2 research outputs found

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    A Constructivist Approach to Robot Language Learning via Simulated Babbling and Holophrase Extraction

    No full text
    It is thought that meaning may be grounded in early childhood language learning via the physical and social interaction of the infant with those around him or her, and that the capacity to use words, phrases and their meaning are acquired through shared referential ‘inference’ in pragmatic interactions. In order to create appropriate conditions for language learning by a humanoid robot, it would therefore be necessary to expose the robot to similar physical and social contexts. However in the early stages of language learning it is estimated that a 2-year-old child can be exposed to as many as 7,000 utterances per day in varied contextual situations. In this paper we report on the issues behind and the design of our currently ongoing and forthcoming experiments aimed to allow a robot to carry out language learning in a manner analogous to that in early child development and which effectively ‘short cuts’ holophrase learning. Two approaches are used: (1) simulated babbling through mechanisms which will yield basic word or holophrase structures and (2) a scenario for interaction between a human and the humanoid robot where shared ‘intentional’ referencing and the associations between physical, visual and speech modalities can be experienced by the robot. The output of these experiments, combined to yield word or holophrase structures grounded in the robot's own actions and modalities, would provide scaffolding for further proto-grammatical usage-based learning. This requires interaction with the physical and social environment involving human feedback to bootstrap developing linguistic competencies. These structures would then form the basis for further studies on language acquisition, including the emergence of negation and more complex grammar
    corecore