ∈ [1, p] with i < j , col({v1, v2, v3}, {u, w1, w2, . . . , wk}) = β, and
v1v2v3v1 is a PC triangle with three new colors. Then G is a colored complete
graph with |col(G)| = |V (G)| + 1. But G contains no PC Θ1,2,2.

(i i i) The bound “n + 1” in Theorem 4.1 cannot guarantee the existence of a PC
Θ1,2,3. Let G1 be a colored K4 with all the edges in different colors. For
i ≥ 1, construct Gi+1 by joining Gi and a PC triangle Ti = xi yi zi xi with
col(Gi ) ∩ col(Ti ) = ∅, col(xi ,Gi ) = {col(xi yi )}, col(yi ,Gi ) = {col(yi zi )}
and col(zi ,Gi ) = {col(zi xi )}. Then |col(Gi )| = |V (Gi )| + 2 for all i ≥ 1. But
Gi contains no PC Θ1,2,3.

Proof of Theorem 4.1 By contradiction. Let G ∼= Kn be a counterexample to Theorem
4.1 such that n is as small as possible, and subject to this, |col(G)| is as small as
possible. Obviously, n ≥ 5, |col(G)| = n + 1 (otherwise, by merging two colors into
a new color, we obtain a counterexample to Theorem 4.1 with a smaller number of
colors) and |col(G− S)| ≤ n−|S| for each nonempty subset S of V (G). In particular,
when S is a single vertex v, we have |col(G)| − |col(G − v)| ≥ 2. For each vertex
v ∈ V (G), define dsG(v) = |col(G)| − |col(G − v)|. Let

E∗ = {uv ∈ E(G) | col(uv) /∈ col(G − uv)}.

Then we have

2|E∗| + (|col(G)| − |E∗|) ≥
∑

v∈V (G)

dsG(v) ≥ 2n.

Thus |E∗| ≥ n−1. Let H be the subgraph ofG induced by E∗. Then there must exist a
vertex x ∈ V (H) and an integer k ∈ [2, n−1] such thatdH (x) = k (sincen−1 > n/2).
Let u1, u2, . . . , uk be the neighbors of x in H . Let G1 = G[{u1, u2, . . . , uk, x}] and
G2 = G − G1. Then G1 − x is a monochromatic complete graph (otherwise, there
exist vertices u, v, w ∈ V (G1)\{x} such that col(uv) �= col(uw) and {xu, xvu, xwu}
is a PC Θ1,2,2). Thus |col(G1)| = k + 1 < n + 1 and G2 is nonempty. We claim
that E(G1,G2) ∩ E∗ = ∅. For each edge uv ∈ E(G1,G2) with u ∈ V (G1) and
v ∈ V (G2), if u = x , then by the construction of G1, we know that uv /∈ E∗;
otherwise, u ∈ V (G1) \ {x}. Then, choose a vertex u′ ∈ V (G1) \ {x, u} (this is
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doable because k ≥ 2). Since {xu, xu′u, xvu} is not a PC theta graph, we have
col(uv) ∈ {col(uu′), col(xv)}, and, in particular uv /∈ E∗.

We will complete the proof by distinguishing the following two cases.

Case 1 u1u2 ∈ E∗.

In this case, the color col(u1u2) appears only once on E(G). Note that G1 − x is
a monochromatic complete graph. We have k = 2 and |E∗| ≥ n − 1 > 3 = |E(G1)|.
Since E(G1,G2)∩ E∗ = ∅, there must exist an edge yz ∈ E(G2)∩ E∗. This implies
that {xu1, xu2u1, xyzu1} is a PC Θ1,2,3, a contradiction.

Case 2 u1u2 /∈ E∗.

