9,922 research outputs found

    A Context-theoretic Framework for Compositionality in Distributional Semantics

    Full text link
    Techniques in which words are represented as vectors have proved useful in many applications in computational linguistics, however there is currently no general semantic formalism for representing meaning in terms of vectors. We present a framework for natural language semantics in which words, phrases and sentences are all represented as vectors, based on a theoretical analysis which assumes that meaning is determined by context. In the theoretical analysis, we define a corpus model as a mathematical abstraction of a text corpus. The meaning of a string of words is assumed to be a vector representing the contexts in which it occurs in the corpus model. Based on this assumption, we can show that the vector representations of words can be considered as elements of an algebra over a field. We note that in applications of vector spaces to representing meanings of words there is an underlying lattice structure; we interpret the partial ordering of the lattice as describing entailment between meanings. We also define the context-theoretic probability of a string, and, based on this and the lattice structure, a degree of entailment between strings. We relate the framework to existing methods of composing vector-based representations of meaning, and show that our approach generalises many of these, including vector addition, component-wise multiplication, and the tensor product.Comment: Submitted to Computational Linguistics on 20th January 2010 for revie

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Multi-criteria analysis: a manual

    Get PDF

    QUALITATIVE ANSWERING SURVEYS AND SOFT COMPUTING

    Get PDF
    In this work, we reflect on some questions about the measurement problem in economics and, especially, their relationship with the scientific method. Statistical sources frequently used by economists contain qualitative information obtained from verbal expressions of individuals by means of surveys, and we discuss the reasons why it would be more adequately analyzed with soft methods than with traditional ones. Some comments on the most commonly applied techniques in the analysis of these types of data with verbal answers are followed by our proposal to compute with words. In our view, an alternative use of the well known Income Evaluation Question seems especially suggestive for a computing with words approach, since it would facilitate an empirical estimation of the corresponding linguistic variable adjectives. A new treatment of the information contained in such surveys would avoid some questions incorporated in the so called Leyden approach that do not fit to the actual world.Computing with words, Leyden approach, qualitative answering surveys, fuzzy logic

    Choquet Integrals With Respect to Non-Monotonic Set Functions

    Get PDF
    This paper introduces the signed Choquet integral, i.e., a nonmonotonic generalization of the Choquet integral. Applications to welfare theory, multi-period optimization, and asset pricing are described.Choquet integral;comonotonicity;arbitrage;time preference

    On Probability and Cosmology: Inference Beyond Data?

    Get PDF
    Modern scientific cosmology pushes the boundaries of knowledge and the knowable. This is prompting questions on the nature of scientific knowledge. A central issue is what defines a 'good' model. When addressing global properties of the Universe or its initial state this becomes a particularly pressing issue. How to assess the probability of the Universe as a whole is empirically ambiguous, since we can examine only part of a single realisation of the system under investigation: at some point, data will run out. We review the basics of applying Bayesian statistical explanation to the Universe as a whole. We argue that a conventional Bayesian approach to model inference generally fails in such circumstances, and cannot resolve, e.g., the so-called 'measure problem' in inflationary cosmology. Implicit and non-empirical valuations inevitably enter model assessment in these cases. This undermines the possibility to perform Bayesian model comparison. One must therefore either stay silent, or pursue a more general form of systematic and rational model assessment. We outline a generalised axiological Bayesian model inference framework, based on mathematical lattices. This extends inference based on empirical data (evidence) to additionally consider the properties of model structure (elegance) and model possibility space (beneficence). We propose this as a natural and theoretically well-motivated framework for introducing an explicit, rational approach to theoretical model prejudice and inference beyond data

    Induction of models under uncertainty

    Get PDF
    This paper outlines a procedure for performing induction under uncertainty. This procedure uses a probabilistic representation and uses Bayes' theorem to decide between alternative hypotheses (theories). This procedure is illustrated by a robot with no prior world experience performing induction on data it has gathered about the world. The particular inductive problem is the formation of class descriptions both for the tutored and untutored cases. The resulting class definitions are inherently probabilistic and so do not have any sharply defined membership criterion. This robot example raises some fundamental problems about induction; particularly, it is shown that inductively formed theories are not the best way to make predictions. Another difficulty is the need to provide prior probabilities for the set of possible theories. The main criterion for such priors is a pragmatic one aimed at keeping the theory structure as simple as possible, while still reflecting any structure discovered in the data
    • 

    corecore