235 research outputs found

    High dimensional American options

    Get PDF
    Pricing single asset American options is a hard problem in mathematical finance. There are no closed form solutions available (apart from in the case of the perpetual option), so many approximations and numerical techniques have been developed. Pricing multi–asset (high dimensional) American options is still more difficult. We extend the method proposed theoretically by Glasserman and Yu (2004) by employing regression basis functions that are martingales under geometric Brownian motion. This results in more accurate Monte Carlo simulations, and computationally cheap lower and upper bounds to the American option price. We have implemented these models in QuantLib, the open–source derivatives pricing library. The code for many of the models discussed in this thesis can be downloaded from quantlib.org as part of a practical pricing and risk management library. We propose a new type of multi–asset option, the “Radial Barrier Option” for which we find analytic solutions. This is a barrier style option that pays out when a barrier, which is a function of the assets and their correlations, is hit. This is a useful benchmark test case for Monte Carlo simulations and may be of use in approximating multi–asset American options. We use Laplace transforms in this analysis which can be applied to give analytic results for the hitting times of Bessel processes. We investigate the asymptotic solution of the single asset Black–Scholes–Merton equation in the case of low volatility. This analysis explains the success of some American option approximations, and has the potential to be extended to basket options

    Numerical Methods for Real Options in Telecommunications

    Get PDF
    This thesis applies modern financial option valuation methods to the problem of telecommunication network capacity investment decision timing. In particular, given a cluster of base stations (wireless network with a certain traffic capacity per base station), the objective of this thesis is to determine when it is optimal to increase capacity to each of the base stations of the cluster. Based on several time series taken from the wireless and bandwidth industry, it is argued that capacity usage is the major uncertain component in telecommunications. It is found that price has low volatility when compared to capacity usage. A real options approach is then applied to derive a two dimensional partial integro-differential equation (PIDE) to value investments in telecommunication infrastructure when capacity usage is uncertain and has temporary sudden large variations. This real options PIDE presents several numerical challenges. First, the integral term must be solved accurately and quickly enough such that the general PIDE solution is reasonably accurate. To deal with the integral term, an implicit method is suggested. Proofs of timestepping stability and convergence of a fixed point iteration scheme are presented. The correlation integral is computed using a fast Fourier transform (FFT) method. Techniques are developed to avoid wrap-around effects. This method is tested on option pricing problems where the underlying asset follows a jump diffusion process. Second, the absence of diffusion in one direction of the two dimensional PIDE creates numerical challenges regarding accuracy and timestep selection. A semi-Lagrangian method is presented to alleviate these issues. At each timestep, a set of one dimensional PIDEs is solved and the solution of each PIDE is updated using semi-Lagrangian timestepping. Crank-Nicolson and second order backward differencing timestepping schemes are studied. Monotonicity and stability results are derived. This method is tested on continuously observed Asian options. Finally, a five factor algorithm that captures many of the constraints of the wireless network capacity investment decision timing problem is developed. The upgrade decision for different upgrade decision intervals (e. g. monthly, quarterly, etc. ) is studied, and the effect of a safety level (i. e. the maximum allowed capacity used in practice on a daily basis—which differs from the theoretical maximum) is investigated

    Pricing methods for American options

    Get PDF
    Bibliography: leaves 89-94.This thesis is about the comparison of Pricing models for the valuation of American Options. Three classes of numerical approaches are considered. These are Lattice Methods, Analytic Approximations and Monte Carlo Simulation. Methods will be contrasted in terms of accuracy and speed of the computed American option price. One particular method utilises regression when estimating the American option price. For this approach the impact of outliers and multicollinearity is examined and alternative regression models fitted. Monte Carlo Simulation is implemented to calculate early exercise probabilities of American options in the South African market. Results are compared for both call and put options. A test set of 3550 options is simulated with parameters mirroring the South African economy. On this set, the accuracy of all methods is assessed relative to a benchmark price, which is computed by a convergent lattice approach. Finally, American Symmetry is used to evaluate both put and call options

    Three essays on asset pricing in financial market

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Essays in financial asset pricing

    Get PDF
    Three essays in financial asset pricing are given; one concerning the partial differential equation (PDE) pricing and hedging of a class of continuous/generalized power mean Asian options, via their (optimal) Lie point symmetry groups, leading to practical pricing formulas. The second presents high-frequency predictions of S&P 500 returns via several machine learning models, statistically significantly demonstrating short-horizon market predictability and economically significantly profitable (beyond transaction costs) trading strategies. The third compares profitability between these [(mean) ensemble] strategies and Asian option Δ-hedging, using results of the first. Interpreting bounds on arithmetic Asian option prices as ask and bid values, hedging profitability depends largely on securing prices closer to the bid, and settling midway between the bid and ask, significant profits are consistently accumulated during the years 2004-2016. Ensemble predictive trading the S&P 500 yields comparatively very small returns, despite trading much more frequently. The pricing and hedging of (arithmetic) Asian options are difficult and have spurred several solution approaches, differing in theoretical insight and practicality. Multiple families of exact solutions to relaxed power mean Asian option pricing boundary-value problems are explicitly established, which approximately satisfy the full pricing problem, and in one case, converge to exact solutions under certain parametric restrictions. Corresponding hedging parameters/ Greeks are derived. This family consists of (optimal) invariant solutions, constructed for the corresponding pricing PDEs. Numerical experiments explore this family behaviorally, achieving reliably accurate pricing. The second chapter studies intraday market return predictability. Regularized linear and nonlinear tree-based models enjoy significant predictability. Ensemble models perform best across time and their return predictability realizes economically significant profits with Sharpe ratios after transaction costs of 0.98. These results strongly evidence that intraday market returns are predictable during short time horizons, beyond that explainable by transaction costs. The lagged constituent returns are shown to hold significant predictive information not contained in lagged market returns or price trend and liquidity characteristics. Consistent with the hypothesis that predictability is driven by slow-moving trader capital, predictability decreased post-decimalization, and market returns are more predictable midday, on days with high volatility or illiquidity, and during financial crises
    corecore