In this case, the only color in col(G1− x) does not appear on E∗. Thus E(G1)∩E∗
= {xui | i ∈ [1, k]}. Recall that E(G1,G2) ∩ E∗ = ∅ and |E∗| ≥ n − 1. We have

|col(G2)| ≥ |E(G2) ∩ E∗| ≥ n − k − 1. (1)

Note that |col(G2)| ≤ n−|G1| = n−k−1.We conclude that |col(G2)| = n−k−1
and that all inequalities in (1) are equalities. Thus by the definition of E∗, we have
E(G2) ⊆ E∗ and |E(G2)| = n−k−1 = |V (G2)|. This forces G2 to be a PC triangle
with all its edges contained in E∗. Let G2 = yzwy. Then {yz, ywz, yxu1z} is a PC
Θ1,2,3, a contradiction.

The proof of Theorem 4.1 is complete. �	

5 PC Theta Graphs of Large Order

In this section, we present a sufficient color degree condition for the existence of large
PC theta graphs in colored complete graphs. Our main result of this section is related
to the existence of long PC cycles in colored complete graphs, and in particular to the
following conjecture due to Fujita and Magnant [7].

Conjecture 5.1 (Fujita and Magnant [7]) Let G be a colored Kn . If δc(G) ≥ n+1
2 , then

each vertex of G is contained in a PC cycle of length � for all � ∈ [3, n].
In the same paper, they presented a class of colored complete graphs to show that the

statement of Conjecture 5.1 would be best possible (the lower bound on δc(G) cannot
be improved), and they proved that each vertex is contained in a PC cycle of length 3,
4, and when n ≥ 13, also in a PC cycle of length 5. Recently, Lo [19] established the
existence of a PC Hamilton cycle (a PC cycle of length n) in G for sufficiently large
n when δc(G) ≥ (1/2 + ε)n for any arbitrarily small constant ε > 0. In this context,
in [15] the following cycle extension theorem was proved.

Theorem 5.2 (Li et al. [15]) Let G be a colored Kn and let C be a PC cycle of length
k in G. If δc(G) ≥ max{ n−k

2 , k} + 1, then G contains a PC cycle C∗ such that
V (C) ⊂ V (C∗) and |C∗| > k.
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Using the result of [7] that each vertex is contained in a small PC cycle, as a corollary
of Theorem 5.2, it is easy to obtain the following result.

Corollary 5.3 (Li et al. [15]) Let G be a colored Kn. If δc(G) ≥ n+1
2 , then each vertex

of G is contained in a PC cycle of length at least δc(G).

Interestingly, under the condition δc(G) ≥ n+1
2 of Conjecture 5.1, even the exis-

tence of a PC Hamilton cycle has not been fully verified.
In the remainder of this section, we discuss the existence of PC theta graphs when

δc(G) ≥ n+1
2 . We first need the following natural definition of a maximal PC cycle.

Definition 5.1 A PC cycle C in G is called a maximal PC cycle if there is no longer
PC cycle C ′ in G with V (C) ⊂ V (C ′).

Now we are ready to present the main result of this section.

Theorem 5.4 Let G be a colored Kn. If δc(G) ≥ n+1
2 , then one of the following

statements holds:

(i) dc(u) = n+1
2 for each vertex u ∈ V (G) and G contains a PC Hamilton cycle;

(ii) each maximal PC cycle C in G has a chord uv such that {uv, uC+v, uC−v} is a
PC theta graph.

Before we give our proof of the above theorem, as a final result of this section
we present the following straightforward corollary of Theorem 5.4 and Corollary 5.3
without a proof.

Corollary 5.5 Let G be a colored Kn. If δc(G) ≥ n
2 + 1, then each vertex of G is

contained in a PC theta graph Θ1,k,m such that k + m ≥ δc(G).

We use the following lemma in our proof of Theorem 5.4.

