3 research outputs found

    A conflict-free memory banking architecture for fast VOQ packet buffers

    Get PDF
    In order to support the enormous growth of the Internet, innovative research in every router subsystem is needed. We focus our attention on packet buffer design for routers supporting high-speed line rates. More specifically, we address the design of packet buffers using virtual output queuing (VOQ), which are used in most modern router architectures. The design is based on a previously proposed scheme that uses a combination of SRAM and DRAM modules. We propose a storage scheme that achieves a conflict-free memory bank organization. This leads to a reduction of the granularity of DRAM accesses, resulting in a decrease of storage capacity needed by the SRAM. In the DRAM/SRAM scheme, SRAM memory bandwidth needs to fit the line rate. Since memory bandwidth is limited by its size, searching for memory schemes having a small SRAM size arises as an essential issue for high speed line rates (e.g. OC768, 40 Gbps and OC3072, 160 Gbps).Peer ReviewedPostprint (published version

    A conflict-free memory banking architecture for fast VOQ packet buffers

    No full text

    A conflict-free memory banking architecture for fast VOQ packet buffers

    No full text
    In order to support the enormous growth of the Internet, innovative research in every router subsystem is needed. We focus our attention on packet buffer design for routers supporting high-speed line rates. More specifically, we address the design of packet buffers using virtual output queuing (VOQ), which are used in most modern router architectures. The design is based on a previously proposed scheme that uses a combination of SRAM and DRAM modules. We propose a storage scheme that achieves a conflict-free memory bank organization. This leads to a reduction of the granularity of DRAM accesses, resulting in a decrease of storage capacity needed by the SRAM. In the DRAM/SRAM scheme, SRAM memory bandwidth needs to fit the line rate. Since memory bandwidth is limited by its size, searching for memory schemes having a small SRAM size arises as an essential issue for high speed line rates (e.g. OC768, 40 Gbps and OC3072, 160 Gbps).Peer Reviewe
    corecore