4,672 research outputs found

    Analysis of Spectrum Occupancy Using Machine Learning Algorithms

    Get PDF
    In this paper, we analyze the spectrum occupancy using different machine learning techniques. Both supervised techniques (naive Bayesian classifier (NBC), decision trees (DT), support vector machine (SVM), linear regression (LR)) and unsupervised algorithm (hidden markov model (HMM)) are studied to find the best technique with the highest classification accuracy (CA). A detailed comparison of the supervised and unsupervised algorithms in terms of the computational time and classification accuracy is performed. The classified occupancy status is further utilized to evaluate the probability of secondary user outage for the future time slots, which can be used by system designers to define spectrum allocation and spectrum sharing policies. Numerical results show that SVM is the best algorithm among all the supervised and unsupervised classifiers. Based on this, we proposed a new SVM algorithm by combining it with fire fly algorithm (FFA), which is shown to outperform all other algorithms.Comment: 21 pages, 6 figure

    When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing

    Full text link
    Defense strategies have been well studied to combat Byzantine attacks that aim to disrupt cooperative spectrum sensing by sending falsified versions of spectrum sensing data to a fusion center. However, existing studies usually assume network or attackers as passive entities, e.g., assuming the prior knowledge of attacks is known or fixed. In practice, attackers can actively adopt arbitrary behaviors and avoid pre-assumed patterns or assumptions used by defense strategies. In this paper, we revisit this security vulnerability as an adversarial machine learning problem and propose a novel learning-empowered attack framework named Learning-Evaluation-Beating (LEB) to mislead the fusion center. Based on the black-box nature of the fusion center in cooperative spectrum sensing, our new perspective is to make the adversarial use of machine learning to construct a surrogate model of the fusion center's decision model. We propose a generic algorithm to create malicious sensing data using this surrogate model. Our real-world experiments show that the LEB attack is effective to beat a wide range of existing defense strategies with an up to 82% of success ratio. Given the gap between the proposed LEB attack and existing defenses, we introduce a non-invasive method named as influence-limiting defense, which can coexist with existing defenses to defend against LEB attack or other similar attacks. We show that this defense is highly effective and reduces the overall disruption ratio of LEB attack by up to 80%

    Machine learning techniques applied to multiband spectrum sensing in cognitive radios

    Get PDF
    This research received funding of the Mexican National Council of Science and Technology (CONACYT), Grant (no. 490180). Also, this work was supported by the Program for Professional Development Teacher (PRODEP).In this work, three specific machine learning techniques (neural networks, expectation maximization and k-means) are applied to a multiband spectrum sensing technique for cognitive radios. All of them have been used as a classifier using the approximation coefficients from a Multiresolution Analysis in order to detect presence of one or multiple primary users in a wideband spectrum. Methods were tested on simulated and real signals showing a good performance. The results presented of these three methods are effective options for detecting primary user transmission on the multiband spectrum. These methodologies work for 99% of cases under simulated signals of SNR higher than 0 dB and are feasible in the case of real signalsPeer ReviewedPostprint (published version

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore