20,054 research outputs found

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    An Environmental-Based Perspective Framework: Integrating IoT Technology into a Sustainable Automotive Supply Chain

    Get PDF
    Purpose - Over the next decade, humanity is going to face big environmental problems, and considering these serious issues, businesses are adopting environmentally responsible practices. To put forward specific measures to achieve a more prosperous environmental future, this study aims to develop an environment-based perspective framework by integrating the Internet of Things (IoT) technology into a sustainable automotive supply chain (SASC). Design/methodology/approach - The study presents a conceptual environmental framework - based on 29 factors constituting four stakeholders’ rectifications - that holistically assess the SASC operations as part of the ReSOLVE model utilizing IoT. Then, experts from the SASC, IoT, and sustainability areas participated in two rigorous rounds of a Delphi study to validate the framework. Findings – The results indicate that the conceptual environmental framework proposed would help companies enhance the connectivity between major IoT tools in SASC, which would help develop congruent strategies for inducing sustainable growth. Originality/value - This study adds value to existing knowledge on SASC sustainability and digitalization in the context where the SASC is under enormous pressure, competitiveness, and increased variability

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus läbi aastate jõudnud järgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lüh IoT). IoT ei tähista ühtainsat tehnoloogiat, see võimaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel üle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu näiteks nutitelefon ja tahvelarvuti on saanud meie igapäevased kaaslased ning oma mitmekülgse võimekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kätkevad endas võimekaid protsessoreid ja 3G/4G tehnoloogiatel põhinevaid internetiühendusi. Kuid kui kasutada seadmeid järjepanu täisvõimekusel, tühjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasäästlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasäästlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö käsitleb põhjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö käigus loodud raamistikud on kontseptsiooni tõestamiseks katsetatud mitmetes juhtumiuuringutes päris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498

    Semantic Blockchain to Improve Scalability in the Internet of Things

    Get PDF
    Generally scarce computational and memory resource availability is a well known problem for the IoT, whose intrinsic volatility makes complex applications unfeasible. Noteworthy efforts in overcoming unpredictability (particularly in case of large dimensions) are the ones integrating Knowledge Representation technologies to build the so-called Semantic Web of Things (SWoT). In spite of allowed advanced discovery features, transactions in the SWoT still suffer from not viable trust management strategies. Given its intrinsic characteristics, blockchain technology appears as interesting from this perspective: a semantic resource/service discovery layer built upon a basic blockchain infrastructure gains a consensus validation. This paper proposes a novel Service-Oriented Architecture (SOA) based on a semantic blockchain for registration, discovery, selection and payment. Such operations are implemented as smart contracts, allowing distributed execution and trust. Reported experiments early assess the sustainability of the proposal

