8 research outputs found

    A Content-based Centrality Metric for Collaborative Caching in Information-Centric Fogs

    Get PDF
    Information-Centric Fog Computing enables a multitude of nodes near the end-users to provide storage, communication, and computing, rather than in the cloud. In a fog network, nodes connect with each other directly to get content locally whenever possible. As the topology of the network directly influences the nodes' connectivity, there has been some work to compute the graph centrality of each node within that network topology. The centrality is then used to distinguish nodes in the fog network, or to prioritize some nodes over others to participate in the caching fog. We argue that, for an Information-Centric Fog Computing approach, graph centrality is not an appropriate metric. Indeed, a node with low connectivity that caches a lot of content may provide a very valuable role in the network. To capture this, we introduce acontent-based centrality (CBC) metric which takes into account how well a node is connected to the content the network is delivering, rather than to the other nodes in the network. To illustrate the validity of considering content-based centrality, we use this new metric for a collaborative caching algorithm. We compare the performance of the proposed collaborative caching with typical centrality based, non-centrality based, and non-collaborative caching mechanisms. Our simulation implements CBC on three instances of large scale realistic network topology comprising 2,896 nodes with three content replication levels. Results shows that CBC outperforms benchmark caching schemes and yields a roughly 3x improvement for the average cache hit rate

    Offloading Content with Self-organizing Mobile Fogs

    Get PDF
    Mobile users in an urban environment access content on the internet from different locations. It is challenging for the current service providers to cope with the increasing content demand from a large number of collocated mobile users. In-network caching to offload content at nodes closer to users alleviate the issue, though efficient cache management is required to find out who should cache what, when and where in an urban environment, given nodes limited computing, communication and caching resources. To address this, we first define a novel relation between content popularity and availability in the network and investigate a node's eligibility to cache content based on its urban reachability. We then allow nodes to self-organize into mobile fogs to increase the distributed cache and maximize content availability in a cost-effective manner. However, to cater rational nodes, we propose a coalition game for the nodes to offer a maximum "virtual cache" assuming a monetary reward is paid to them by the service/content provider. Nodes are allowed to merge into different spatio-temporal coalitions in order to increase the distributed cache size at the network edge. Results obtained through simulations using realistic urban mobility trace validate the performance of our caching system showing a ratio of 60-85% of cache hits compared to the 30-40% obtained by the existing schemes and 10% in case of no coalition

    A Popularity-aware Centrality Metric for Content Placement in Information Centric Networks

    Get PDF
    International audienceInformation-centric networks enables a multitude of nodes, in particular near the end-users, to provide storage and communication. At the edge, nodes can connect with each other directly to get content locally whenever possible. As the topology of the network directly influences the nodes' connectivity, there has been some work to compute the graph centrality of each node within the topology of the edge network. The centrality is then used to distinguish nodes at the edge of the network. We argue that, for a network with caches, graph centrality is not an appropriate metric. Indeed, a node with low connectivity (and thereby low centrality) that caches a lot of content may provide a very valuable role in the network. To capture this, we introduce a popularity-weighted content-based centrality (P-CBC) metric which takes into account how well a node is connected to the content the network is delivering, rather than to the other nodes in the network. To illustrate the validity of considering content-based centrality, we use this new metric for a collaborative caching algorithm. We compare the performance of the proposed collaborative caching with typical centrality based, non-centrality based, and non-collaborative caching mechanisms. Our simulation implements P-CBC on three random instances of large scale realistic network topology comprising 2, 896 nodes with three content replication levels. Results shows that P-CBC outperforms benchmark caching schemes and yields a roughly 3x improvement for the average cache hit rate

    Offloading Content with Self-organizing Mobile Fogs

    Get PDF
    International audienceMobile users in an urban environment access content on the internet from different locations. It is challenging for the current service providers to cope with the increasing content demand from a large number of collocated mobile users. In-network caching to offload content at nodes closer to users alleviate the issue, though efficient cache management is required to find out who should cache what, when and where in an urban environment, given nodes limited computing, communication and caching resources. To address this, we first define a novel relation between content popularity and availability in the network and investigate a node's eligibility to cache content based on its urban reachability. We then allow nodes to self-organize into mobile fogs to increase the distributed cache and maximize content availability in a cost-effective manner. However, to cater rational nodes, we propose a coalition game for the nodes to offer a maximum " virtual cache " assuming a monetary reward is paid to them by the service/content provider. Nodes are allowed to merge into different spatio-temporal coalitions in order to increase the distributed cache size at the network edge. Results obtained through simulations using realistic urban mobility trace validate the performance of our caching system showing a ratio of 60 − 85% of cache hits compared to the 30 − 40% obtained by the existing schemes and 10% in case of no coalition

    Fog Connectivity Clustering and MDP Modeling for Software-defined Vehicular Networks

    Get PDF
    Intelligent and networked vehicles cooperate to create a mobile Cloud through vehicular Fog computing (VFC). Such clouds rely heavily on the underlying vehicular networks, so estimating communication resilience allows to address the problems caused by intermittent vehicle connectivity for data transfers. Individually estimating the communication stability of vehicles, nevertheless, undergoes incorrect predictions due to their particular mobility patterns. Therefore, we provide a region-oriented fog management model based on the connectivity through vehicular heterogeneous network environment via V2X and C-V2X. A fog management strategy dynamically monitors nearby vehicles to determine distinct regions in urban centres. The model enables a software-defined vehicular network (\Gls{SDVN}) controller to coordinate data flows. The vehicular connectivity described by our model assesses the potential for vehicle communication and conducts dynamic vehicle clustering. From the stochasticity of the environment, our model is based on Markov Decision Process (MDP), tracking the status of vehicle clusters and their potential for provisioning services. The model for vehicular clustering is supported by 5G and DSRC heterogeneous networks. Simulated analyses have shown the capability of our proposed model to estimate cluster reliability in real-time urban scenarios and support effective vehicular fog management

    Mobility-aware fog computing in dynamic networks with mobile nodes: A survey

    Get PDF
    Fog computing is an evolving paradigm that addresses the latency-oriented performance and spatio-temporal issues of the cloud services by providing an extension to the cloud computing and storage services in the vicinity of the service requester. In dynamic networks, where both the mobile fog nodes and the end users exhibit time-varying characteristics, including dynamic network topology changes, there is a need of mobility-aware fog computing, which is very challenging due to various dynamisms, and yet systematically uncovered. This paper presents a comprehensive survey on the fog computing compliant with the OpenFog (IEEE 1934) standardised concept, where the mobility of fog nodes constitutes an integral part. A review of the state-of-the-art research in fog computing implemented with mobile nodes is conducted. The review includes the identification of several models of fog computing concept established on the principles of opportunistic networking, social communities, temporal networks, and vehicular ad-hoc networks. Relevant to these models, the contributing research studies are critically examined to provide an insight into the open issues and future research directions in mobile fog computing research
    corecore