2,827 research outputs found

    A search for Earth-crossing asteroids, supplement

    Get PDF
    The ground based electro-optical deep space surveillance program involves a network of computer controlled 40 inch 1m telescopes equipped with large format, low light level, television cameras of the intensified silicon diode array type which is to replace the Baker-Nunn photographic camera system for artificial satellite tracking. A prototype observatory was constructed where distant artificial satellites are discriminated from stars in real time on the basis of the satellites' proper motion. Hardware was modified and the technique was used to observe and search for minor planets. Asteroids are now routinely observed and searched. The complete observing cycle, including the 2"-3" measurement of position, requires about four minutes at present. The commonality of asteroids and artificial satellite observing, searching, data reduction, and orbital analysis is stressed. Improvements to the hardware and software as well as operational techniques are considered

    GNSS-based passive radar techniques for maritime surveillance

    Get PDF
    The improvement of maritime traffic safety and security is a subject of growing interest, since the traffic is constantly increasing. In fact, a large number of human activities take place in maritime domain, varying from cruise and trading ships up to vessels involved in nefarious activities such as piracy, human smuggling or terrorist actions. The systems based on Automatic Identification System (AIS) transponder cannot cope with non-cooperative or non-equipped vessels that instead can be detected, tracked and identified by means of radar system. In particular, passive bistatic radar (PBR) systems can perform these tasks without a dedicated transmitter, since they exploit illuminators of opportunity as transmitters. The lack of a dedicated transmitter makes such systems low cost and suitable to be employed in areas where active sensors cannot be placed such as, for example, marine protected areas. Innovative solutions based on terrestrial transmitters have been considered in order to increase maritime safety and security, but these kinds of sources cannot guarantee a global coverage, such as in open sea. To overcome this problem, the exploitation of global navigation satellites system (GNSS) as transmitters of opportunity is a prospective solution. The global, reliable and persistent nature of these sources makes them potentially able to guarantee the permanent monitoring of both coastal and open sea areas. To this aim, this thesis addresses the exploitation of Global Navigation Satellite Systems (GNSS) as transmitters of opportunity in passive bistatic radar (PBR) systems for maritime surveillance. The main limitation of this technology is the restricted power budget provided by navigation satellites, which makes it necessary to define innovative moving target detection techniques specifically tailored for the system under consideration. For this reason, this thesis puts forward long integration time techniques able to collect the signal energy over long time intervals (tens of seconds), allowing the retrieval of suitable levels of signal-to-disturbance ratios for detection purposes. The feasibility of this novel application is firstly investigated in a bistatic system configuration. A long integration time moving target detection technique working in bistatic range&Doppler plane is proposed and its effectiveness is proved against synthetic and experimental datasets. Subsequently the exploitation of multiple transmitters for the joint detection and localization of vessels at sea is also investigated. A single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration is proposed. Furthermore, the potential of the system to extract information concerning the detected target characteristics for further target classification is assessed

    A Fault Tolerant System for an Integrated Avionics Sensor Configuration

    Get PDF
    An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors

    Experimental demonstration of ship target detection in GNSS-based passive radar combining target motion compensation and track-before-detect strategies

    Get PDF
    This work discusses methods and experimental results on passive radar detection of moving ships using navigation satellites as transmitters of opportunity. The reported study highlights as the adoption of proper strategies combining target motion compensation and track-before-detect methods to achieve long time integration can be fruitfully exploited in GNSS-based passive radar for the detection of maritime targets. The proposed detection strategy reduces the sensitivity of long-time integration methods to the adopted motion models and can save the computational complexity, making it appealing for real-time implementations. Experimental results obtained in three different scenarios (port operations, navigation in open area, and river shipping) comprising maritime targets belonging to different classes show as this combined approach can be employed with success in several operative scenarios of practical interest for this technology

    Study of a navigation and traffic control technique employing satellites. Volume 3 - User hardware Interim report

    Get PDF
    User hardware configurations and requirements for navigation and air traffic control technique using satellite

    Spectral Detection of Human Skin in VIS-SWIR Hyperspectral Imagery without Radiometric Calibration