    Adaptive learning-based resource management strategy in fog-to-cloud

    Get PDF
    Technology in the twenty-first century is rapidly developing and driving us into a new smart computing world, and emerging lots of new computing architectures. Fog-to-Cloud (F2C) is among one of them, which emerges to ensure the commitment for bringing the higher computing facilities near to the edge of the network and also help the large-scale computing system to be more intelligent. As the F2C is in its infantile state, therefore one of the biggest challenges for this computing paradigm is to efficiently manage the computing resources. Mainly, to address this challenge, in this work, we have given our sole interest for designing the initial architectural framework to build a proper, adaptive and efficient resource management mechanism in F2C. F2C has been proposed as a combined, coordinated and hierarchical computing platform, where a vast number of heterogeneous computing devices are participating. Notably, their versatility creates a massive challenge for effectively handling them. Even following any large-scale smart computing system, it can easily recognize that various kind of services is served for different purposes. Significantly, every service corresponds with the various tasks, which have different resource requirements. So, knowing the characteristics of participating devices and system offered services is giving advantages to build effective and resource management mechanism in F2C-enabled system. Considering these facts, initially, we have given our intense focus for identifying and defining the taxonomic model for all the participating devices and system involved services-tasks. In any F2C-enabled system consists of a large number of small Internet-of-Things (IoTs) and generating a continuous and colossal amount of sensing-data by capturing various environmental events. Notably, this sensing-data is one of the key ingredients for various smart services which have been offered by the F2C-enabled system. Besides that, resource statistical information is also playing a crucial role, for efficiently providing the services among the system consumers. Continuous monitoring of participating devices generates a massive amount of resource statistical information in the F2C-enabled system. Notably, having this information, it becomes much easier to know the device's availability and suitability for executing some tasks to offer some services. Therefore, ensuring better service facilities for any latency-sensitive services, it is essential to securely distribute the sensing-data and resource statistical information over the network. Considering these matters, we also proposed and designed a secure and distributed database framework for effectively and securely distribute the data over the network. To build an advanced and smarter system is necessarily required an effective mechanism for the utilization of system resources. Typically, the utilization and resource handling process mainly depend on the resource selection and allocation mechanism. The prediction of resources (e.g., RAM, CPU, Disk, etc.) usage and performance (i.e., in terms of task execution time) helps the selection and allocation process. Thus, adopting the machine learning (ML) techniques is much more useful for designing an advanced and sophisticated resource allocation mechanism in the F2C-enabled system. Adopting and performing the ML techniques in F2C-enabled system is a challenging task. Especially, the overall diversification and many other issues pose a massive challenge for successfully performing the ML techniques in any F2C-enabled system. Therefore, we have proposed and designed two different possible architectural schemas for performing the ML techniques in the F2C-enabled system to achieve an adaptive, advance and sophisticated resource management mechanism in the F2C-enabled system. Our proposals are the initial footmarks for designing the overall architectural framework for resource management mechanism in F2C-enabled system.La tecnologia del segle XXI avança ràpidament i ens condueix cap a un nou món intel·ligent, creant nous models d'arquitectures informàtiques. Fog-to-Cloud (F2C) és un d’ells, i sorgeix per garantir el compromís d’acostar les instal·lacions informàtiques a prop de la xarxa i també ajudar el sistema informàtic a gran escala a ser més intel·ligent. Com que el F2C es troba en un estat preliminar, un dels majors reptes d’aquest paradigma tecnològic és gestionar eficientment els recursos informàtics. Per fer front a aquest repte, en aquest treball hem centrat el nostre interès en dissenyar un marc arquitectònic per construir un mecanisme de gestió de recursos adequat, adaptatiu i eficient a F2C.F2C ha estat concebut com una plataforma informàtica combinada, coordinada i jeràrquica, on participen un gran nombre de dispositius heterogenis. La seva versatilitat planteja un gran repte per gestionar-los de manera eficaç. Els serveis que s'hi executen consten de diverses tasques, que tenen requisits de recursos diferents. Per tant, conèixer les característiques dels dispositius participants i dels serveis que ofereix el sistema és un requisit per dissenyar mecanismes eficaços i de gestió de recursos en un sistema habilitat per F2C. Tenint en compte aquests fets, inicialment ens hem centrat en identificar i definir el model taxonòmic per a tots els dispositius i sistemes implicats en l'execució de tasques de serveis. Qualsevol sistema habilitat per F2C inclou en un gran nombre de dispositius petits i connectats (conegut com a Internet of Things, o IoT) que generen una quantitat contínua i colossal de dades de detecció capturant diversos events ambientals. Aquestes dades són un dels ingredients clau per a diversos serveis intel·ligents que ofereix F2C. A més, el seguiment continu dels dispositius participants genera igualment una gran quantitat d'informació estadística. En particular, en tenir aquesta informació, es fa molt més fàcil conèixer la disponibilitat i la idoneïtat dels dispositius per executar algunes tasques i oferir alguns serveis. Per tant, per garantir millors serveis sensibles a la latència, és essencial distribuir de manera equilibrada i segura la informació estadística per la xarxa. Tenint en compte aquests assumptes, també hem proposat i dissenyat un entorn de base de dades segura i distribuïda per gestionar de manera eficaç i segura les dades a la xarxa. Per construir un sistema avançat i intel·ligent es necessita un mecanisme eficaç per a la gestió de l'ús dels recursos del sistema. Normalment, el procés d’utilització i manipulació de recursos depèn principalment del mecanisme de selecció i assignació de recursos. La predicció de l’ús i el rendiment de recursos (per exemple, RAM, CPU, disc, etc.) en termes de temps d’execució de tasques ajuda al procés de selecció i assignació. Adoptar les tècniques d’aprenentatge automàtic (conegut com a Machine Learning, o ML) és molt útil per dissenyar un mecanisme d’assignació de recursos avançat i sofisticat en el sistema habilitat per F2C. L’adopció i la realització de tècniques de ML en un sistema F2C és una tasca complexa. Especialment, la diversificació general i molts altres problemes plantegen un gran repte per realitzar amb èxit les tècniques de ML. Per tant, en aquesta recerca hem proposat i dissenyat dos possibles esquemes arquitectònics diferents per realitzar tècniques de ML en el sistema habilitat per F2C per aconseguir un mecanisme de gestió de recursos adaptatiu, avançat i sofisticat en un sistema F2C. Les nostres propostes són els primers passos per dissenyar un marc arquitectònic general per al mecanisme de gestió de recursos en un sistema habilitat per F2C.Postprint (published version

    Emerging technologies for learning report (volume 3)

