4,073 research outputs found

    Optimization of Evolutionary Neural Networks Using Hybrid Learning Algorithms

    Full text link
    Evolutionary artificial neural networks (EANNs) refer to a special class of artificial neural networks (ANNs) in which evolution is another fundamental form of adaptation in addition to learning. Evolutionary algorithms are used to adapt the connection weights, network architecture and learning algorithms according to the problem environment. Even though evolutionary algorithms are well known as efficient global search algorithms, very often they miss the best local solutions in the complex solution space. In this paper, we propose a hybrid meta-heuristic learning approach combining evolutionary learning and local search methods (using 1st and 2nd order error information) to improve the learning and faster convergence obtained using a direct evolutionary approach. The proposed technique is tested on three different chaotic time series and the test results are compared with some popular neuro-fuzzy systems and a recently developed cutting angle method of global optimization. Empirical results reveal that the proposed technique is efficient in spite of the computational complexity

    A neuro-fuzzy approach as medical diagnostic interface

    Get PDF
    In contrast to the symbolic approach, neural networks seldom are designed to explain what they have learned. This is a major obstacle for its use in everyday life. With the appearance of neuro-fuzzy systems which use vague, human-like categories the situation has changed. Based on the well-known mechanisms of learning for RBF networks, a special neuro-fuzzy interface is proposed in this paper. It is especially useful in medical applications, using the notation and habits of physicians and other medically trained people. As an example, a liver disease diagnosis system is presented

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Neuro-Fuzzy Computing System with the Capacity of Implementation on Memristor-Crossbar and Optimization-Free Hardware Training

    Full text link
    In this paper, first we present a new explanation for the relation between logical circuits and artificial neural networks, logical circuits and fuzzy logic, and artificial neural networks and fuzzy inference systems. Then, based on these results, we propose a new neuro-fuzzy computing system which can effectively be implemented on the memristor-crossbar structure. One important feature of the proposed system is that its hardware can directly be trained using the Hebbian learning rule and without the need to any optimization. The system also has a very good capability to deal with huge number of input-out training data without facing problems like overtraining.Comment: 16 pages, 11 images, submitted to IEEE Trans. on Fuzzy system

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented

    Nature-Inspired Adaptive Architecture for Soft Sensor Modelling

    Get PDF
    This paper gives a general overview of the challenges present in the research field of Soft Sensor building and proposes a novel architecture for building of Soft Sensors, which copes with the identified challenges. The architecture is inspired and making use of nature-related techniques for computational intelligence. Another aspect, which is addressed by the proposed architecture, are the identified characteristics of the process industry data. The data recorded in the process industry consist usually of certain amount of missing values or sample exceeding meaningful values of the measurements, called data outliers. Other process industry data properties causing problems for the modelling are the collinearity of the data, drifting data and the different sampling rates of the particular hardware sensors. It is these characteristics which are the source of the need for an adaptive behaviour of Soft Sensors. The architecture reflects this need and provides mechanisms for the adaptation and evolution of the Soft Sensor at different levels. The adaptation capabilities are provided by maintaining a variety of rather simple models. These particular models, called paths in terms of the architecture, can for example focus on different partition of the input data space, or provide different adaptation speeds to changes in the data. The actual modelling techniques involved into the architecture are data-driven computational learning approaches like artificial neural networks, principal component regression, etc

    Optimization of Software Project Risk Assessment Using Neuro-Fuzzy Techniques

    Get PDF
    Hazard evaluation assumes a pivotal part in the product venture administration. The discriminating examination of distinctive danger evaluation techniques help specialists and professionals to assess the effect of different venture related dangers. The existing Fuzzy Expert Cost Constructive Model(Fuzzy ExCOM) model is a combination of fuzzy technique and Expert COCOMO. It takes help of mastery and data from prior exercises conveyed for expense and exertion estimation. However, it has limitations that it can't make space for backing from other noteworthy rules related to risks. The proposed work examinations the effect of the ANN technique for software project risk assessment. It serves to create danger standards utilizing Artificial Neural Network techniques to enhance the exactness of danger evaluation process. The combination of various optimization algorithm like Genetic Algorithms and Particle Swarm Optimization are applied collaboratively with Neural network to get best initial starting solution for Neural Network. The results show that this strategy with accessible task information and Neuro-Fuzzy Risk assessment technique provides enhanced outputs than existing Fuzzy Ex-com technique
    corecore