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Abstract— In order to support the enormous growth of the In-
ternet, innovative research in every router’s subsystem is needed.
In this paper we focus our attention on packet buffer design
for routers supporting high-speed line rates. More specifically,
we address the design of packet buffers using Virtual Output
Queuing (VOQ) discipline, which are used in most modern router
architectures. The design is based on a previously proposed
scheme that uses a combination of SRAM and DRAM modules.
We propose a storage scheme that achieves a conflict-free memory
bank organization. This leads to a reduction of the granularity
of DRAM accesses, resulting in a decrease of storage capacity
needed by the SRAM. In the DRAM/SRAM scheme, SRAM
memory bandwidth needs to fit the line rate. Since memory
bandwidth is limited by its size, searching for memory schemes
having a small SRAM size arises as an essential issue for high
speed line rates (e.g. OC768, 40 Gbps and OC3072, 160 Gbps).

I. INTRODUCTION

One problem that comes out when designing high speed
routers or switches is how to build high bandwidth multi-queue
packet buffers. One important example of this are Virtual
Output Queuing (VOQ) buffers [1], used as input buffers in
most of the recently proposed router architectures (e.g: [2],
[3], [4]). An VOQ input buffer maintains Q separate logical
queues, one for each output port and class of service. When
a cell arrives to the input port, it is placed in the queue
corresponding to its outgoing port and class of service. When
the input port receives a request for a cell addressed to a given
output port and class of service, the cell is taken from the head
of the corresponding queue in the VOQ buffer.

For line rates below OC192 (10 Gbps) the main complexity
of VOQ relays not on the buffer itself, but on the switch
fabric scheduler, as for an N port switch it has to control
N × Q queues. For OC192 and beyond, the packet buffer
design becomes an interesting and challenging problem, as
the required packet buffer bandwidth exceeds the capacity of
commercial DRAMs.

In [5], [6] and [7] a VOQ buffer design which uses slow
but low cost DRAM coupled with fast but costly SRAM
is discussed (see Figure 1). The system consists of two
SRAM modules (t-SRAM and h-SRAM), a DRAM system,
and two Memory Management Algorithm modules (t-MMA
and h-MMA). The tail of each VOQ logical queue is stored
in the t-SRAM, the head is stored in the h-SRAM, and the
rest is stored in DRAM. In this scheme the SRAM memory
bandwidth needs to fit the line rate. This means that the SRAM
access time must be less than or equal to the transmission time

of a cell (we shall refer to this time as a slot). In order to
match DRAM/SRAM access times, transfers between DRAM
and SRAM occurs in batches of B cells every B slots. B is
known as the data granularity of the memory scheme.

Thus, every B slots the t-MMA selects a queue from
which B cells are to be transferred from t-SRAM to DRAM.
This algorithm should guarantee that the t-SRAM is not filled
up before DRAM. Otherwise losses would occur before the
DRAM is full. A t-MMA that could avoid these losses is
simple: transfer to DRAM B cells from any queue with an
occupancy counter higher than or equal to B. In this case, the
required tail SRAM size would be Q (B − 1) + 1 cells.

The h-SRAM is a more complex system. This algorithm
has to guarantee that cells transferred between DRAM and
h-SRAM can accommodate the sequence of cells requested
by the fabric scheduler. Otherwise it may happen that the
cell requested by the scheduler is not present in the h-SRAM
because it has not been already transferred from the DRAM.
We shall refer this condition as a miss. We will dedicate the
rest of the paper to analyze the h-MMA and h-SRAM, and
we shall refer to them simply as MMA and SRAM.

The analysis that can be found in literature related to this
DRAM/SRAM design always consider that transfers between
SRAM and DRAM are done every random access time of
DRAM. We shall refer to this system as Random Access
DRAM System (RADS). As it is shown in [5], [6] and [7],
t-SRAM and h-SRAM sizes are roughly proportional to Q×B
cells (see section II). Decreasing the value B would lead to
smaller and hence faster SRAMs, leading to a VOQ design
suitable for faster input line rates. Unfortunately, DRAM
random access times decrease at a relatively low pace (around
10% every 18 months), and for decreasing the value B we
cannot relay on purely technological improvements.