    Get PDF

    A review of Smart Contract Blockchain Based on Multi-Criteria Analysis: Challenges and Motivations

    Full text link
    A smart contract is a digital program of transaction protocol (rules of contract) based on the consensus architecture of blockchain. Smart contracts with Blockchain are modern technologies that have gained enormous attention in scientific and practical applications. A smart contract is the central aspect of a blockchain that facilitates blockchain as a platform outside the cryptocurrency spectrum. The development of blockchain technology, with a focus on smart contracts, has advanced significantly in recent years. However research on the smart contract idea has weaknesses in the implementation sectors based on a decentralized network that shares an identical state. This paper extensively reviews smart contracts based on multi criteria analysis challenges and motivations. Therefore, implementing blockchain in multi-criteria research is required to increase the efficiency of interaction between users via supporting information exchange with high trust. Implementing blockchain in the multi-criteria analysis is necessary to increase the efficiency of interaction between users via supporting information exchange and with high confidence, detecting malfunctioning, helping users with performance issues, reaching a consensus, deploying distributed solutions and allocating plans, tasks and joint missions. The smart contract with decision-making performance, planning and execution improves the implementation based on efficiency, sustainability and management. Furthermore the uncertainty and supply chain performance lead to improved users confidence in offering new solutions in exchange for problems in smart contacts. Evaluation includes code analysis and performance while development performance can be under development.Comment: Revie

    Ambient Intelligence with Wireless Grid Enabled Applications: A Case Study of the Launch and First Use Experience of WeJay Social Radio in Education

    Get PDF
    Wireless grid and ambient intelligent (AmI) environments are characterized as supportive of collaboration, interaction, and sharing. The conceptual framework advanced for this study incorporated the constructs of innovation, creativity and context awareness while offering emergence theory -- emergent properties, structures, patterns and behaviors -- to frame and investigate a wireless grid enabled social radio application which was theorized to be potentially transformative and disruptive. The unintended consequences and unexpected possibilities of wireless grid and smart environments were also addressed. Using a single case study, drawing upon multiple data collection methods, this research investigated the deployment and use experience of WeJay, an application incubated through the Wireless Grids Innovation Testbed (WiGiT), from the perspective of beta trial participants. Guided by the broad research question -- Do wireless grid enabled applications, such as WeJay social radio, add to the potential for new and transformative outcomes for people, information and technology when deployed in an academic setting? -- this empirical study sought to: a) learn more about the launch experience of this first pre-standards wireless grid enabled application among WiGiT members and selected Syracuse University students and faculty; b) understand how this application was interpreted for use; c) determine whether novel and unexpected uses emerged; d) investigate whether wireless grid enabled environments fostered innovation and creativity; and e) elicit whether a conceptual relationship was emerging between wireless grid and AmI environments, focusing on context-awareness and ambient learning. While this early stage of diffusion and first user sample was a key limitation of the study it was also the core strength. Although challenged by the state of readiness of WeJay, study findings supported the propositions that WeJay fosters innovation and creativity; that novel and unexpected uses were generated; and that the theorized relationship between wireless grid applications and embedded awareness does exist. Recommendations for enhanced tool readiness were made and embedded smartness was found to be both desirable and beneficial. This research makes a contribution as a bridge study for future research while having theoretical and methodological implications for research and practice. Social, emotion/affect, and human-centered computing (HCC) dimensions emerged as rich areas for further research

    Investigation of IoT applications in supply chain management with fuzzy hierarchical analysis

    Get PDF
    The IoT is currently growing rapidly and uses technologies such as smart barcode sensors, RFID, wireless communications, cloud computing, and more. The Internet of Things, in addition to being a revolutionary technology for all industries; has also demonstrated its potential in processes such as supply chain. Management, forecasting, and monitoring applications help managers improve the operational efficiency of their company distribution and increase transparency in their decisions. So more than ever, the benefits of using the Internet of Things are evident in the supply chain. The existence of comprehensive and valid information platforms is one of the requirements of supply chain management. Therefore, the most accurate use of integrated information devices such as Internet technology of objects in this part of the management of the organization is important. Coverage of this information accurately and in an instant facilitates matters and makes the process progress more transparent. To improve this process, cloud computing is used as a solution. In addition, other cloud computing capabilities can be used, such as facilitating object communication, integrating monitoring devices, and IoT storage, analyzing data, and paving the way for cyberspace to provide the customer with supply chain management. This requires a model that defines how Internet technology relates to objects, cloud computing, and supply chain management. The purpose of this study is to identify and prioritize IoT applications in the supply chain management sector with a multi-criteria decision-making approach. The results show that applications such as intelligent control and intelligent maintenance have the highest priorities
    corecore