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TOURNAMENTS WITH KERNELS BY

MONOCHROMATIC PATHS

HORTENSIA GALEANA-SÁNCHEZ AND EUGENIA O’REILLY-REGUEIRO

Abstract. In this paper we prove the existence of kernels by monochro-
matic paths in m-coloured tournaments in which every cyclic tourna-
ment of order 3 is at most 2-coloured in addition to other restrictions
on the colouring of certain subdigraphs. We point out that in all previ-
ous results on kernels by monochromatic paths in arc coloured tourna-
ments, certain small substructures are required to be monochromatic or
monochromatic with at most one exception, whereas here we allow up
to three colours in two small substructures.

1. Introduction

For general concepts, we refer the reader to [1, 4]. Throughout this paper
all paths and cycles will be directed paths and directed cycles. A digraph
D is an m-coloured digraph if its arcs are coloured with m colours, and
a subdigraph H is: monochromatic whenever all of its arcs are coloured
alike, j-amc or j-almost monochromatic if with at most j exceptions all of
its arcs are coloured with the same colour, and 2-wamc or 2-weakly almost
monochromatic if it is 2-amc and the two possible exceptions do not form a
directed path.

A tournament is said to be a cyclic tournament whenever it has at least
one Hamiltonian directed cycle. In a cyclic tournament K of order 4 with
(u, v, w, x, u) a Hamiltonian directed cycle, we denote by Kt(u, v, w, x, u) (or
simply Kt) any subdivision of K where at least three arcs of the Hamiltonian
directed cycle are not subdivided (i.e. at most one arc of the Hamiltonian
directed cycle is subdivided and the two diagonals can be subdivided or not).
We say that Kt(u, v, w, x, u) is 2-samc or a 2-subdivision almost monochro-
matic if it is a subdivision of a 2-amc cyclic tournament of order 4 (i.e. at
least 4 of the arcs or directed paths joining the vertices u, v, w, and x are
coloured with the same colour). Finally, if T is an m-coloured tournament
a kmp or a kernel by monochromatic paths of T is a vertex v ∈ V (T ) such
that for every other vertex x of T there is an xv monochromatic directed
path in T .
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The topic of domination in graphs has been widely studied by several
authors, and a complete study of this topic is presented in [16, 17]. A spe-
cial class of domination is the domination in digraphs, and it is defined as
follows. Let D be a digraph. A set of vertices S ⊆ V (D) is dominating
whenever for every w ∈ (V (D) \S) there exists a wS-arc in D. Dominating
independent sets in digraphs (kernels in digraphs) have found many appli-
cations in different topics of mathematics (see, for instance, [2, 3, 7, 8]) and
they have been studied by several authors. Interesting surveys of kernels in
digraphs can be found in [6, 9]. A digraph D is called kernel-perfect if every
one of its induced subdigraphs has a kernel.

Let D be an m-coloured digraph. A set N ⊆ V (D) is said to be a kernel
by monochromatic paths (kmp) if it satisfies the following two conditions:

(1) for every pair of different vertices u, v ∈ N there is no monochromatic
path between them, and

(2) for every vertex x ∈ (V (D) \ N) there is a vertex y ∈ N such that
there is a directed xy-monochromatic path.

Clearly the concepts of domination, independence, and kernel by monochro-
matic paths in edge-coloured digraphs are a generalisation of those of domi-
nation, independence, and kernel in digraphs. The study of the existence of
kernels by monochromatic paths in edge-coloured digraphs starts with the
theorem of Sands, Sauer, and Woodrow, proved in [18], which asserts that
every 2-coloured digraph has a kernel by monochromatic paths. In several
papers (see [10, 12, 13]), sufficient conditions for the existence of kernels by
monochromatic paths in edge-coloured digraphs have been obtained mainly
for tournaments and near tournaments, and require monochromaticity or
1-amc of small subdigraphs (due to the difficulty of the problem). Other
interesting results can be found in [14]. In [10] (resp. [15]) it was proved
that if D is an m-coloured tournament (resp. bipartite tournament) such
that every directed cycle of length 3 (resp. every directed cycle of length 4)
is monochromatic, then D has a kernel by monochromatic paths.

