17,929 research outputs found

    A Polyhedral Homotopy Algorithm For Real Zeros

    Full text link
    We design a homotopy continuation algorithm, that is based on numerically tracking Viro's patchworking method, for finding real zeros of sparse polynomial systems. The algorithm is targeted for polynomial systems with coefficients satisfying certain concavity conditions. It operates entirely over the real numbers and tracks the optimal number of solution paths. In more technical terms; we design an algorithm that correctly counts and finds the real zeros of polynomial systems that are located in the unbounded components of the complement of the underlying A-discriminant amoeba.Comment: some cosmetic changes are done and a couple of typos are fixed to improve readability, mathematical contents remain unchange

    A Special Homotopy Continuation Method For A Class of Polynomial Systems

    Full text link
    A special homotopy continuation method, as a combination of the polyhedral homotopy and the linear product homotopy, is proposed for computing all the isolated solutions to a special class of polynomial systems. The root number bound of this method is between the total degree bound and the mixed volume bound and can be easily computed. The new algorithm has been implemented as a program called LPH using C++. Our experiments show its efficiency compared to the polyhedral or other homotopies on such systems. As an application, the algorithm can be used to find witness points on each connected component of a real variety

    A deterministic algorithm to compute approximate roots of polynomial systems in polynomial average time

    Full text link
    We describe a deterministic algorithm that computes an approximate root of n complex polynomial equations in n unknowns in average polynomial time with respect to the size of the input, in the Blum-Shub-Smale model with square root. It rests upon a derandomization of an algorithm of Beltr\'an and Pardo and gives a deterministic affirmative answer to Smale's 17th problem. The main idea is to make use of the randomness contained in the input itself

    Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems

    Get PDF
    How many operations do we need on the average to compute an approximate root of a random Gaussian polynomial system? Beyond Smale's 17th problem that asked whether a polynomial bound is possible, we prove a quasi-optimal bound (input size)1+o(1)\text{(input size)}^{1+o(1)}. This improves upon the previously known (input size)32+o(1)\text{(input size)}^{\frac32 +o(1)} bound. The new algorithm relies on numerical continuation along \emph{rigid continuation paths}. The central idea is to consider rigid motions of the equations rather than line segments in the linear space of all polynomial systems. This leads to a better average condition number and allows for bigger steps. We show that on the average, we can compute one approximate root of a random Gaussian polynomial system of~nn equations of degree at most DD in n+1n+1 homogeneous variables with O(n5D2)O(n^5 D^2) continuation steps. This is a decisive improvement over previous bounds that prove no better than 2min⁥(n,D)\sqrt{2}^{\min(n, D)} continuation steps on the average

    Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

    Full text link
    We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision linear optimization, proving new upper and lower complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding

    Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation

    Full text link
    The study of models with extended Higgs sectors requires to minimize the corresponding Higgs potentials, which is in general very difficult. Here, we apply a recently developed method, called numerical polynomial homotopy continuation (NPHC), which guarantees to find all the stationary points of the Higgs potentials with polynomial-like nonlinearity. The detection of all stationary points reveals the structure of the potential with maxima, metastable minima, saddle points besides the global minimum. We apply the NPHC method to the most general Higgs potential having two complex Higgs-boson doublets and up to five real Higgs-boson singlets. Moreover the method is applicable to even more involved potentials. Hence the NPHC method allows to go far beyond the limits of the Gr\"obner basis approach.Comment: 9 pages, 4 figure
    • 

    corecore