    Get PDF
    Many spectral detection algorithms require precise ground truth measurements that are hand-selected in the image to apply radiometric calibration, converting image pixels into estimated reflectance vectors. That process is impractical for mobile, real-time hyperspectral target detection systems, which cannot empirically derive a pixel-to-reflectance relationship from objects in the image. Implementing automatic target recognition on high-speed snapshot hyperspectral cameras requires the ability to spectrally detect targets without performing radiometric calibration. This thesis demonstrates human skin detection on hyperspectral data collected at a high frame rate without using calibration panels, even as the illumination in the scene changes. Compared to an established skin detection method that requires calibration panels, the illumination-invariant methods in this thesis achieve nearly as good detection performance in sunny scenes and superior detection performance in cloudy scenes

    Application of track-before-detect techniques in GNSS-based passive radar for maritime surveillance

    Get PDF
    GNSS-based passive radar has been recently proved able to enable moving target detection in maritime surveillance applications. The main restriction lies in the low Equivalent Isotropic Radiated Power (EIRP) level of navigation satellites. Extending the integration times with proper target motion compensation has been shown to be a viable solution to improve ship detectability, but this involves computational complexity and increasing sensitivity to motion model mismatches. In this work, we consider the application of a Track-Before-Detect (TBD) method to considerably increase the integration time (and therefore the detection capability) at the same time keeping the computational complexity affordable by practical systems. Dynamic programming TBD algorithms have been specialized for the considered framework and tested against experimental dataset. The obtained results show the effectiveness of this approach to improve the detection capability of the system despite the restricted power budget

    Mobile Object Tracking in Panoramic Video and LiDAR for Radiological Source-Object Attribution and Improved Source Detection

    Full text link
    The addition of contextual sensors to mobile radiation sensors provides valuable information about radiological source encounters that can assist in adjudication of alarms. This study explores how computer-vision based object detection and tracking analyses can be used to augment radiological data from a mobile detector system. We study how contextual information (streaming video and LiDAR) can be used to associate dynamic pedestrians or vehicles with radiological alarms to enhance both situational awareness and detection sensitivity. Possible source encounters were staged in a mock urban environment where participants included pedestrians and vehicles moving in the vicinity of an intersection. Data was collected with a vehicle equipped with 6 NaI(Tl) 2 inch times 4 inch times 16 inch detectors in a hexagonal arrangement and multiple cameras, LiDARs, and an IMU. Physics-based models that describe the expected count rates from tracked objects are used to correlate vehicle and/or pedestrian trajectories to measured count-rate data through the use of Poisson maximum likelihood estimation and to discern between source-carrying and non-source-carrying objects. In this work, we demonstrate the capabilities of our source-object attribution approach as applied to a mobile detection system in the presence of moving sources to improve both detection sensitivity and situational awareness in a mock urban environment

    Joint detection and localization of vessels at sea with a GNSS-Based multistatic radar

    Get PDF
    This paper addresses the exploitation of global navigation satellite systems as opportunistic sources for the joint detection and localization of vessels at sea in a passive multistatic radar system. A single receiver mounted on a proper platform (e.g., a moored buoy) can collect the signals emitted by multiple navigation satellites and reflected from ship targets of interest. This paper puts forward a single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration. A proper strategy is defined to form a long-time and multistatic range and Doppler (RD) map, where the total target power can be reinforced with respect to, in turn, the case in which the RD map is obtained over a short dwell and the case in which a single transmitter is employed. The exploitation of both the long integration time and the multiple transmitters can greatly enhance the performance of the system, allowing counteracting the low-power budget provided by the considered sources representing the main bottleneck of this technology. Moreover, the proposed single-stage approach can reach superior detection performance than a conventional two-stage process where peripheral decisions are taken at each bistatic link and subsequently the localization is achieved by multilateration methods. Theoretical and simulated performance analysis is proposed and also validated by means of experimental results considering Galileo transmitters and different types of targets of opportunity in different scenarios. Obtained results prove the effectiveness of the proposed method to provide detection and localization of ship targets of interest

    The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States. Volume 1 - Technical report

    Get PDF
    Satellite applications to aircraft communications, navigation, and surveillance over US including synthesized satellite network and aircraft equipment for air traffic contro
    • …
    corecore