180 research outputs found

    Towards efficient support for massive Internet of Things over cellular networks

    Get PDF
    The usage of Internet of Things (IoT) devices over cellular networks is seeing tremendous growth in recent years, and that growth in only expected to increase in the near future. While existing 4G and 5G cellular networks offer several desirable features for this type of applications, their design has historically focused on accommodating traditional mobile devices (e.g. smartphones). As IoT devices have very different characteristics and use cases, they create a range of problems to current networks which often struggle to accommodate them at scale. Although newer cellular network technologies, such as Narrowband-IoT (NB-IoT), were designed to focus on the IoT characteristics, they were extensively based on 4G and 5G networks to preserve interoperability, and decrease their deployment cost. As such, several inefficiencies of 4G/5G were also carried over to the newer technologies. This thesis focuses on identifying the core issues that hinder the large scale deployment of IoT over cellular networks, and proposes novel protocols to largely alleviate them. We find that the most significant challenges arise mainly in three distinct areas: connection establishment, network resource utilisation and device energy efficiency. Specifically, we make the following contributions. First, we focus on the connection establishment process and argue that the current procedures, when used by IoT devices, result in increased numbers of collisions, network outages and a signalling overhead that is disproportionate to the size of the data transmitted, and the connection duration of IoT devices. Therefore, we propose two mechanisms to alleviate these inefficiencies. Our first mechanism, named ASPIS, focuses on both the number of collisions and the signalling overhead simultaneously, and provides enhancements to increase the number of successful IoT connections, without disrupting existing background traffic. Our second mechanism focuses specifically on the collisions at the connection establishment process, and used a novel approach with Reinforcement Learning, to decrease their number and allow a larger number of IoT devices to access the network with fewer attempts. Second, we propose a new multicasting mechanism to reduce network resource utilisation in NB-IoT networks, by delivering common content (e.g. firmware updates) to multiple similar devices simultaneously. Notably, our mechanism is both more efficient during multicast data transmission, but also frees up resources that would otherwise be perpetually reserved for multicast signalling under the existing scheme. Finally, we focus on energy efficiency and propose novel protocols that are designed for the unique usage characteristics of NB-IoT devices, in order to reduce the device power consumption. Towards this end, we perform a detailed energy consumption analysis, which we use as a basis to develop an energy consumption model for realistic energy consumption assessment. We then take the insights from our analysis, and propose optimisations to significantly reduce the energy consumption of IoT devices, and assess their performance

    Managing terminals mobility for personal communication systems.