In 1982, Sands, Sauer, and Woodrow [18] proved that every 2-coloured
tournament has a kmp, and they posed the following problem: Let T be
a 3-coloured tournament which does not contain C3 (the 3-coloured cyclic
tournament of order 3). Then, must T contain a kmp?

In 1988 Shen [19] proved that if T is an m-coloured tournament which
does not contain C3 or T3 (the 3-coloured transitive tournament of order 3)
then T has a kmp. He also proved that the situation is best possible for
m ≥ 5. In 2004, Galeana-Sánchez and Rojas-Monroy [11] found a family of
counterexamples to this question for m = 4. The question for m = 3 is still
open, that is, does every 3-coloured tournament which does not contain C3

have a kmp?
In this paper we prove:

(1) If T is an m-coloured tournament such that every cyclic tournament
of order 3 is 1-amc and every Kt is 2-samc then T has a kmp, and



20 HORTENSIA GALEANA-SÁNCHEZ AND EUGENIA O’REILLY-REGUEIRO

(2) If T is an m-coloured tournament such that every cyclic tournament
of order 3 is 1-amc and every cyclic tournament of order 4 is 2-wamc,
then T has a kmp.

Notice that a 2-wamc cyclic tournament of order 4 may have three colours.
In all previous results on the existence of kmp, certain small substructures
are required to be monochromatic or 1-amc, that is, they are allowed to have
at most two colours.

2. Preliminaries

The set of vertices of D will be denoted by V (D), and the arcs of D will
be A(D). An arc (u, v) ∈ A(D) is called asymmetrical (resp. symmetrical)
if (v, u) /∈ A(D) (resp. if (v, u) ∈ A(D)). The asymmetrical part of D (resp.
symmetrical) which is denoted by Asym(D) (resp. Sym(D)) is the spanning
subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs
of D. If S is a non-empty subset of V (D), then the subdigraph D[S] of D
induced by S is the digraph having vertex set S, and whose arcs are the arcs
of D joining vertices of S. If there is a monochromatic path from x to y we
use the notation x→mp y.

If D is an m-coloured digraph, then the closure of D, denoted by C(D),
is the m-coloured multidigraph defined as follows: V (C(D)) = V (D), and
A(C(D)) = A(D)∪{(u, v)i| in D there exists a uv-monochromatic path with
colour i}, where (u, v)i denotes the arc (u, v) coloured with colour i. Notice
that for any digraph D, C(C(D)) ∼= C(D) and K is a kmp of D if and only
if K is a kernel of C(D).

Finally, a tournament T (resp. semicomplete digraph) is a digraph such
that between any two vertices there is one and only one arc (resp. at least
one arc).

3. Results

We begin this section with a well known result which will be useful in our
work.

Theorem 1 (Berge-Duchet [5]). Let D be a semicomplete digraph. Then
D is kernel-perfect if and only if every directed cycle of D has at least one
symmetric arc.

Recall from the Introduction that a key question for this work is: What
restrictions do we need to impose on an m-coloured tournament so that it
has a kernel by monochromatic paths?

We have defined the configuration Kt, where u, v, w, and x are vertices of
D, the straight arrows are arcs in D, and the wiggly arrows can be either
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arcs or monochromatic paths in D.
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We denote this Kt by Kt(u, v, w, x, u).

Lemma 1. Let T be an m-coloured tournament such that every Kt is 2-
samc. Then for at least one of the three arcs not subdivided in every Kt

there is a monochromatic path in the opposite direction.

Proof. Let T be an m-coloured tournament with every Kt 2-samc, and let
Kt(u, v, w, x, u) be a subgraph of T , where the straight arrows are arcs and
the wiggly arrows are either arcs or monochromatic paths.
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By hypothesis, Kt is 2-samc, so with at most two exceptions all the arcs or
paths have the same colour. We will number the arcs (and monochromatic
paths), and show case by case that no matter which two are the exceptions,
there is always a monochromatic path in the opposite direction of at least
one of the arcs.

