164 research outputs found

    A continuous deployment-based approach for the collaborative creation, maintenance, testing and deployment of CityGML models

    Get PDF
    Georeferenced 3D models are an increasingly common choice to store and display urban data in many application areas. CityGML is an open and standardized data model, and exchange format that provides common semantics for 3D city entities and their relations and one of the most common options for this kind of information. Currently, creating and maintaining CityGML models is costly and difficult. This is in part because both the creation of the geometries and the semantic annotation can be complex processes that require at least some manual work. In fact, many publicly available CityGML models have errors. This paper proposes a method to facilitate the regular maintenance of correct city models in CityGML. This method is based on the continuous deployment strategy and tools used in software development, but adapted to the problem of creating, maintaining and deploying CityGML models, even when several people are working on them at the same time. The method requires designing and implementing CityGML deployment pipelines. These pipelines are automatic implementations of the process of building, testing and deploying CityGML models. These pipelines must be run by the maintainers of the models when they make changes that are intended to be shared with others. The pipelines execute increasingly complex automatic tests in order to detect errors as soon as possible, and can even automate the deployment step, where the CityGML models are made available to their end users. In order to demonstrate the feasibility of this method, and as an example of its application, a CityGML deployment pipeline has been developed for an example scenario where three actors maintain the same city model. This scenario is representative of the kind of problems that this method intends to solve, and it is based on real work in progress. The main benefits of this method are the automation of model testing, every change to the model is tested in a repeatable way; the automation of the model deployment, every change to the model can reach its end users as fast as possible; the systematic approach to integrating changes made by different people working together on the models, including the possibility of keeping parallel versions with a common core; an automatic record of every change made to the models (who did what and when) and the possibility of undoing some of those changes at any time.This work was supported by the Optimised Energy Efficient Design Platform for Refurbishment at District Level (OptEEmAL) project, Grant Agreement Number 680676, 2015-2019, as part of the European Union’s Horizon 2020 research and innovation programme

    A continuous deployment-based approach for the collaborative creation, maintenance, testing and deployment of CityGML models

    Get PDF
    Georeferenced 3D models are an increasingly common choice to store and display urban data in many application areas. CityGML is an open and standardized data model, and exchange format that provides common semantics for 3D city entities and their relations and one of the most common options for this kind of information. Currently, creating and maintaining CityGML models is costly and difficult. This is in part because both the creation of the geometries and the semantic annotation can be complex processes that require at least some manual work. In fact, many publicly available CityGML models have errors. This paper proposes a method to facilitate the regular maintenance of correct city models in CityGML. This method is based on the continuous deployment strategy and tools used in software development, but adapted to the problem of creating, maintaining and deploying CityGML models, even when several people are working on them at the same time. The method requires designing and implementing CityGML deployment pipelines. These pipelines are automatic implementations of the process of building, testing and deploying CityGML models. These pipelines must be run by the maintainers of the models when they make changes that are intended to be shared with others. The pipelines execute increasingly complex automatic tests in order to detect errors as soon as possible, and can even automate the deployment step, where the CityGML models are made available to their end users. In order to demonstrate the feasibility of this method, and as an example of its application, a CityGML deployment pipeline has been developed for an example scenario where three actors maintain the same city model. This scenario is representative of the kind of problems that this method intends to solve, and it is based on real work in progress. The main benefits of this method are the automation of model testing, every change to the model is tested in a repeatable way; the automation of the model deployment, every change to the model can reach its end users as fast as possible; the systematic approach to integrating changes made by different people working together on the models, including the possibility of keeping parallel versions with a common core; an automatic record of every change made to the models (who did what and when) and the possibility of undoing some of those changes at any time

    The Application of LiDAR Data for the Solar Potential Analysis Based on Urban 3D Model

