3,707 research outputs found

    Minireview: Protein Interactions

    Get PDF

    Electrolytes at spherical dielectric interfaces

    Get PDF
    A variational theory is developed and applied to study the properties of dielectric spheres immersed in a symmetric electrolyte solution. In the limit that the radius of the sphere becomes much larger than the Debye screening length, the system reduces to that of a planar dielectric interface. For this case, the excess surface tension obtained by the variational theory reduces to the Onsager-Samaras [J. Chem. Phys. 2, 528 (1934)] limiting law at low electrolyte concentrations. As the radius of the dielectric sphere decreases, the excess surface tension also decreases. The implications of this work to protein-salt interactions and the salting out of proteins are discussed

    Diffusion of a sphere in a dilute solution of polymer coils

    Full text link
    We calculate the short time and the long time diffusion coefficient of a spherical tracer particle in a polymer solution in the low density limit by solving the Smoluchowski equation for a two-particle system and applying a generalized Einstein relation (fluctuation dissipation theorem). The tracer particle as well as the polymer coils are idealized as hard spheres with a no-slip boundary condition for the solvent but the hydrodynamic radius of the polymer coils is allowed to be smaller than the direct-interaction radius. We take hydrodynamic interactions up to 11th order in the particle distance into account. For the limit of small polymers, the expected generalized Stokes-Einstein relation is found. The long time diffusion coefficient also roughly obeys the generalized Stokes-Einstein relation for larger polymers whereas the short time coefficient does not. We find good qualitative and quantitative agreement to experiments.Comment: 9 Pages, 6 Figures, J. Chem. Phys. (in print
    • …
    corecore