21 research outputs found

    Supporting Large Scale Collaboration and Crowd-Based Investigation in Economics: A Computational Representation for Description and Simulation of Financial Models

    Get PDF
    Finance should be studied as a hard science, where scientific methods apply. When a trading strategy is proposed, the underlying model should be transparent and defined robustly to allow other researchers to understand and examine it thoroughly. Any reports on experimental results must allow other researchers to trace back to the original data and models that produced them. Like any hard sciences, results must be repeatable to allow researchers to collaborate and build upon each other’s results. Large-scale collaboration, when applying the steps of scientific investigation, is an efficient way to leverage crowd science to accelerate research in finance. Unfortunately, the current reality is far from that. Evidence shows that current methods of investigation in finance in most cases do not allow for reproducible and falsifiable procedures of scientific investigation. As a consequence, the majority of financial decisions at all levels, from personal investment choices to overreaching global economic policies, rely on some variation of try-and-error and are mostly non-scientific by definition. We lack transparency for procedures and evidence, proper explanation of market events, predictability on effects, or identification of causes. There is no clear demarcation of what is inherently scientific, and as a consequence, the line between fake and true is blurred. In this research, we advocate the use of a next-generation investigative approach leveraging forces of human diversity, micro-specialized crowds, and proper computer-assisted control methods associated with accessibility, reproducibility, communication, and collaboration. This thesis is structured in three distinctive parts. The first part defines a set of very specific cognitive and non-cognitive enablers for crowd-based scientific investigation: methods of proof, large-scale collaboration, and a domain-specific computational representation. These enablers allow the application of procedures of structured scientific investigation powered by crowds, a “collective brain in which neurons are human collaborators”. The second part defines a specialized computational representation to allow proper controls and collaboration in large-scale in the field of economics. A computational representation is a role-based representation system based on facets, contributions, and constraints of data, and used to define concepts related to a specific domain of knowledge for crowd-based investigation. The third and last part performs an end-to-end investigation of a non-trivial problem in finance by measuring the actual performance of a momentum strategy in technical analysis, applying formal methods of investigation developed over the first and second part of this research

    Deep Learning in Mobile and Wireless Networking: A Survey

    Get PDF
    The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique
    corecore