Lemma 5.6 Let G be a colored Kn and let C = v1v2 . . . v�v1 be a PC cycle in G.
If there exists a PC path P = u0u1 . . . u p (p ≥ 1) in G such that V (P) ∩ V (C)

= {u p} = {vi } for some i ∈ [1, �] and col(u p−1u p) /∈ {col(vi−1vi ), col(vivi+1)}
(where indices of vi are taken modulo �), then for each vertex v ∈ V (G) \ (V (P) ∪
V (C)) there exists a PC path Q = u0w1w2 . . . wqv such that V (C) ⊂ V (Q), wq

∈ V (C) and w1 ∈ V (C) ∪ {u1}.
Proof Suppose, to the contrary, that there does not exist such a PC path. Without loss
of generality, assume that i = 1. If col(vv2) �= col(v2v3), then u0Pv1v�v�−1 · · · v2v
is a PC path satisfying the statement in Lemma 5.6, a contradiction. So we have
col(vv2) = col(v2v3). Since vv2v1v� · · · v3u0 is not a PC path, we get col(u0v3)
= col(v3v4). Repeating these arguments, switching between u0 and v, if � is even,
we obtain col(vv�) = col(v�v1) after going along C in one round; if � is odd, we
obtain col(vv�) = col(v�v1) after two rounds. In both cases, we end up with a PC
path u0Pv1v2 · · · v�v satisfying the statement in Lemma 5.6, a contradiction. �	

Now we present our proof of Theorem 5.4.

Proof of Theorem 5.4 Let G be a colored Kn satisfying δc(G) ≥ n+1
2 and suppose that

C = v1v2 . . . v�v1 is a maximal PC cycle in G for which statement (i i) of the theorem
does not hold. Then, by Theorem 5.2 we know that � ≥ δc(G). Now we generate a set
of subgraphs of G using Algorithm 1.
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Algorithm 1 Construction of H0, H1, . . . , Hs
Initial: H0 = C ; i = 0; t = �

1: for j = 1 : t do
2: Calculate Siv j = {u ∈ V (G) \ V (Hi ) | col(uv j ) /∈ Nc

G[Hi ](v j )}
3: if Siv j �= ∅ then

4: Choose a vertex u ∈ Siv j
5: Construct Hi+1 with V (Hi+1) = V (Hi ) ∪ {u} and E(Hi+1) = E(Hi ) ∪ {uv j }
6: i = i + 1; t = t + 1; vt = u
7: goto Step 1
8: end if
9: end for
10: s = i
Output: H0, H1, . . . , Hs

Fig. 6 The structure of Hs
obtained from Algorithm 1

v�
v1

v2 v3

vi

v�−1

v�+1

v�+s

In Algorithm 1, H0 = C and Hi+1 is obtained from Hi by adding a vertex
u ∈ V (G)\V (Hi ) to a vertex v j ∈ V (Hi ) such that col(uv j ) /∈ Nc

Hi
(v j ).

To limit the possibly many choices for u and v j , we choose a vertex v j with j as
small as possible. Since G has a finite number of vertices, Algorithm 1 will eventually
stop when no vertex in V (G)\V (Hs) can increase the color degree of any vertex in
Hs .

Algorithm 1 implies the following statements:

(a) H0, H1, . . . , Hs are PC unicyclic graphs (See Fig. 6).
(b) for each vertex v ∈ V (Hs), dcG[Hs ](v) = dcG(v).

Let H = Hs . Then V (H) = {v1, v2, . . . , v�+s} and |V (H)| = |E(H)|. Now for
each vertex v ∈ V (H) and each color α ∈ Nc

G[H ](v) \ Nc
H (v), choose the smallest

number j ∈ [1, s + �] such that col(vv j ) = α and let eα
v = vv j . For each vertex

v ∈ V (H), define

Ev = {eα
v | α ∈ Nc

G[H ](v) \ Nc
H (v)}.

Let

E∗ = {uv ∈ E(G[H ]) | Eu ∩ Ev �= ∅}

and

E0 = {uv ∈ E(G[H ]) | uv /∈ Eu ∪ Ev ∪ E(H)}.
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Let H ′ be the spanning subgraph of H with E(H ′) = E(H) \ E(C). Then H ′ can
be regarded as a collection of � rooted trees such that v1, v2, . . . , v� are the roots of
these trees, respectively. Hence, each vertex u of H ′ is connected by a unique path to
the root of the tree that u belongs to. Let Pu denote that path for each vertex u in H ′,
and let root(u) = V (Pu) ∩ V (C).