First, we number the arrows of Kt so that 1 is (x, u), 2 is (x, v), 3 is (v, w),
4 is (w, u), 5 is (w, x), and 6 is (u, v).
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Notice that if 4 and 6 have the same colour, then there is a monochromatic
path from w to v, which is the opposite direction of 3, which is an arc. This
happens if the exceptions are {1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, and {3, 5}.

Similarly, if 5 and 2 are the same colour, then again there is a monochro-
matic path from w to v, in the opposite direction of 3. This happens if the
exceptions are {1, 3}, {1, 4}, {1, 6}, {3, 4}, {3, 6}, and {4, 6}.

We only need to check now the cases where the exceptions are {2, 4},
{2, 6}, {4, 5}, and {5, 6}. In the first case, when 2 and 4 are the exceptions,
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1, 6, and 3 have the same colour, so there is a monochromatic path from x
to w, which is the opposite direction of the arc 5.

In the second case, where the exceptions are 2 and 6, 3 and 4 have the
same colour, so there is a monochromatic path from v to u, which is the
opposite direction of the asymmetric arc 6.

In the third and fourth cases when the exceptions are 4 and 5, and 5 and
6 respectively, there is a monochromatic path from x to w, so the arc 5 is
symmetric. This completes the proof of the lemma. �

Lemma 2. If D is an m-coloured semicomplete digraph such that every
directed cycle γ in C(D) has a symmetric arc, then D has a kernel by
monochromatic paths.

Proof. Let D be an m-coloured semicomplete digraph such that every di-
rected cycle γ in C(D) has a symmetric arc. This by Theorem 1 is equiva-
lent to C(D) being kernel-perfect, which in turn implies D has a kernel by
monochromatic paths. �

Theorem 2. Let T be an m-coloured tournament such that all directed
triangles are at most 2-coloured, and all Kt are 2-samc. Then T has a kmp.

Proof. We will prove that every directed cycle γ in C(T ) has a symmetric
arc. This by Lemma 2 implies T has a kernel by monochromatic paths.

Let T be an m-coloured tournament such that every directed triangle is at
most two coloured, and every Kt is 2-samc, and suppose there is a directed
cycle in C(T ) in which every arc is asymmetric, and let γ be such a cycle of
minimum length.

Suppose l(γ) = 3. Then γ is a directed triangle, say, (x, y, z), so all the
arcs in γ are also in T . Since every directed triangle in T is 1-amc, there are
two arcs of the same colour, say, (x, y) and (y, z), that is, a monochromatic
path from x to z which in C(T ) becomes an arc (x, z). This contradiction
implies l(γ) ≥ 4.

γ : v P0
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>>~~~~~~~
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~~}}}}}}}}
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QQ
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+

Since all the arcs are asymmetric, they are arcs in T .
Notice that in C(T ) the arcs between any two non consecutive vertices

must be symmetric, otherwise there would be a shorter asymmetric cycle,
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which is a contradiction, so in C(T ) we have:
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This implies in T we have the following, where the wiggly arrows are
monochromatic paths.
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If l(γ) = 4, then in C(T ) there is an asymmetric arc (x, u), which is there-
fore also in T . If l(γ) > 4, then in C(T ) the arc (x, u) must be symmetric,
which implies there is a monochromatic path in T from x to u, so in any
case, in T , we have:
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which has the following Kt embedded.
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Thus, Kt(u, v, w, x, u) is a Kt, which by hypothesis is 2-samc, so by Lemma 1
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one of the arcs has a monochromatic path in the opposite direction. This im-
plies one of the arcs of γ (in C(T )) is symmetric, which is a
contradiction. �

Theorem 3. Let T be an m-coloured tournament such that all directed
triangles are 1-amc, and every cyclic tournament of order four is 2-wamc.
Then T has a kmp.

Proof. We will prove that every directed cycle γ in C(T ) has a symmetric
arc. This by Lemma 2 implies T has a kernel by monochromatic paths.

Suppose then that there is a directed cycle in C(T ) which does not have
a symmetric arc, and choose γ to be such a cycle of minimum length.