    Get PDF
    by Lee Ying Kit.Thesis (M.Phil.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 79-[83]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview of Personal Communication Systems --- p.1Chapter 1.2 --- Design issues on PCS --- p.2Chapter 1.2.1 --- Channel allocation --- p.2Chapter 1.2.2 --- Multiple Access --- p.3Chapter 1.2.3 --- Handoffs --- p.4Chapter 1.2.4 --- Location management --- p.6Chapter 1.3 --- Motivation of this thesis --- p.9Chapter 1.4 --- The theme of this thesis --- p.10Chapter 1.4.1 --- Methodology --- p.10Chapter 1.4.2 --- The system model and assumptions --- p.12Chapter 1.4.3 --- Outline of the thesis --- p.13Chapter 2 --- Overview of the traditional location update schemes --- p.15Chapter 2.1 --- Why do we need location registration? --- p.15Chapter 2.2 --- Location registration by Geographic and Time based methods --- p.16Chapter 2.2.1 --- Geographic Based Registration Schemes --- p.16Chapter 2.2.2 --- Time Based Registration Scheme --- p.20Chapter 2.3 --- Peformance Analysis of protocols --- p.20Chapter 2.3.1 --- Analytical Results --- p.22Chapter 2.3.2 --- A Numerical Study --- p.23Chapter 2.4 --- Summary of the results for time and geographic based location update protocol --- p.24Chapter 3 --- The Implementation of Bloom filter on location registration --- p.27Chapter 3.1 --- Introduction --- p.27Chapter 3.2 --- The Implementation of Bloom filter on location registration --- p.29Chapter 3.2.1 --- Location Update by Bloom filter --- p.29Chapter 3.2.2 --- Paging algorithm --- p.29Chapter 3.2.3 --- An example --- p.30Chapter 3.3 --- Performance evaluation of the Bloom filter based location update scheme --- p.32Chapter 3.4 --- Summary of the results for Bloom filter based scheme --- p.35Chapter 4 --- One-Bit-Reply protocol --- p.36Chapter 4.1 --- Introduction --- p.36Chapter 4.2 --- One-Bit-Reply protocol --- p.37Chapter 4.2.1 --- Grouping of MU's --- p.38Chapter 4.2.2 --- The Update Procedure --- p.39Chapter 4.2.3 --- Paging algorithm --- p.40Chapter 4.3 --- Performance evaluation of the OBR protocol --- p.42Chapter 4.3.1 --- Analytical Results --- p.42Chapter 4.3.2 --- A Simulation Study --- p.43Chapter 4.4 --- Comparison of the location registration schemes - A numerical study --- p.45Chapter 4.5 --- Summary --- p.46Chapter 5 --- A case study - Implementing the OBR protocol on GSM sytems --- p.49Chapter 5.1 --- Introduction --- p.49Chapter 5.2 --- The Architecture of Global System for Mobile Communicaitons (GSM) --- p.50Chapter 5.3 --- Location Update Procedure of GSM --- p.51Chapter 5.4 --- Implementing OBR protocol on GSM --- p.52Chapter 5.5 --- Influence of the OBR on the VLR's and HLR --- p.55Chapter 5.5.1 --- Analysis of traditional method --- p.57Chapter 5.5.2 --- Analysis of OBR --- p.58Chapter 5.6 --- Summary --- p.59Chapter 6 --- Conclusion --- p.61Chapter 6.1 --- Summaries of Results --- p.61Chapter 6.1.1 --- Cost functions --- p.61Chapter 6.1.2 --- Optimization of the cost functions --- p.62Chapter 6.1.3 --- Implementation of OBR into GSM --- p.64Chapter 6.2 --- Suggestions for further researches --- p.64Appendix --- p.65Chapter A --- Derivation of cost functions --- p.66Chapter A.1 --- Geographic based scheme --- p.66Chapter A.2 --- Time based scheme --- p.67Chapter A.3 --- Bloom filter based scheme --- p.68Chapter B --- On the optimality of the cost functions --- p.71Chapter B.1 --- Steepest Descent Algorithm for various protocols --- p.71Chapter B.2 --- Bloom filter based scheme --- p.72Chapter B.3 --- Time Based Scheme --- p.74Chapter B.4 --- One-Bit-Reply scheme --- p.75Chapter B.5 --- Geographic Based Scheme --- p.75Chapter C --- Simulation of OBR --- p.77Bibliography --- p.7

    Private Communication Detection via Side-Channel Attacks

    Get PDF
    Private communication detection (PCD) enables an ordinary network user to discover communication patterns (e.g., call time, length, frequency, and initiator) between two or more private parties. Analysis of communication patterns between private parties has historically been a powerful tool used by intelligence, military, law-enforcement and business organizations because it can reveal the strength of tie between these parties. Ordinary users are assumed to have neither eavesdropping capabilities (e.g., the network may employ strong anonymity measures) nor the legal authority (e.g. no ability to issue a warrant to network providers) to collect private-communication records. We show that PCD is possible by ordinary users merely by sending packets to various network end-nodes and analyzing the responses. Three approaches for PCD are proposed based on a new type of side channels caused by resource contention, and defenses are proposed. The Resource-Saturation PCD exploits the resource contention (e.g., a fixed-size buffer) by sending carefully designed packets and monitoring different responses. Its effectiveness has been demonstrated on three commercial closed-source VoIP phones. The Stochastic PCD shows that timing side channels in the form of probing responses, which are caused by distinct resource-contention responses when different applications run in end nodes, enable effective PCD despite network and proxy-generated noise (e.g., jitter, delays). It was applied to WiFi and Instant Messaging for resource contention in the radio channel and the keyboard, respectively. Similar analysis enables practical Sybil node detection. Finally, the Service-Priority PCD utilizes the fact that 3G/2G mobile communication systems give higher priority to voice service than data service. This allows detection of the busy status of smartphones, and then discovery of their call records by correlating the busy status. This approach was successfully applied to iPhone and Android phones in AT&T's network. An additional, unanticipated finding was that an Internet user could disable a 2G phone's voice service by probing it with short enough intervals (e.g., 1 second). PCD defenses can be traditional side-channel countermeasures or PCD-specific ones, e.g., monitoring and blocking suspicious periodic network traffic

