6 research outputs found

    Algorithms and systems for home telemonitoring in biomedical applications

    Get PDF
    During the past decades, the interest of the healthcare community shifted from the simple treatment of the diseases towards the prevention and maintenance of a healthy lifestyle. This approach is associated to a reduced cost for the Health Systems, having to face the constantly increased expenditures due to the reduced mortality for chronical diseases and to the progressive population ageing. Nevertheless, the high costs related to hospitalization of patients for monitoring procedures that could be better performed at home hamper the full implementation of this approach in a traditional way. Information and Communication Technology can provide a solution to implement a care model closer to the patient, crossing the physical boundaries of the hospitals and thus allowing to reach also those patients that, for a geographical or social condition, could not access the health services as other luckier subjects. This is the case of telemonitoring systems, whose aim is that of providing monitoring services for some health-related parameters at a distance, by means of custom-designed electronic devices. In this thesis, the specific issues associated to two telemonitoring applications are presented, along with the proposed solutions and the achieved results. The first telemonitoring application considered is the fetal electrocardiography. Non-invasive fetal electrocardiography is the recording of the fetal heart electrical activity using electrodes placed on the maternal abdomen. It can provide important diagnostic parameters, such as the beat-to-beat heart rate variability, whose recurring analysis would be useful in assessing and monitoring fetal health during pregnancy. Long term electrocardiographic monitoring is sustained by the absence of any collateral effects for both the mother and the fetus. This application has been tackled from several perspectives, mainly acquisition and processing. From the acquisition viewpoint a study on different skin treatments, disposable commercial electrodes and textile electrodes has been performed with the aim of improving the signal acquisition quality, while simplifying the measurement setup. From the processing viewpoint, different algorithms have been developed to allow extracting the fetal ECG heart rate, starting from an on-line ICA algorithm or exploiting a subtractive approach to work on recordings acquired with a reduced number of electrodes. The latter, took part to the international "Physionet/Computing in Cardiology Challenge" in 2013 entering into the top ten best-performing open-source algorithms. The improved version of this algorithm is also presented, which would mark the 5th and 4th position in the final ranking related to the fetal heart rate and fetal RR interval measurements performance, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. The research in this field has been carried out in collaboration with the Pediatric Cardiology Unit of the Hospital G. Brotzu in Cagliari, for the acquisition of non-invasive fetal ECG signals from pregnant voluntary patients. The second telemonitoring application considered is the telerehabilitation of the hand. The execution of rehabilitation exercises has been proven to be effective in recovering hand functionality in a wide variety of invalidating diseases, but the lack of standardization and continuous medical control cause the patients neglecting this therapeutic procedures. Telemonitoring the rehabilitation sessions would allow the physician to closely follow the patients' progresses and compliance to the prescribed adapted exercises. This application leads to the development of a sensorized telerehabilitation system for the execution and objective monitoring of therapeutic exercises at the patients' home and of the telemedicine infrastructure that give the physician the opportunity to monitor patients' progresses through parameters summarizing the patients' performance. The proposed non-CE marked medical device, patent pending, underwent a clinical trial, reviewed and approved by the Italian Public Health Department, involving 20 patients with Rheumatoid Arthritis and 20 with Systemic Sclerosis randomly assigned to the experimental or the control arm, enrolled for 12 weeks in a home rehabilitation program. The trial, carried out with the collaboration of the Rheumatology Department of the Policlinico Universitario of Cagliari, revealed promising results in terms of hand functionality recovering, highlighting greater improvements for the patients enrolled in the experimental arm, that use the proposed telerehabilitation system, with respect to those of the control arm, which perform similar rehabilitation exercises using common objects

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    Multimodal Wearable Sensors for Human-Machine Interfaces