We first prove the following claim.

Claim 1 E∗ ⊆ EG(V (H) \ V (C), V (C)).

Proof If E∗ = ∅, then there is nothing to prove. Now let uv be an edge in E∗. Then
uv ∈ Eu ∩ Ev ⊆ E(G[H ]). If u, v ∈ V (C), then {uv, uC+v, uC−v} is a PC theta
graph, a contradiction. If u, v ∈ V (H) \ V (C), then either u /∈ V (Pv) or v /∈ V (Pu).
Without loss of generality, assume that v /∈ V (Pu) and Pu = uu1u2 . . . u p with
u p ∈ V (C) and p ≥ 1. Apply Lemma 5.6 to C, Pu and v. We obtain a PC path
Q = uw1w2 . . . wqv such that V (C) ⊂ V (Q), wq ∈ V (C) and w1 ∈ V (C) ∪ {u1}.
Recall that uv ∈ E∗. By Algorithm 1 and the choice of ecol(uv)

u and ecol(uv)
v , we know

that col(uv) /∈ col(u,C)∪col(v,C)∪{col(uu1)}. In particular, col(uv) �= col(uw1)

and col(uv) �= col(wqv). Thus uQvu is a PC cycle containing C and longer than
C . This contradicts that C is a maximal PC cycle. Hence we get E∗ ⊆ EG((V (H) \
V (C), V (C)). �	
Claim 2 Either H = C or |E0 ∩ EG(u,C)| ≥ |E∗ ∩ EG(u,C)| + 1 for each vertex
u ∈ V (H) \ V (C).

Proof Suppose that H �= C . For each vertex u ∈ V (H) \ V (C), define

Tu = {v ∈ V (C) | uv ∈ E∗}.

If root(u) ∈ Tu for some vertex u ∈ V (H)\V (C), then |Pu | ≥ 3. By the construction
of H , we can assume that Pu = uu1u2 . . . u p, u = vh and u p = v j for some p ≥ 2,
h ∈ [� + 1, n] and j ∈ [1, �]. Then vh is the unique vertex in V (Hh−�) \ V (Hh−�−1),

root(u) = v j and uv j ∈ E∗. Thus uv j = e
col(uv j )
v j = e

col(uv j )
u . By the choice of

e
col(uv j )
v j , we know that col(uv j ) ∈ Nc

G[Hh−�−1](v j ). This means that Sh−�−1
v j

�= ∅. So,
when we reach the state of Hh−�−1 in Algorithm 1, we should add a vertex to v j or
to some vi with 1 ≤ i < j , but not to u1. This contradicts with the structure of Hh−�.
Thus root(u) /∈ Tu for each vertex u ∈ V (H) \ V (C).

Now let x0 = root(u), Pu = uu1u2 . . . u p (p ≥ 1) and k = |Tu |. Choose a
direction for C . When k ≥ 1, let xi+1 be the vertex in Tu firstly appearing after xi
along this direction for all i ∈ [0, k − 1]. Then Tu = {xi | i ∈ [1, k]} (See Fig. 7).
By the construction of H and the definition of E∗, we know that col(uv) �= col(uw)

for each pair of distinct vertices v,w ∈ Tu ∪ {u1}. We will prove that there exists a
vertex yi ∈ V (xiC+xi+1) (indices are taken module k + 1) such that uyi ∈ E0 for all
i ∈ [0, k].

Case 1 k ≥ 1.
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Fig. 7 The structure between u
and C

C

Pu

u

u1

up−1xk

x0
w1

x1

xk−1 wr

x2

In this case, Tu �= ∅. Firstly, we will prove the existence of y0. Since the cycle
uPux0C−x+

0 u is not a PC cycle, x+
0 �= x1. Hence we can assume that x0C+x1

= x0w1w2 · · · wr x1 with r ≥ 1 (See Fig. 7). Let α = col(uu1), x0 = w0 and
x1 = wr+1.