In this paper we propose a new design for the DRAM
subsystem that uses DRAM memories with a high num-
ber of interleaving memory modules. We propose a storage
scheme [8] and associated out of order access to these memory
modules that guarantee conflict free access. This feature allows
our design to reduce the granularity of the DRAM accesses,
and consequently to reduce the size of the SRAM memory
and increase the line rate. We shall refer to our memory
architecture as Conflict Free DRAM System (CFDS).
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Fig. 1. RADS memory architecture of the packet buffer.

II. RANDOM ACCESS DRAM SYSTEM (RADS)

In [5], [6] and [7] different proposals for MMAs are studied.
In this section we summarize the main dimensioning results
obtained in these references.

Figure 2 shows the general MMA scheme: An arbiter (e.g.
the switch fabric scheduler) issues a cell request every slot.
This request is stored in the tail of a lookahead shift register of
l positions. At every slot, one cell from the queue demanded
by the head of the lookahead is read from the SRAM and
granted to the arbiter. In order to guarantee that the requested
cell is always in SRAM, every B slots a queue is selected by
the MMA and a group of B cells of this queue are transfered
from DRAM to SRAM.

The decisions of the MMA take into account (i) the SRAM
occupancy counters (i.e. the number of cells of every queue
present in the SRAM), and (ii) the arbiter requests stored in
the lookahead. The lookahead allows the MMA to select the
queue to be replenished knowing the l requests that are going
to be issued in the future. Armed with this information, the
MMA can take better decisions and hence, the SRAM size
can be reduced and still guarantee zero miss probability.

For example, suppose that the parameters of the system
shown in Figure 2 are: Q = 4, B = 3, l = 5. Suppose also that
the MMA is called with the SRAM occupancy counters and
the lookahead values shown in the figure. The MMA should
select the queue 1. This queue would be replenished with 3
cells after 3 slots, and would remain with 2 cells after 5 slots.
If the MMA would have selected the queue 3, a miss would
occur for queue 1 after 5 slots.

The MMA that allows the smallest SRAM is the so called
Earliest Critical Queue First (ECQF-MMA). The algorithm
works as follows: read the lookahead from the head (slot 1)
to the tail (slot l). For every request read from the lookahead,
decrease the occupancy counter of the corresponding queue.
If this modified occupancy counter is less than zero, then
the queue is said to be critical. The first queue found to
be critical is the queue selected by the ECQF-MMA. The
minimum SRAM size necessary to have zero miss probability
is SRAMmin = Q (B − 1) and the required lookahead is
l = Q (B − 1) + 1. Note that this lookahead value guarantees
that there is always at least one critical queue.

If we want to reduce the lookahead value (0 < l <
Q(B − 1) + 1) the Most Deficit Queue First with Pipeline
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Fig. 2. RADS Memory Architecture.

Delay is proposed. The MDQFP-MMA choses first the earliest
critical queue, if there is any. If there are not critical queues, it
choses the queue with lowest occupancy counter at the end of
the lookahead. The SRAM size bound for guaranteeing zero
misses is: SRAMmax ≤ QB (1 + ln QB

l )
In the special case of l = 0 the MMA consists of selecting

the queue having the lower occupancy counter (Most Deficit
Queue First), and the maximum SRAM size necessary to have
zero miss probability is bounded by: SRAMmax ≤ QB (2 +
ln Q).