    A Survey on Cache Management Mechanisms for Real-Time Embedded Systems

    Get PDF
    © ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {48, 2, (November 2015)} http://doi.acm.org/10.1145/2830555Multicore processors are being extensively used by real-time systems, mainly because of their demand for increased computing power. However, multicore processors have shared resources that affect the predictability of real-time systems, which is the key to correctly estimate the worst-case execution time of tasks. One of the main factors for unpredictability in a multicore processor is the cache memory hierarchy. Recently, many research works have proposed different techniques to deal with caches in multicore processors in the context of real-time systems. Nevertheless, a review and categorization of these techniques is still an open topic and would be very useful for the real-time community. In this article, we present a survey of cache management techniques for real-time embedded systems, from the first studies of the field in 1990 up to the latest research published in 2014. We categorize the main research works and provide a detailed comparison in terms of similarities and differences. We also identify key challenges and discuss future research directions.King Saud University NSER

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    Energy efficient medium access control for wireless sensor networks

    Get PDF
    A wireless sensor network designates a system composed of numerous sensor nodes distributed over an area in order to collect information. The sensor nodes communicate wirelessly with each other in order to self-organize into a multi-hop network, collaborate in the sensing activity and forward the acquired information towards one or more users of the information. Applications of sensor networks are numerous, ranging from environmental monitoring, home and building automation to industrial control. Since sensor nodes are expected to be deployed in large numbers, they must be inexpensive. Communication between sensor nodes should be wireless in order to minimize the deployment cost. The lifetime of sensor nodes must be long for minimal maintenance cost. The most important consequence of the low cost and long lifetime requirements is the need for low power consumption. With today's technology, wireless communication hardware consumes so much power that it is not acceptable to keep the wireless communication interface constantly in operation. As a result, it is required to use a communication protocol with which sensor nodes are able to communicate keeping the communication interface turned-off most of the time. The subject of this dissertation is the design of medium access control protocols permitting to reach a very low power consumption when communicating at a low average throughput in multi-hop wireless sensor networks. In a first part, the performance of a scheduled protocol (time division multiple access, TDMA) is compared to the one of a contention protocol (non-persistent carrier sensing multiple access with preamble sampling, NP-CSMA-PS). The preamble sampling technique is a scheme that avoids constant listening to an idle medium. This thesis presents a low power contention protocol obtained through the combination of preamble sampling with non-persistent carrier sensing multiple access. The analysis of the strengths and weaknesses of TDMA and NP-CSMA-PS led us to propose a solution that exploits TDMA for the transport of frequent periodic data traffic and NP-CSMA-PS for the transport of sporadic signalling traffic required to setup the TDMA schedule. The second part of this thesis describes the WiseMAC protocol. This protocol is a further enhancement of CSMA with preamble sampling that proved to provide both a low power consumption in low traffic conditions and a high energy efficiency in high traffic conditions. It is shown that this protocol can provide either a power consumption or a latency several times lower that what is provided by previously proposed protocols. The WiseMAC protocol was initially designed for multi-hop wireless sensor networks. A comparison with power saving protocols designed specifically for the downlink of infrastructure wireless networks shows that it is also of interest in such cases. An implementation of the WiseMAC protocol has permitted to validate experimentally the proposed concepts and the presented analysis

    ENERGY CONSERVATION FOR WIRELESS AD HOC ROUTING

    Get PDF
    Self-configuring wireless ad hoc networks have attracted considerable attention in the last few years due to their valuable civil and military applications. One aspect of such networks that has been studied insufficiently is the energy efficiency. Energy efficiency is crucial to prolong the network lifetime and thus make the network more survivable.Nodes in wireless ad hoc networks are most likely to be driven by battery and hence operate on an extremely frugal energy budget. Conventional ad hoc routing protocols are focused on handling the mobility instead of energy efficiency. Energy efficient routing strategies proposed in literature either do not take advantage of sleep modes to conserve energy more efficiently, or incur much overhead in terms of control message and computing complexity to schedule sleep modes and thus are not scalable.In this dissertation, a novel strategy is proposed to manage the sleep of the nodes in the network so that energy can be conserved and network connectivity can be kept. The novelty of the strategy is its extreme simplicity. The idea is derived from the results of the percolation theory, typically called gossiping. Gossiping is a convenient and effective approach and has been successfully applied to several areas of the networking. In the proposed work, we will developa sleep management protocol from gossiping for both static and mobile wireless ad hoc networks. Then the protocol will be extended to the asynchronous network, where nodes manage their own states independently. Analysis and simulations will be conducted to show thecorrectness, effectiveness and efficiency of the proposed work. The comparison between analytical and simulation results will justify them for each other. We will investigate the most important performance aspects concerning the proposed strategy, including the effect ofparameter tuning and the impacts of routing protocols. Furthermore, multiple extensions will be developed to improve the performance and make the proposed strategy apply to different network scenarios