    Get PDF
    Certain areas of the body, such as the hands, eyes and organs of speech production, provide high-bandwidth information channels from the conscious mind to the outside world. The objective of this research was to develop an innovative wearable sensor device that records signals from these areas more conveniently than has previously been possible, so that they can be harnessed for communication. A novel bioelectrical and biomechanical sensing device, the wearable endogenous biosignal sensor (WEBS), was developed and tested in various communication and clinical measurement applications. One ground-breaking feature of the WEBS system is that it digitises biopotentials almost at the point of measurement. Its electrode connects directly to a high-resolution analog-to-digital converter. A second major advance is that, unlike previous active biopotential electrodes, the WEBS electrode connects to a shared data bus, allowing a large or small number of them to work together with relatively few physical interconnections. Another unique feature is its ability to switch dynamically between recording and signal source modes. An accelerometer within the device captures real-time information about its physical movement, not only facilitating the measurement of biomechanical signals of interest, but also allowing motion artefacts in the bioelectrical signal to be detected. Each of these innovative features has potentially far-reaching implications in biopotential measurement, both in clinical recording and in other applications. Weighing under 0.45 g and being remarkably low-cost, the WEBS is ideally suited for integration into disposable electrodes. Several such devices can be combined to form an inexpensive digital body sensor network, with shorter set-up time than conventional equipment, more flexible topology, and fewer physical interconnections. One phase of this study evaluated areas of the body as communication channels. The throat was selected for detailed study since it yields a range of voluntarily controllable signals, including laryngeal vibrations and gross movements associated with vocal tract articulation. A WEBS device recorded these signals and several novel methods of human-to-machine communication were demonstrated. To evaluate the performance of the WEBS system, recordings were validated against a high-end biopotential recording system for a number of biopotential signal types. To demonstrate an application for use by a clinician, the WEBS system was used to record 12‑lead electrocardiogram with augmented mechanical movement information

    A configurable biopotentials acquisition module suitable for fetal electrocardiography studies

    No full text
    The issue of biopotentials acquisition with surface electrodes has been studied for several years, during which a number of reliable techniques have been developed. Nowadays, they form a solid background of practices exploited in every commercially available biopotential acquisition module. Nevertheless, in some application fields where signal processing of the acquired signals is controversial, due to the lack of a deep understanding of the underlying physical aspects, there is the need to test several recording setups to define the one producing the best results. In fact, signal acquisition has strong influence on the signal processing techniques that can be deployed to post-process the data. Non-invasive fetal electrocardiography (ECG) is one of those field. In order to enable the investigation of the aspects connected with the signal acquisition, we developed a custom biopotential acquisition unit, with configurable measurement setup. It is intrinsically general purpose, but has been conceived to support studies on non-invasive fetal ECG on the animal model. Based on the ADS1298 analog front-end, the developed system achieves comparable performance with respect to commercial systems for physiological research opening to the first animals studies about the influence of the acquisition setup on the effectiveness of the signal processing algorithms for fetal ECG extraction

    Wireless and Battery-Free Biosignal Monitoring using Passive RFID Tags

    Get PDF
    Wearable health monitoring devices are becoming increasingly ubiquitous in clinical settings and even in monitoring daily activities. This recent spurt in wearable devices has been made possible through the development of low power electronics, small footprint components and efficient data transmission methods. The next big step in making monitoring devices more 'wearable' is the elimination of batteries. Without the need to replace and recharge batteries, monitoring can be uninterrupted and the monitoring device itself can be seamlessly integrated into garments. However, to achieve this goal, merely reducing sensor power consumption is not enough. There is a need for unconventional methods of health monitoring. par In this work, a novel passive Radio Frequency Identification (RFID) based method for transmitting health parameters wirelessly and without batteries is described. The dissertation proposes an innovative method of transmitting health parameter data by simply turning RFID tags on and off. Technology for RFID based continuous monitoring that include a wireless power harvester and low-power circuits for amplification and health parameter detection are developed in this research. The dissertation includes practical applications of the technology that are demonstrated using heart rate and uterine contraction monitoring as examples. Empirical tests for characterizing the heart rate monitoring system are also conducted. The heart rate monitoring technology is validated with human testing which showed a correlation of over 99% between actual and detected heart rate data.Ph.D., Electrical Engineering -- Drexel University, 201

    Life Sciences Program Tasks and Bibliography

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag
    corecore