3,268 research outputs found

    Spectral tensor-train decomposition

    Get PDF
    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the "cores") comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting \textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to 100100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.Comment: 33 pages, 19 figure

    Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case

    Full text link
    In this article, we study bivariate polynomial interpolation on the node points of degenerate Lissajous figures. These node points form Chebyshev lattices of rank 11 and are generalizations of the well-known Padua points. We show that these node points allow unique interpolation in appropriately defined spaces of polynomials and give explicit formulas for the Lagrange basis polynomials. Further, we prove mean and uniform convergence of the interpolating schemes. For the uniform convergence the growth of the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature.Comment: 26 pages, 6 figures, 1 tabl

    Time and spectral domain relative entropy: A new approach to multivariate spectral estimation

    Full text link
    The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed}. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.Comment: 32 pages, submitted for publicatio

    A new family of high-resolution multivariate spectral estimators

    Full text link
    In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Simulations suggest that the most suitable solution of this family depends on the specific features required from the estimation problem

    On the Continuity of Multivariate Lagrange Interpolation at Chung-Yao Lattices

    Full text link
    We give a natural geometric condition that ensures that sequences of Chung-Yao interpolation polynomials (of fixed degree) of sufficiently differentiable functions converge to a Taylor polynomial

    Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities

    Full text link
    Using Hermite's formulation of polynomial stability conditions, static output feedback (SOF) controller design can be formulated as a polynomial matrix inequality (PMI), a (generally nonconvex) nonlinear semidefinite programming problem that can be solved (locally) with PENNON, an implementation of a penalty method. Typically, Hermite SOF PMI problems are badly scaled and experiments reveal that this has a negative impact on the overall performance of the solver. In this note we recall the algebraic interpretation of Hermite's quadratic form as a particular Bezoutian and we use results on polynomial interpolation to express the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conventional power basis. Numerical experiments on benchmark problem instances show the substantial improvement brought by the approach, in terms of problem scaling, number of iterations and convergence behavior of PENNON
    • …
    corecore