    Probabilistic route discovery for Wireless Mobile Ad Hoc Networks (MANETs)

    Get PDF
    Mobile wireless ad hoc networks (MANETs) have become of increasing interest in view of their promise to extend connectivity beyond traditional fixed infrastructure networks. In MANETs, the task of routing is distributed among network nodes which act as both end points and routers in a wireless multi-hop network environment. To discover a route to a specific destination node, existing on-demand routing protocols employ a broadcast scheme referred to as simple flooding whereby a route request packet (RREQ) originating from a source node is blindly disseminated to the rest of the network nodes. This can lead to excessive redundant retransmissions, causing high channel contention and packet collisions in the network, a phenomenon called a broadcast storm. To reduce the deleterious impact of flooding RREQ packets, a number of route discovery algorithms have been suggested over the past few years based on, for example, location, zoning or clustering. Most such approaches however involve considerably increased complexity requiring additional hardware or the maintenance of complex state information. This research argues that such requirements can be largely alleviated without sacrificing performance gains through the use of probabilistic broadcast methods, where an intermediate node rebroadcasts RREQ packets based on some suitable forwarding probability rather than in the traditional deterministic manner. Although several probabilistic broadcast algorithms have been suggested for MANETs in the past, most of these have focused on “pure” broadcast scenarios with relatively little investigation of the performance impact on specific applications such as route discovery. As a consequence, there has been so far very little study of the performance of probabilistic route discovery applied to the well-established MANET routing protocols. In an effort to fill this gap, the first part of this thesis evaluates the performance of the routing protocols Ad hoc On demand Distance Vector (AODV) and Dynamic Source Routing (DSR) augmented with probabilistic route discovery, taking into account parameters such as network density, traffic density and nodal mobility. The results reveal encouraging benefits in overall routing control overhead but also show that network operating conditions have a critical impact on the optimality of the forwarding probabilities. In most existing probabilistic broadcast algorithms, including the one used here for preliminary investigations, each forwarding node is allowed to rebroadcast a received packet with a fixed forwarding probability regardless of its relative location with respect to the locations of the source and destination pairs. However, in a route discovery operation, if the location of the destination node is known, the dissemination of the RREQ packets can be directed towards this location. Motivated by this, the second part of the research proposes a probabilistic route discovery approach that aims to reduce further the routing overhead by limiting the dissemination of the RREQ packets towards the anticipated location of the destination. This approach combines elements of the fixed probabilistic and flooding-based route discovery approaches. The results indicate that in a relatively dense network, these combined effects can reduce the routing overhead very significantly when compared with that of the fixed probabilistic route discovery. Typically in a MANET there are regions of varying node density. Under such conditions, fixed probabilistic route discovery can suffer from a degree of inflexibility, since every node is assigned the same forwarding probability regardless of local conditions. Ideally, the forwarding probability should be high for a node located in a sparse region of the network while relatively lower for a node located in a denser region of the network. As a result, it can be helpful to identify and categorise mobile nodes in the various regions of the network and appropriately adjust their forwarding probabilities. To this end the research examines probabilistic route discovery methods that dynamically adjust the forwarding probability at a node, based on local node density, which is estimated using number of neighbours as a parameter. Results from this study return significantly superior performance measures compared with fixed probabilistic variants. Although the probabilistic route discovery methods suggested above can significantly reduce the routing control overhead without degrading the overall network throughput, there remains the problem of how to select efficiently forwarding probabilities that will optimize the performance of a broadcast under any given conditions. In an attempt to address this issue, the final part of this thesis proposes and evaluates the feasibility of a node estimating its own forwarding probability dynamically based on locally collected information. The technique examined involves each node piggybacking a list of its 1-hop neighbours in its transmitted RREQ packets. Based on this list, relay nodes can determine the number of neighbours that have been already covered by a broadcast and thus compute the forwarding probabilities most suited to individual circumstances
    corecore