In [9] we have derived the algorithm in C code shown
in Figure 3. This algorithm computes the exact value of the
required SRAM size (in cells) for all values of the lookahead.

int rads_sram_size(int L, int Q, int B)
{

int nextround, maxdeficit, slot ;

if(L > Q * (B-1)) {
return Q * (B - 1) ;

}
if(L > 0) {

maxdeficit = int((L - 1)/ Q) + 1 ;
slot = maxdeficit * Q ;

} else {
maxdeficit = 0 ;
slot = 0 ;

}

while(1) {
nextround = int((slot - L) / B) + 1 ;
if(nextround >= Q-1) {

maxdeficit = maxdeficit + Q * B - 1 - slot ;
break ;

}
slot += Q - nextround ;
if(slot >= Q * B) {

break ;
}
++maxdeficit ;

}
return Q * maxdeficit ;

}

Fig. 3. Algorithm to compute the SRAM size. The parameters of the function
are: lookahead size (L), number of queues (Q) and DRAM granularity (B).

III. POTENTIAL OF BANK INTERLEAVING

In response to the growing gap between processor and mem-
ory, DRAM manufacturers have created several new architec-
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tures that address the problem of latency, bandwidth and cycle
time (e.g. DDR-SDRAM [10] or RAMBUS DRDRAM [11]).
All these commercial DRAM solutions implement a number
of memory banks –as high as 512– that can be addressed inde-
pendently. If a conflict-free mechanism can be implemented to
avoid memory bank contention, the cycle time of a ’random’
DRAM access can be significantly reduced. These features are
exploited in the memory architecture proposed in section IV.
In this section the concept of memory banking is introduced.

modulemodulemodulemodule

@

b cells

bank0 bank1 bankM-1

...

@
clk1

clk2

data

Fig. 4. Organization of a DRAM main memory in banks: (a) internal structure
of a memory bank, (b) configuration of a DRDRAM-style memory.

Figure 4.a illustrates the concept of memory bank and
the concept of an interleaved memory system. A memory
bank is a set of memory modules that are always accessed
in parallel with the same memory address. The number of
memory modules grouped in parallel is dictated by the size of
the data element we want to address. This size in cells is the
data granularity.

Figure 4.b shows a possible memory bank configuration
(similar to that of a DRDRAM-like memory system [11]). In
a conventional DRAM memory system, the data is interleaved
across all memory banks using a certain policy, and the
memory controller is simply responsible of broadcasting the
addresses to all of them. Each memory bank has a special logic
that determines whether the address identifies a data item that
the bank contains or not.

In the RADS scheme described in section II the data
granularity (B) was given by the DRAM random access. Now,
given an array of M memory banks and a random cycle time
of T seconds per bank, it is theoretically possible to initiate a
new memory access every T/M seconds. Therefore, the data
granularity can be potentially reduced by a factor of M .

There are two fundamental limits to the bank interleaving
technique. First, the bus address speed: that is, the cycle time
required to broadcast an address to all memory banks. Second,
the problem of bank collisions. In order to fully exploit the
potential bandwidth of an interleaved memory system, we need
to grant that the same bank is not accessed twice within its
random access time (T ). The implementation of conflict-free
mechanisms is specially sensible in the context of fast packet
buffering, as we need to enforce that no bank collision is ever

produced, otherwise, a packet would be lost as a result.

IV. CONFLICT FREE DRAM SYSTEM (CFDS)

In this section we describe a novel DRAM memory sys-
tem that grants conflict-free access with affordable cost. The
system is based on a special memory bank organization
coupled to a reordering mechanism that schedules the different
MMA request guaranteeing that no bank-conflicts are present.
Figure 5 summarizes the CFDS memory architecture. Four
items stand out in CFDS:

• CFDS exploits the DRAM bank organization.
• The Virtual SRAM Subsystem works exactly as the SRAM

subsystem of the RADS memory architecture described
in section II. It uses, however, a granularity of b < B for
cells transfers between DRAM and SRAM.

• The DRAM Scheduler Subsystem hides the DRAM bank
organization to the former Virtual SRAM Subsystem.