First suppose γ is a directed triangle, say (x, y), (y, z), (z, x). Since all
arrows are asymmetric they are all in T , so the triangle is 1-amc, which
implies there are two consecutive arcs of the same colour, say (x, y), (y, z),
that is, in T there is a monochromatic path x →mp z. This forces the arc
(x, z) to be in C(T ), so γ has a symmetric arc, a contradiction, therefore
l(γ) ≥ 4.

We point out a few remarks:

(1) γ is also contained in T . If an arc of γ is not in the arcs of T , then
its inverse is in the arcs of T , so it is also in the arcs of C(T ), which
implies γ in C(T ) has a symmetric arc, which is a contradiction.

(2) There is at least one change of colour in γ, otherwise the monochro-
matic path in T would yield a symmetric arc in C(T ).

(3) Finally, in C(T ) there is a symmetric arc between any two non-
consecutive vertices of γ, otherwise there would be a shorter directed
cycle without symmetric arcs.

We will focus our attention on a vertex where there is a change of colour
in γ, so say γ has the arcs (u, v) and (v, w), with (u, v) of colour 1, (v, w)
of colour 2. We will also study the arcs in T , rather than C(T ). Note that
since u and w are not consecutive vertices, by the above observations the
arc between them is symmetric. This implies in T there is a monochromatic
path from w to u, so consider a minimal such monochromatic path, say
(w = w0, w1, . . . , wn−1, u = wn), and we claim it is neither colour 1 nor
colour 2. If it were colour 1, then there would be a monochromatic path,
in T , from w to v which would make the arc (v, w) symmetric. Similarly,
if it were colour 2, there would be a monochromatic path from v to u,
making the arc (u, v) symmetric, another contradiction. Therefore, in T ,
the monochromatic path (w0, . . . , wn = u) is of, say, colour 3.

Notice (w, u) is not in the arcs of T , for if it is, it must be colour 1 or
colour 2, since every directed triangle in T has at most two colours. If it is
colour 1, then (w, v) becomes a symmetric arc in C(T ), and if it is colour
2, then (v, u) is a symmetric arc in C(T ), both of which are contradictions.
Hence in T we have the subdigraph γ′, where (w = w0, . . . , wn = u) is a
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minimal w →mp u monochromatic path.
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We claim n > 2. Assume for a contradiction n = 2. Then we have the
following.
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Regardless of the direction of the arc between v and w1 and whether most
arcs are coloured with colour 1, 2, or 3, this is a cyclic tournament of order
four which is not 2-wamc, a contradiction. Hence n > 2.

Observe (w,w1) is in T , but (wn, w) is in T , so let k be the first subindex
such that (wk, w) is in T , that is, (w,wj) is in T for all j < k. Notice from
the above observation that k > 1.

We will first assume the arc (v, w1) is in T , and consider the arcs in T
between v and the wi for i = 1, . . . , n. Since (wn, v) is in T , there is j ≤ n
such that (wj , v) is in T , and (v, wi) is in T for all 0 ≤ i < j. (Notice that
j ≥ 2 as (v, w0) ∈ A(T ) and we are assuming (v, w1) ∈ A(T )).
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The vertices v, wj−2, wj−1, and wj form a cyclic tournament, which must
therefore be 2-wamc. Since (wj−2, wj−1) and (wj−1, wj) are consecutive and
coloured with 3, these cannot be the exceptions, so the tournament in these
four vertices is coloured mostly with colour 3.

If (wj , v) has colour 3, then there is a monochromatic path from w to
v, so the arc (v, w) is symmetric in C(T ), a contradiction. If, on the other
hand, either the arc (v, wj−1) or the arc (v, wj−2) has colour 3, then there
is a monochromatic path from v to u, forcing the arc (u, v) in C(T ) to be
symmetric, another contradiction. This forces three exceptions to the colour
3, a contradiction. We conclude the arc (w1, v) is in T .
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Notice the directed triangle (v, w,w1) has colours 2 and 3. If (w1, v) is
colour 3, then there is a monochromatic path from w to v, making the arc
(v, w) symmetric in C(T ), a contradiction which forces the arc (w1, v) to
have colour 2 in T .