If col(uwi ) = α for all i ∈ [1, r ], then by considering the cycle uwrC−x1 and
the fact that col(ux1) �= α, we get col(uwr ) = col(wrwr−1). Thus α = col(uu1)
= col(uwr ) = col(wrwr−1). Note that uu1, wrwr−1 ∈ E(H). By the choices of Eu

and Ewr , we know that uwr ∈ E0. Thus we can choose y0 = wr .
Otherwise, {col(uwi ) | i ∈ [1, r ]} � {α}. Let t be the smallest integer in [1, r ] such

that col(uwt ) �= α. Suppose that there is no choice for y0. We assert that col(uwt )

s = col(wtwt+1). If t = 1, then we get col(uw1) = col(w1w2) by considering the
cycle uPux0C−w1u. If t ≥ 2, then col(wt−2wt−1) �= α (otherwise, uwt−1 ∈ E0).
By considering the cycle uwt−1C−wt u, we get col(uwt ) = col(wtwt+1). Note that
uwt /∈ E0. This implies that uwt ∈ Eu . Since uwt+1 /∈ E0 and uwtC−wt+1u is not
a PC cycle, we get col(uwt+1) = col(wt+1w

+
t+1). Repeat this process. We finally get

col(ux1) = col(x1x
+
1 ). This contradicts that ux1 ∈ E∗. So y0 exists when {col(uwi ) |

i ∈ [1, r ]} � {α}.
The existence proof for yi when i ∈ [1, k] is similar, and therefore omitted.

Case 2 k = 0.

In this case, Tu = ∅ . Let α = col(uu1) and x0C+x0 = x0w1w2 · · ·w�−1x0. Since
dc(u) ≥ n+1

2 and � ≥ n+1
2 , we get {col(uwi ) | i ∈ [1, � − 1]} � {α}. Let t be a

smallest integer in [1, � − 1] such that col(uwt ) �= α. Similar to the proof in the case
that k ≥ 1, there must exist a vertex y0 ∈ {w1, w2, · · · , w�−1} such that uy0 ∈ E0.

In summary, |E0 ∩ EG(u,C)| ≥ |E∗ ∩ EG(u,C)| + 1 for each vertex u ∈ V (H) \
V (C). This completes the proof of Claim 2. �	

We continue the proof of Theorem 5.4 by counting the number of edges of G[H ].
We have

∑

v∈V (H)

|Ev| + |E(H)| + |E0| − |E∗| =
(|V (H)|

2

)
. (2)

Note that for each vertex v ∈ V (H),

|Ev| + dH (v) = dcG[H ](v) = dcG(v).
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Summing over all v ∈ V (H), we obtain

∑

v∈V (H)

|Ev| + 2|E(H)| =
∑

v∈V (H)

dcG(v). (3)

Recall that |V (H)| = |E(H)|. By using this and combining (2) and (3), we obtain

|E∗| = |E0| +
∑

v∈V (H)

dcG(v) − |V (H)|(|V (H)| + 1)

2
≥ |E0|. (4)

If H �= C , then |V (H) \ V (C)| ≥ 1. By Claims 1 and 2, we get

|E∗| =
∑

v∈V (H)\V (C)

|E∗ ∩ EG(v,C)| ≤
∑

v∈V (H)\V (C)

(|E0 ∩ EG(v,C)| − 1)

≤ |E0| − 1.

This contradicts (4). So H = C . By applying Claim 1, we get E∗ = ∅. According to
(4), we further obtain E0 = ∅ and

∑

v∈V (H)

dcG(v) = |V (H)|(|V (H)| + 1)

2
.

Note that δc(G) ≥ n+1
2 and |V (H)| = � ≤ n. This implies that C is a PC Hamilton

cycle and dcG(v) = n+1
2 for each vertex v ∈ V (G). This completes the proof of

Theorem 5.4. �	

6 Concluding Remarks and Questions

Cycles in multipartite tournaments have attracted much attention during the past
decades. See, e.g., the survey paper due to Volkmann [22].