    Get PDF
    Solar maps are becoming a popular resource and are available via the web to help plan investments for the benefits of renewable energy. These maps are especially useful when the results have high accuracy. LiDAR technology currently offers high-resolution data sources that are very suitable for obtaining an urban 3D geometry with high precision. Three-dimensional visualization also offers a more accurate and intuitive perspective of reality than 2D maps. This paper presents a new method for the calculation and visualization of the solar potential of building roofs on an urban 3D model, based on LiDAR data. The paper describes the proposed methodology to (1) calculate the solar potential, (2) generate an urban 3D model, (3) semantize the urban 3D model with different existing and calculated data, and (4) visualize the urban 3D model in a 3D web environment. The urban 3D model is based on the CityGML standard, which offers the ability to consistently combine geometry and semantics and enable the integration of different levels (building and city) in a continuous model. The paper presents the workflow and results of application to the city of Vitoria-Gasteiz in Spain. This paper also shows the potential use of LiDAR data in different domains that can be connected using different technologies and different scales.The European Union’s Horizon 2020 research and innovation program under grant agreement No 691883, SMARTENCITY supported and funded this study

    Digital Twins for Cities

    Get PDF

    COLLABORATIVE MULTI-SCALE 3D CITY AND INFRASTRUCTURE MODELING AND SIMULATION

    Get PDF

    A real time urban sustainability assessment framework for the smart city paradigm

    Get PDF
    Cities have proven to be a great source of concerns on their impact on the world environment and ecosystem. The objective, in a context where environmental concerns are growing rapidly, is no longer to develop liveable cities but to develop sustainable and responsive cities. This study investigates the currently available urban sustainability assessment (USA) schemes and outlines the main issues that the field is facing. After an extensive literature review, the author advocates for a scheme that would dynamically capture urban areas sustainability insights during their operation, a more user-centred and transparent scheme. The methodological approach has enabled the construction of a solid expertise on urban sustainability indicators, the essential role of the smart city and the Internet of Thing for a real-time key performance indicators determination and assessment, and technical and organisational challenges that such solution would encounter. Key domains such as sensing networks, remote sensing and GIS technologies, BIM technologies, Statistical databases and Open Governmental data platform, crowdsourcing and data mining that could support a real-time urban sustainability assessment have been studied. Additionally, the use of semantic web technologies has been investigated as a mean to deal with sources heterogeneity from diverse data structures and their interoperability. An USA ontology has been designed, integrating existing ontologies such as SSN, ifcOWL, cityGML and geoSPARQL. A web application back-end has then been built around this ontology. The application backbone is an Ontology-Based Data Access where a Relational Database is mapped to the USA ontology, enabling to link sensors data to pieces of information on the urban environment. Overall, this study has contributed to the body of knowledge by introducing an Ontology-Based Data Access (OBDA) approach to support real-time urban sustainability assessment leveraging sensors networks. It addresses both technical and organisational challenges that the smart systems domain is facing and is believed to be a valuable approach in the upcoming smart city paradigm. The solution proposed to tackle the research questions still faces some limitations such as a limited validation of the USA scheme, the OBDA limited intelligence, an improvable BIM and cityGML models conversion to RDF or the lack of user interface. Future work should be carried out to overcome those limitations and to provide stakeholders a high-hand service

    Modern Information Systems

    Get PDF
    The development of modern information systems is a demanding task. New technologies and tools are designed, implemented and presented in the market on a daily bases. User needs change dramatically fast and the IT industry copes to reach the level of efficiency and adaptability for its systems in order to be competitive and up-to-date. Thus, the realization of modern information systems with great characteristics and functionalities implemented for specific areas of interest is a fact of our modern and demanding digital society and this is the main scope of this book. Therefore, this book aims to present a number of innovative and recently developed information systems. It is titled "Modern Information Systems" and includes 8 chapters. This book may assist researchers on studying the innovative functions of modern systems in various areas like health, telematics, knowledge management, etc. It can also assist young students in capturing the new research tendencies of the information systems' development

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    corecore