19 research outputs found

    Fractional Deng Entropy and Extropy and Some Applications

    Get PDF
    Deng entropy and extropy are two measures useful in the Dempster–Shafer evidence theory (DST) to study uncertainty, following the idea that extropy is the dual concept of entropy. In this paper, we present their fractional versions named fractional Deng entropy and extropy and compare them to other measures in the framework of DST. Here, we study the maximum for both of them and give several examples. Finally, we analyze a problem of classification in pattern recognition in order to highlight the importance of these new measures

    Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set

    Get PDF
    Multi-attribute decision-making refers to the decision-making problem of selecting the optimal alternative or sorting the scheme when considering multiple attributes, which is widely used in engineering design, economy, management and military, etc. But in real application, the attribute information of many objects is often inaccurate or uncertain, so it is very important for us to find a useful and efficient method to solve the problem

    Belief Evolution Network-based Probability Transformation and Fusion

    Full text link
    Smets proposes the Pignistic Probability Transformation (PPT) as the decision layer in the Transferable Belief Model (TBM), which argues when there is no more information, we have to make a decision using a Probability Mass Function (PMF). In this paper, the Belief Evolution Network (BEN) and the full causality function are proposed by introducing causality in Hierarchical Hypothesis Space (HHS). Based on BEN, we interpret the PPT from an information fusion view and propose a new Probability Transformation (PT) method called Full Causality Probability Transformation (FCPT), which has better performance under Bi-Criteria evaluation. Besides, we heuristically propose a new probability fusion method based on FCPT. Compared with Dempster Rule of Combination (DRC), the proposed method has more reasonable result when fusing same evidence

    Dynamic bid–ask pricing under Dempster-Shafer uncertainty

    Get PDF
    We deal with the problem of pricing in a multi-period binomial market model, allowing for frictions in the form of bid–ask spreads. We introduce and characterize time-homogeneous Markov multiplicative binomial processes under Dempster-Shafer uncertainty together with the induced conditional Choquet expectation operator. Given a market formed by a frictionless risk-free bond and a non-dividend paying stock with frictions, we prove the existence of an equivalent one-step Choquet martingale belief function. We then propose a dynamic Choquet pricing rule with bid–ask spreads showing that the discounted lower price process of a European derivative contract on the stock is a Choquet super-martingale. We finally provide a normative justification in terms of a dynamic generalized no-arbitrage condition relying on the notion of partially resolving uncertainty due to Jaffray

    A Neutrosophic Approach Based on TOPSIS Method to Image Segmentation

    Get PDF
    Neutrosophic set (NS) is a formal framework proposed recently. NS can not only describe the incomplete information in the decision-making system but also depict the uncertainty and inconsistency, so it has applied successfully in several fields such as risk assessment, fuzzy decision and image segmentation. In this paper, a new neutrosophic approach based on TOPSIS method, which can make full use of NS information, is proposed to separate the graphics. Firstly, the image is transformed into the NS domain. Then, two operations, a modified alpha-mean and the beta-enhancement operations are used to enhance image edges and to reduce uncertainty. At last, the segmentation is achieved by the TOPSIS method and the modified fuzzy c-means (FCM). Simulated images and real images are illustrated that the proposed method is more effective and accurate in image segmentation
    corecore