We conclude this paper with a slight strengthening of our main theorem, by involv-
ing a connectivity condition for the essentially multipartite tournaments in Theorem
1.4. We first need an additional definition. Let G be a colored complete graph. LetFG

be the set of mappings such that for each f ∈ FG and each edge uv ∈ E(G), we have
col(uv) = f (u) or col(uv) = f (v). Clearly, FG �= ∅ if and only if G is essentially
a multipartite tournament. For each f ∈ FG , we can construct a unique multipartite
tournament D f

G using Construction 1.3. Now we say that a colored complete graph G
is essentially a strongly connected multipartite tournament if FG �= ∅ and for each
mapping f ∈ FG , the multipartite tournament D f

G is strongly connected. Considering
this definition, we can slightly improve Theorem 1.4, as follows.

Theorem 6.1 Let G be a CD-critical colored complete graph. Then G contains no PC
theta graph if and only if G is essentially a strongly connectedmultipartite tournament,
unless G is a colored K2 or a colored K4 containing a monochromatic edge-cut.
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Proof The sufficiency follows obviously from Observation 1.1.
For the necessity, we first deal with the case that δc(G) ≤ 2. IfG is neither a colored

K2 nor a colored K4 containing a monochromatic edge-cut, then by Observation 1.3,
G must be isomorphic to the graph in Fig. 1c. In that case, the only PC cycle of length
4 in G is a directed Hamilton cycle in D f

G for each f ∈ FG . Hence, D
f
G is always

strongly connected, i.e.,G is essentially a strongly connected multipartite tournament.
When δc(G) ≥ 3, by Theorem 1.4, we know that FG �= ∅. Suppose, to the contrary,
that G is not essentially a strongly connected multipartite tournament. Then there
exists a mapping f ∈ FG such that D f

G is not strongly connected. Let (S1, S2) be a

partition of V (D f
G) such that (i) S1, S2 �= ∅; (i i) all the arcs between S1 and S2 have

heads in S1; (i i i) |S2| is as small as possible. Since G is CD-critical and S1 �= ∅,
we have δc(G[S2]) < δc(G). Note that col(S1, v) ⊆ { f (v)} for each vertex v ∈ S2.
There must exist a vertex x ∈ S2 such that f (x) /∈ Nc

G[S2](x). Thus for each vertex

u ∈ S2 \ {x}, we have f (u) �= f (x) and col(xu) = f (u), i.e., ux ∈ A(D f
G). Since

δc(G) ≥ 3, we have |S2 \ {x}| ≥ 2. Now (S1 ∪ {x}, S2 \ {x}) is a partition of D f
G

satisfying (i), (i i) and |S2 \ {x}| < |S2|, a contradiction.
This completes the proof of Theorem 6.1. �	

By the proofs of Observations 1.2 and 3.3 in [14] and [6], respectively, we know that
if C is a PC cycle in a colored complete graph (complete bipartite graph), then each
vertex of C is contained in a PC cycle of length 3 or 4 (4 or 6). In fact, by a similar
argument, we can prove that if C is a PC cycle in a colored complete multipartite
graph, then each vertex of C is contained in a PC cycle of length � ∈ {3, 4, 6} (see
Observation 1.9 in [13]). Are there similar results for PC theta graphs? In particular,
what is the answer to the following question?

Question 6.1 Does there exist a constant t such that each colored complete graph G
which contains a PC theta graph contains a PC theta graph of order at most t? What
is the answer to this question if we impose that δc(G) ≥ 3?

Theorem 5.4 implies a possible approach for proving the existence of a PC Hamilton
cycle under the condition of Conjecture 5.1. This also leads to the following question.

Question 6.2 Let Θk,�,m be a PC theta graph in a colored complete graph G. Which
conditions on G imply that there exists a PC cycle C in G with |C | > max
{k + �, � + m,m + k}?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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