8 research outputs found

    Providing Spatial Control in Personal Sound Zones Using Graph Signal Processing

    Full text link
    [EN] Personal audio systems aim to create listening (or bright) and quiet (or dark) zones in a room using an array of loudspeakers. For this purpose, many algorithms have been presented in the literature, being Weighted Pressure Matching (wPM) one of the most versatile. The main strength of wPM is that it can render a target soundfield in the listening zone while having control over the mean acoustic potential energy in the quiet zone. In this paper, we propose a variation of wPM such that it can provide control not only over the mean energy, but also over the spatial energy differences, obtaining a more uniform soundfield in the dark zone. The new algorithm is called wPM with Total Variation (wPM-TV), where TV is a tool used in the field of Graph Signal Processing (GSP). Firstly, we propose a graph representation of the control microphones of the dark zone and secondly, we use the wPM-TV algorithm to provide spatial control over that zone. Simulations show the good performance of the proposed algorithm and its versatility to obtain a more uniform distribution of the acoustic potential energy in the dark zone at the cost of slightly increasing the mean square reproduction error in the bright zone.This work has been partially supported by Spanish Ministry of Science, Innovation and Universities through grant FPU17/01288 and by European Union together with Spanish Government through grant RTI2018-098085-BC41 (MCIU/AEI/FEDER)Molés-Cases, V.; Piñero, G.; Gonzalez, A.; Diego Antón, MD. (2019). Providing Spatial Control in Personal Sound Zones Using Graph Signal Processing. IEEE. 1-7. https://doi.org/10.23919/EUSIPCO.2019.8903068S1

    Personal Sound Zones by Subband Filtering and Time Domain Optimization

    Full text link
    [EN] Personal Sound Zones (PSZ) systems aim to render independent sound signals to multiple listeners within a room by using arrays of loudspeakers. One of the algorithms used to provide PSZ is Weighted Pressure Matching (wPM), which computes the filters required to render a desired response in the listening zones while reducing the acoustic energy arriving to the quiet zones. This algorithm can be formulated in time and frequency domains. In general, the time-domain formulation (wPM-TD) can obtain good performance with shorter filters and delays than the frequency-domain formulation (wPM-FD). However, wPM-TD requires higher computation for obtaining the optimal filters. In this article, we propose a novel approach to the wPM algorithm named Weighted Pressure Matching with Subband Decomposition (wPMSD), which formulates an independent time-domain optimization problem for each of the subbands of a Generalized Discrete Fourier Transform (GDFT) filter bank. Solving the optimization independently for each subband has two main advantages: 1) lower computational complexity than wPM-TD to compute the optimal filters; 2) higher versatility than the classic wPM algorithms, as it allows different configurations (sets of loudspeakers, filter lengths, etc.) in each subband. Moreover, filtering the input signals with a GDFT filter bank (as in wPM-SD) requires lower computational effort than broadband filtering (as in wPM-TD and wPM-FD), which is beneficial for practical PSZ systems. We present experimental evaluations showing that wPM-SD offers very similar performance to wPM-TD. In addition, two cases where the versatility of wPM-SD is beneficial for a PSZ system are presented and experimentally validated.This work was supported by Grants RTI2018-098085-B-C41 (MCIU/AEI/FEDER, UE), RED2018-102668-T and PROMETEO/2019/109. The work of Vicent Moles-Cases has been supported by Spanish Ministry of Education under Grant FPU17/01288.Molés-Cases, V.; Piñero, G.; Diego Antón, MD.; Gonzalez, A. (2020). Personal Sound Zones by Subband Filtering and Time Domain Optimization. IEEE/ACM Transactions on Audio Speech and Language Processing. 28:2684-2696. https://doi.org/10.1109/TASLP.2020.3023628S268426962

    Improving speech privacy in personal sound zones

    Full text link

    Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array

    Get PDF
    Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem—using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed—in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system

    Generation of Private Sound With a Circular Loudspeaker Array and the Weighted Pressure Matching Method

    Full text link

    Sound Zone Control inside Spatially Confined Regions in Acoustic Enclosures

    Get PDF

    Multizone wideband sound field reproduction

    Get PDF
    This thesis deals with the problem of multizone wideband sound field reproduction using an array of loudspeakers. A pressure matching approach is researched to control the sound field within the zones through the calculation of loudspeaker weights. The loudspeaker weights are computed first using a regularized least-squares (LS) approach and then a least-absolute shrinkage and selection operator (Lasso). It is demonstrated that the single-stage LS technique outperforms the single-stage Lasso in multizone wideband sound field reproduction, while the single-stage Lasso enables the judicious placement of loudspeakers. To improve the multizone sound reproduction performance of wideband sources using a limited number of loudspeakers, it is assumed that the virtual sources are fixed in positions. A new two-stage Lasso-LS pressure matching approach is then proposed to optimize both the loudspeaker locations and weights. In the first stage, a Lasso algorithm is used to select the loudspeakers' positions for all sources and frequency bands. A second stage then optimizes reproduction using all selected loudspeakers on the basis of a regularized LS algorithm. The results show that a horizontal array of limited number of loudspeakers (e.g. 52) can be used to effectively create personal audio spaces for multiple users of variable heights. The proposed method is then extended to a nested Lasso-LS method which employs harmonic nested arrays in the first stage Lasso to reduce the computational complexity. Effectively, the nested arrays provide a priori knowledge of prospective loudspeaker locations based on the frequency bands of interest. The final loudspeaker locations and weightings are then estimated during the two-stage Lasso-LS optimization
    corecore