47 research outputs found

    A Standard Test Case Suite for Two-Dimensional Linear Transport on the Sphere: Results from a Collection of State-of-the-Art Schemes

    Get PDF
    Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a minimal set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude–longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate–chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison

    A standard test case suite for two-dimensional linear transport on the sphere

    Get PDF
    It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, "minimal" resolution, the ability of the transport scheme to preserve filaments, transport "rough" distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions. <br><br> The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent) and four analytical initial conditions (varying from smooth to discontinuous). Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a "true" solution is needed. Results using the CSLAM (Conservative Semi-Lagrangian Multi-tracer) scheme on the cubed-sphere are presented for reference and illustrative purposes

    Algorithms for Advection on Hybrid Parallel Computers

    Get PDF
    Current climate models have a limited ability to increase spatial resolution because numerical stability requires the time step to decrease. I describe initial experiments with two independent but complementary strategies for attacking this time barrier . First I describe computational experiments exploring the performance improvements from overlapping computation and communication on hybrid parallel computers. My test case is explicit time integration of linear advection with constant uniform velocity in a three-dimensional periodic domain. I present results for Fortran implementations using various combinations of MPI, OpenMP, and CUDA, with and without overlap of computation and communication. Second I describe a semi-Lagrangian method for tracer transport that is stable for arbitrary Courant numbers, along with a parallel implementation discretized on the cubed sphere. It shows optimal accuracy at Courant numbers of 10-20, more than an order of magnitude higher than explicit methods. Finally I describe the development and stability analyses of the time integrators and advection methods I used for my experiments. I develop explicit single-step methods with stability up to Courant numbers of one in each dimension, hybrid explicit-implict methods with stability for arbitrary Courant numbers, and interpolation operators that enable the arbitrary stability of semi-Lagrangian methods

    A Characteristic Mapping Method for Transport on the Sphere

    Full text link
    A semi-Lagrangian method for the solution of the transport equation on a sphere is presented. The method evolves the inverse flow-map using the Characteristic Mapping (CM) [1] and Gradient-Augmented Level Set (GALS) [2] frameworks. Transport of the advected quantity is then computed by composition with the numerically approximated inverse flow-map. This framework allows for the advection of complicated sets and multiple quantities with arbitrarily fine-features using a coarse computational grid. We discuss the CM method for linear transport on the sphere and its computational implementation. Standard test cases for solid body rotation, deformational and divergent flows, and numerical mixing are presented. The unique features of the method are demonstrated by the transport of a multi-scale function and a fractal set in a complex flow environment
    corecore