• The DRAM subsystem can transfer cells to SRAM with
a different order of the requested by the Virtual SRAM
Subsystem. Reordering these cells implies an additional
cost in terms of latency and SRAM size. It can be shown,
however, that introducing an additional delay and storage,
an exact delivery of cells to the arbiter can be guaranteed.
Moreover, the benefits of decreasing the granularity outfit
the additional cost introduced by the reordering process.

These items are discussed in the following subsections.
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Fig. 5. CFDS Memory Architecture of the packet buffer.

A. DRAM Bank Organization

Let M be the number of DRAM banks. We organize these
banks in G = M/(B/b) groups of B/b banks per group (see
Figure 6). Each group stores cells of Q/G queues. Banks are
accessed transferring b cells of the same queue. Furthermore,
in order to avoid bank conflicts, the cells of every queue are
stored in a round robin across all the banks of the group
(low-order interleaving). Doing this way, we can perform
B/b consecutive access to the same queue (transferring B
cells overall) without bank conflicts. The distribution of the
queues among the maximum number of groups maximizes
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Fig. 6. Proposed memory bank interleaving.

the likelihood of finding independent accesses, reducing the
hardware requirements to provide conflict-free access.

In Figure 6 we show the mapping function used to obtain
the bank and group indexes. A given request address contains
two bit fields, one determining the queue and one determining
the relative order. The group index is obtained using the low-
order bits of the queue field while the bank inside that group
is obtained using the low order-bits of the ordinal field. The
rest of the bits are used to determine the row and column
addresses of the specified DRAM bank.

B. Virtual SRAM Subsystem

The Virtual SRAM Subsystem shown in Figure 5 works in
the same way as the RADS memory architecture described
in section II, but assuming that b < B cells are transfered
every DRAM memory access: Every b slots the Virtual MMA
(V-MMA), using any of the previously described algorithms,
decides the queue to be replenished, issues the request to
the DRAM Scheduler Subsystem, and updates accordingly the
virtual occupancy counters.

C. DRAM Scheduler Subsystem

The DRAM Scheduler Subsystem (DSS) shown in Figure 5
manages the transfers between the DRAM and SRAM to
fulfill the requests issued by the V-MMA. The DSS uses a
DRAM Scheduler Algorithm (DSA) to avoid bank conflicts,
making use of two registers: the Requests Register (RR) and
the Ongoing Requests Register (ORR).

The RR is a shift register that stores the requests made by
the V-MMA and that have not being fulfilled yet. Every b slots,
the DSA choses a request of the RR, which can be placed at
any position of the register. Once a request has been chosen,
it is removed from the RR and the requests from this position
to the tail of the RR are shifted ahead, making room for the
new request that will be issued by the V-MMA b slots later.
The ORR is a shift register that stores the banks that currently
are being accessed. In case a new request would be issued
to any of these banks, a bank conflict would arise. Hence, the
banks stored in the ORR are locked and the DSA would never
initiate a new transfer of cells residing in these locked banks.

Taking into account that a bank is locked during B slots, we
need to consider the latest B/b−1 ongoing requests. The size
of the ORR is hence B/b − 1.

The DSA choses the oldest request in the RR addressed to
a bank which is not locked, starting a new transfer of b cells
and placing the memory bank where these cells reside at the
tail of the ORR. In [9] we demonstrate that if the RR has a
size of:

L = (2Q/G − 1) (B/b − 1) + 1, (1)

the DSA can always find a non locked request1.
The factor 2 in the previous expression is due to the fact

that we have Q incoming streams from the t-SRAM and Q
outcoming streams for the h-SRAM. Note that in case the DSA
always choose the head of the RR, the requests delivered by
the V-MMA would suffer a delay of (L− 1) b slots until they
are passed to the ORR. If the request at the head of the RR is
locked, there will be requests having a delay higher and lower
than (L− 1) b slots. In [9] we demonstrate that the maximum
number of times a request can be delayed is:

Rmax = (2Q/G − 1) (B/b − 1). (2)