Going back to (wk, w), where k is the minimum subindex such that (wk, w)
is in T , suppose first that k = 2.

v
2

""EEEEEEEE

u

1
=={{{{{{{{

// w

3
��

w2

<<zzzzzzzz
w1

3
oo

2

YY22222222222222

Regardless of the direction of the arc between v and w2, there is a cyclic
tournament on the vertices v, w,w1 and w2 which has two consecutive arcs
of colour 2 and two consecutive arcs of colour 3, which is a contradiction.

If k = 3 we have the following (and note (w,w2) cannot have colour 3 as
this would shorten the monochromatic path from w to u).
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The vertices w,w1, w2, and w3 form a cyclic tournament with three arcs
coloured with 3, therefore with at most two exceptions which are not consec-
utive, all arcs between these vertices have colour 3. As noted above, (w,w2)
cannot have colour 3, so this forces (w3, w) to have colour 3, otherwise there
would be two consecutive arcs coloured differently.

If (w2, v) ∈ A(T ) then the vertices v, w,w1 and w2 form a directed C4, and
the tournament in these four vertices has two consecutive arcs of colour 2 and
two consecutive arcs of colour 3, a contradiction which forces (v, w2) ∈ A(T ).
Note also that if (v, w2) has colour 3, then there is a monochromatic path
from v to u, which makes the arc (u, v) symmetric in C(T ), a contradiction,
so (v, w2) has colour different from 3.
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If (w3, w1) ∈ A(T ), then (w1, v, w2, w3) is a directed C4, and the tourna-
ment in these vertices has two consecutive arcs of colour 3, and two con-
secutive arcs of colour different from 3, which is a contradiction. Therefore
(w1, w3) ∈ A(T ), and it cannot have colour 3 as this would shorten the
monochromatic path between w and u.
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The arc (w3, v) cannot be in T , as (v, w,w2, w3) would form a directed
C4, and the tournament in these four vertices has two consecutive arcs of
colour 3, and two consecutive arcs of colour different from 3, a contradiction.
Therefore (v, w3) is in T , and cannot have colour 3 as this would produce
a monochromatic path from v to u, with which the arc (u, v) would be
symmetric in C(T ), a contradiction.
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However (v, w3, w, w1) is a directed C4 with two consecutive arcs of colour
3 and two consecutive arcs of colour different from 3, a contradiction. There-
fore k ≥ 4, so k − 2 ≥ 2.
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u // w
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Regardless of the direction of the arc between wk and wk−2, there is a
cyclic tournament on the four vertices w,wk−2, wk−1 and wk containing the
Hamiltonian cycle (w,wk−2, wk−1, wk), which must therefore be 2-wamc.

Since (wk−2, wk−1) and (wk−1, wk) are consecutive and of colour 3, most
arcs must be coloured 3. However if either (w,wk−2) or (w,wk−1) have
colour 3, there is a shorter directed monochromatic path between w and u,
a contradiction, hence these two arcs have colour different from 3 and all
other arcs between these four vertices must be coloured with 3. This forces
(wk, wk−2) ∈ A(T ), otherwise, again, there would be a shorter directed
monochromatic path between w and u. That is, we have:
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Now consider the arc between v and wk. If (wk, v) ∈ A(T ) then it cannot
have colour 3, as this would produce a monochromatic path w →mp v. There
is a cyclic tournament of order four with cycle (wk, v, w,wk−1). There are
two arcs with colour different from 3, one arc with colour two, and one arc
with colour 3, therefore the arcs coloured different from 3 must be coloured
2 and this must be the predominant colour, with 3 being the exception,
however the two arcs with colour 3 are consecutive, a contradiction. We
conclude (v, wk) ∈ A(D).

Observe (v, wk) cannot have colour 3, as this would produce a monochro-
matic path v →mp u, a contradiction. Now there is a cyclic tournament
of order four with cycle (v, wk, w, w1). Recall (w1, v) has colour 2, as does
(v, w), and these two arcs form a directed path. On the other hand, (wk, w)
and (w,w1) are consecutive arcs of colour 3, a contradiction.

This completes the proof of the theorem. �
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