3,667 research outputs found

    The geometry of low-rank Kalman filters

    Full text link
    An important property of the Kalman filter is that the underlying Riccati flow is a contraction for the natural metric of the cone of symmetric positive definite matrices. The present paper studies the geometry of a low-rank version of the Kalman filter. The underlying Riccati flow evolves on the manifold of fixed rank symmetric positive semidefinite matrices. Contraction properties of the low-rank flow are studied by means of a suitable metric recently introduced by the authors.Comment: Final version published in Matrix Information Geometry, pp53-68, Springer Verlag, 201

    A Contraction Analysis of the Convergence of Risk-Sensitive Filters

    Full text link
    A contraction analysis of risk-sensitive Riccati equations is proposed. When the state-space model is reachable and observable, a block-update implementation of the risk-sensitive filter is used to show that the N-fold composition of the Riccati map is strictly contractive with respect to the Riemannian metric of positive definite matrices, when N is larger than the number of states. The range of values of the risk-sensitivity parameter for which the map remains contractive can be estimated a priori. It is also found that a second condition must be imposed on the risk-sensitivity parameter and on the initial error variance to ensure that the solution of the risk-sensitive Riccati equation remains positive definite at all times. The two conditions obtained can be viewed as extending to the multivariable case an earlier analysis of Whittle for the scalar case.Comment: 22 pages, 6 figure

    Contracting Nonlinear Observers: Convex Optimization and Learning from Data

    Full text link
    A new approach to design of nonlinear observers (state estimators) is proposed. The main idea is to (i) construct a convex set of dynamical systems which are contracting observers for a particular system, and (ii) optimize over this set for one which minimizes a bound on state-estimation error on a simulated noisy data set. We construct convex sets of continuous-time and discrete-time observers, as well as contracting sampled-data observers for continuous-time systems. Convex bounds for learning are constructed using Lagrangian relaxation. The utility of the proposed methods are verified using numerical simulation.Comment: conference submissio

    Online identification and nonlinear control of the electrically stimulated quadriceps muscle

    Get PDF
    A new approach for estimating nonlinear models of the electrically stimulated quadriceps muscle group under nonisometric conditions is investigated. The model can be used for designing controlled neuro-prostheses. In order to identify the muscle dynamics (stimulation pulsewidth-active knee moment relation) from discrete-time angle measurements only, a hybrid model structure is postulated for the shank-quadriceps dynamics. The model consists of a relatively well known time-invariant passive component and an uncertain time-variant active component. Rigid body dynamics, described by the Equation of Motion (EoM), and passive joint properties form the time-invariant part. The actuator, i.e. the electrically stimulated muscle group, represents the uncertain time-varying section. A recursive algorithm is outlined for identifying online the stimulated quadriceps muscle group. The algorithm requires EoM and passive joint characteristics to be known a priori. The muscle dynamics represent the product of a continuous-time nonlinear activation dynamics and a nonlinear static contraction function described by a Normalised Radial Basis Function (NRBF) network which has knee-joint angle and angular velocity as input arguments. An Extended Kalman Filter (EKF) approach is chosen to estimate muscle dynamics parameters and to obtain full state estimates of the shank-quadriceps dynamics simultaneously. The latter is important for implementing state feedback controllers. A nonlinear state feedback controller using the backstepping method is explicitly designed whereas the model was identified a priori using the developed identification procedure

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal
    • ā€¦
    corecore