D. The Latency Register

In the proposed conflict-free access mechanism, the DRAM
subsystem may deliver the cells out of order (even those
from the same queue that are not located in the same bank).
Therefore, we have to introduce a reordering mechanism.
The reordering mechanism introduces an additional delay and
increments somewhat the SRAM size:

Firstly, an additional delay equal to the maximum delay
that a replenish request can suffer due to the DSA reordering
has to be added to the lookahead of the V-MMA. This is
introduced by the latency shift register shown in Figure 5.
From the previous results we get that the size of this register
must be equal to:

latency (in slots) = b ((L − 1) + Rmax)
= 2 b (2Q/G − 1) (B/b − 1).

(3)

Finally, note that the replenish requests of the SRAM queues
are delivered to DRAM when they leave the RR register,
but cells are removed from SRAM when they leave the
latency shift register. The mismatch between these two events
requires increasing the SRAM size (in order to store the cells
downloaded to the SRAM before they are granted to the
arbiter).

From that, we conclude that two factors contribute to the
SRAM size dimensioning: (i) the size required by the Virtual
SRAM Subsystem given by the algorithm of Figure 3 (using b
instead of B), and (ii) the additional SRAM size to cope with
the mismatch described above. Summing both terms we have:

SRAM size (cells) = rads sram size(L, Q, b)+ bRmax. (4)

1Empty requests are considered as requests to a special queue.
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V. NUMERICAL RESULTS

In this section we study the SRAM size reduction that could
be achieved using the proposed memory architecture (CFDS)
over RADS. Note that a smaller SRAM occupies less silicon
area and can operate at faster rates. As in [5] we use B =
2 × R × T/C, where R is the line rate, T is the random
access time of DRAM and C is the the cell size in bits. For
OC3072 (R = 160 Gbps), T = 51,2 ns and cells of 64 bytes,
we obtain B=32.

Figure 7 allows us to demonstrate the performance benefits
of using CFDS instead of a basic RADS approach. The
figure shows the area (of both h-SRAM and t-SRAM) and
most restricting access time for OC3072 in function of the
lookahead delay (measured in µ-seconds). The number of
queues Q is 512. The curves with a data granularity of b = 32
correspond to the RADS implementation. The rest of the
curves correspond to different CDFS configurations varying
the value of b. We assume the number of banks M to be 256.

It can be seen the evident advantages of CFDS relative to
RADS. A CFDS system with b = 4 is compliant with the
requirements of buffering packets at 160Gb/s, as the access
time is lower than 3.2 ns. Moreover, this is accomplished
with a modest lookahead delay (10 µs) and an affordable
area (0.6 cm2 overall). This contrasts heavily with its RADS
counterpart, which is hardly unable to access data in 7 ns,
even with a delay of more than 50 µs and the non-irrelevant
area of 2 cm2.

Another important conclusion is that there is an optimal
value of b for a given CFDS implementation. The reason is
the trade-off between the SRAM size required to tolerate the
unpredictability of arrivals from the arbiter and the SRAM
size required to absorb the level of reordering of the accesses
from the DRAM. In this case the optimal value is b = 4, as it
gives minimum SRAM size and access times for a minimum
lookahead delay.

VI. CONCLUSIONS

In this paper we have proposed a novel architecture targeted
at fast packet buffering. In order to overcome the bandwidth
problems of current commodity DRAM memory systems, the
use of SRAM coupled to DRAM have been proposed in the

past. Those SRAM memories act as ingress and egress buffers
to allow wide transfers between the buffering system and its
main DRAM memory system. The main drawback of this
organization is that the data granularity of the DRAM accesses
have to be enlarged to sidestep the high cycle times of a single
DRAM bank. As a result, the SRAM memories could be too
large and slow for very high link rates.

In our proposal, the memory bank organization is exploited
in order to achieve conflict-free access to DRAM. This leads to
a reduction of the granularity of the DRAM accesses, resulting
in a decrease of storage capacity needed by the SRAM.
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